
Beyond Black-Box Advice: Learning-Augmented
Algorithms for MDPs with Q-Value Predictions

Tongxin Li
School of Data Science

CUHK-SZ, China
litongxin@cuhk.edu.cn

Yiheng Lin
Computing + Mathematical Sciences

Caltech, USA
yihengl@caltech.edu

Shaolei Ren
Electrical & Computer Engineering

UC Riverside, USA
shaolei@ucr.edu

Adam Wierman
Computing + Mathematical Sciences

Caltech, USA
adamw@caltech.edu

Abstract

We study the tradeoff between consistency and robustness in the context of a
single-trajectory time-varying Markov Decision Process (MDP) with untrusted
machine-learned advice. Our work departs from the typical approach of treating
advice as coming from black-box sources by instead considering a setting where
additional information about how the advice is generated is available. We prove a
first-of-its-kind consistency and robustness tradeoff given Q-value advice under a
general MDP model that includes both continuous and discrete state/action spaces.
Our results highlight that utilizing Q-value advice enables dynamic pursuit of the
better of machine-learned advice and a robust baseline, thus result in near-optimal
performance guarantees, which provably improves what can be obtained solely
with black-box advice.

1 Introduction

Machine-learned predictions and hand-crafted algorithmic advice are both crucial in online decision-
making problems, driving a growing interest in learning-augmented algorithms [1, 2] that exploit
the benefits of predictions to improve the performance for typical problem instances while bounding
the worst-case performance [3, 4]. To this point, the study of learning-augmented algorithms has
primarily viewed machine-learned advice as potentially untrusted information generated by black-box
models. Yet, in many real-world problems, additional knowledge of the machine learning models
used to produce advice/predictions is often available and can potentially improve the performance of
learning-augmented algorithms.

A notable example that motivates our work is the problem of minimizing costs (or maximizing
rewards) in a single-trajectory Markov Decision Process (MDP). More concretely, a value-based
machine-learned policy π̃ can be queried to provide suggested actions as advice to the agent at each
step [5–7]. Typically, the suggested actions are chosen to minimize (or maximize, in case of rewards)
estimated cost-to-go functions (known as Q-value predictions) based on the current state.

Naturally, in addition to suggested actions, the Q-value function itself can also provide additional
information (e.g., the long-term impact of choosing a certain action) potentially useful to the design
of a learning-augmented algorithm. Thus, this leads to two different designs for learning-augmented
algorithms in MDPs: black-box algorithms and grey-box algorithms. A learning-augmented algorithm
using π̃ is black-box if π̃ provides only the suggested action ũ to the learning-augmented algorithm,

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

whereas it is value-based (a.k.a., grey-box) if π̃ provides an estimate of the Q-value function Q̃ (that
also implicitly includes a suggested action ũ obtained by minimizing Q̃) to the learning-augmented
algorithm.

Value-based policies π̃ often perform well empirically in stationary environments in practice [5, 6].
However, they may not have performance guarantees in all environments and can perform poorly at
times due to a variety of factors, such as non-stationary environments [8–11], policy collapse [12],
sample inefficiency [13], and/or when training data is biased [14]. As a consequence, such policies
often are referred to as “untrusted advice” in the literature on learning-augmented algorithms, where
the notion of “untrusted” highlights the lack of performance guarantees. In contrast, recent studies in
competitive online control [15–21] have begun to focus on worst-case analysis and provide control
policies π with strong performance guarantees even in adversarial settings, referred to as robustness,
i.e., π provides “trusted advice.” Typically, the goal of a learning-augmented online algorithm [1, 3]
is to perform nearly as well as the untrusted advice when the machine learned policy performs well,
a.k.a., achieve consistency, while also ensuring worst-case robustness. Combining the advice of
an untrusted machine-learned policy π̃ and a robust policy π naturally leads to a tradeoff between
consistency and robustness. In this paper, we explore this tradeoff in a time-varying MDP setting and
seek to answer the following key question for learning-augmented online algorithms:

Can Q-value advice from an untrusted machine-learned policy, π̃, in a grey-box scenario provide
more benefits than the black-box action advice generated by π̃ in the context of consistency and
robustness tradeoffs for MDPs?

1.1 Contributions

We answer the question above in the affirmative by presenting and analyzing a unified projection-
based learning-augmented online algorithm (PROjection Pursuit policy, simplified as PROP in
Algorithm 1) that combines action feedback from a trusted, robust policy π with an untrusted ML
policy π̃. In addition to offering a consistency and robustness tradeoff for MDPs with black-box
advice, our work moves beyond the black-box setting. Importantly, by considering the grey-box
setting, the design of PROP demonstrates that the structural information of the untrusted machine-
learned advice can be leveraged to determine the trust parameters dynamically, which would otherwise
be challenging (if not impossible) in a black-box setting. To our best knowledge, PROP is the first-of-
its-kind learning-augmented algorithm that applies to general MDP models, which allow continuous
or discrete state and action spaces.

Our main results characterize the tradeoff between consistency and robustness for both black-box and
grey-box settings in terms of the ratio of expectations, RoE, built upon the traditional consistency
and robustness metrics in [3, 22, 23, 4] for the competitive ratio. We show in Theorem 5.2 that for
the black-box setting, PROP is (1 +O((1− λ)γ))-consistent and (ROB + O(λγ))-robust where
0 ≤ λ ≤ 1 is a hyper-parameter. Moreover, for the black-box setting, PROP cannot be both
(1 + o(λγ))-consistent and (ROB+ o((1− λ)γ))-robust for any 0 ≤ λ ≤ 1 where γ is the diameter
of the action space. In sharp contrast, by using a careful design of a robustness budget parameter in
PROP with Q-value advice (grey-box setting), PROP is 1-consistent and (ROB+ o(1))-robust.

Our result highlights the benefits of exploiting the additional information informed by the estimated
Q-value functions, showing that the ratio of expectations can approach the better of the two policies
π̃ and π for any single-trajectory time-varying, and even possibly adversarial environments — if the
value-based policy π̃ is near-optimal, then the worst-case RoE(PROP) can approach 1 as governed
by a consistency parameter; otherwise, RoE(PROP) can be bounded by the ratio of expectations of
π subject to an additive term o(1) that decreases when the time horizon T increases.

A key technical contribution of our work is to provide the first quantitative characterization of the
consistency and robustness tradeoff for a learning-augmented algorithm (PROP) in a general MDP
model, under both standard black-box and novel grey-box settings. Importantly, PROP is able to
leverage a broad class of robust policies, called Wasserstein robust policies, which generalize the
well-known contraction principles that are satisfied by various robust policies [24] and have been
used to derive regrets for online control [19, 25]. A few concrete examples of Wasserstein robust
policies applicable for PROP are provided in Table 1(Section 3.1).

2

1.2 Related Work

Learning-Augmented Algorithms with Black-Box Advice. The concept of integrating black-box
machine-learned guidance into online algorithms was initially introduced by [26]. [3] coined terms
“robustness" and “consistency" with formal mathematical definitions based on the competitive ratio.
Over the past few years, the consistency and robustness approach has gained widespread popularity
and has been utilized to design online algorithms with black-box advice for various applications,
including ski rental [3, 22, 23], caching [27–29], bipartite matching [30], online covering [31, 32],
convex body chasing [4], nonlinear quadratic control [33]. The prior studies on learning-enhanced
algorithms have mainly focused on creating meta-strategies that combine online algorithms with
black-box predictions, and typically require manual setting of a trust hyper-parameter to balance
consistency and robustness. A more recent learning-augmented algorithm in [33] investigated the
balance between competitiveness and stability in nonlinear control in a black-box setting. However,
this work limits the robust policy to a linear quadratic regulator and does not provide a theoretical
basis for the selection of the trust parameters. [34] generalized the black-box advice setting by
considering distributional advice.

Online Control and Optimization with Structural Information. Despite the lack of a systematic
analysis, recent studies have explored the usage of structural information in online control and
optimization problems. Closest to our work, [7] considered a related setting where the Q-value
function is available as advice, and shows that such information can be utilized to reduce regret in a
tabular MDP model. In contrast, our analysis applies to more general models that allow continuous
state/action spaces. In [17], the dynamical model and the predictions of disturbances in a linear
control system are shown to be useful in achieving a near-optimal consistency and robustness tradeoff.
The predictive optimization problem solved by MPC [35, 36, 16, 37] can be regarded as a special
realization of grey-box advice, where an approximated cost-to-go function is constructed from
structural information that includes the (predicted) dynamical model, costs, and disturbances.

MDP with External Feedback. Feedback from external sources such as control baselines [38, 39],
visual explanations [40], and human experts [41–43] is often available in MDP. This external feedback
can be beneficial for various purposes, such as ensuring safety [44], reducing variance [38], training
human-like chatbots [41], and enhancing overall trustworthiness [45], among others. The use of
control priors has been proposed by [38] as a way to guarantee the Lyapunov stability of the training
process in reinforcement learning. They used the Temporal-Difference method to tune a coefficient
that combines a RL policy and a control prior, but without providing a theoretical foundation. Another
related area is transfer learning in RL, where external Q-value advice from previous tasks can be
adapted and utilized in new tasks. Previous research has shown that this approach can outperform
an agnostic initialization of Q, but these results are solely based on empirical observations and lack
theoretical support [46–48].

2 Problem Setting

We consider a finite-horizon, single-trajectory, time-varying MDP with T discrete time steps. The
state space X is a subset of a normed vector space embedded with a norm ∥ · ∥X . The actions are
chosen from a convex and compact set U in a normed vector space characterized by some norm ∥ · ∥U .
Notably, U can represent either continuous actions or the probability distributions used when choosing
actions from a finite set.1 The diameter of the action space U is denoted by γ := maxu∈U ∥u∥U .
Denote [T] := {0, . . . , T − 1}. For each time step t ∈ [T], let Pt : X × U → PX be the transition
probability, where PX is a set of probability measures on X . We consider time-varying costs
ct : X × U → R+, while rewards can be treated similarly by adding a negative sign. An initial state
x0 ∈ X is fixed. This MDP model is compactly represented by MDP(X ,U , T, P, c).
The goal of a policy in this MDP setting is to minimize the total cost over all T steps. The policy
agent has no access to the full MDP. At each time step t ∈ [T], only the incurred cost value ct(xt, ut)
and the next state xt+1 ∼ Pt(·|xt, ut) are revealed to the agent after playing an action ut ∈ U . We
denote a policy by π = (πt : t ∈ [T]) where each πt : X → U chooses an action ut when observing

1The action space U is assumed to be a continuous, convex, and compact set for more generality. When
the actions are discrete, U can be defined as the set of all probability distributions on a finite action space. We
relegate the detailed discussions in Appendix A.2 and F.

3

xt at step t ∈ [T]. Note that our results can be generalized to the setting when πt is stochastic and
outputs a probability distribution on U . Given MDP(X ,U , T, P, c), we consider an optimization with
time-varying costs and transition dynamics. Thus, our goal is to find a policy π that minimizes the
following expected total cost:

J(π) := EP,π

[∑
t∈[T]

ct (xt, πt(xt))
]

(1)

where the randomness in EP,π is from the transition dynamics P = (Pt : t ∈ [T]) and the policy
π = (πt : t ∈ [T]). We focus our analysis on the expected dynamic regret and the ratio of expectations,
defined below, as the performance metrics for our policy design.

Definition 1 (Expected dynamic regret). Given MDP(X ,U , T, P, c), the (expected) dynamic regret
of a policy π = (πt : t ∈ [T]) is defined as the difference between the expected cost induced by the
policy π, J(π) in (1), and the optimal expected cost J⋆ := infπ J(π), i.e., DR(π) := J(π)− J⋆.

Dynamic regret is a more general (and often more challenging to analyze) measure than classical static
regret, which has been mostly used for stationary environments [49, 50]. The following definition
of the ratio of expectations [51, 52] will be used as an alternative performance metric in our main
results.

Definition 2 (Ratio of expectations). Given MDP(X ,U , T, P, c), the ratio of expectations of a
policy π = (πt : t ∈ [T]) is defined as RoE(π) := J(π)/J⋆ where J(π) and J⋆ are the same as in
Definition 1.

Dynamic regret and the ratio of expectations defined above also depend on the error of the untrusted
ML advice; we make this more explicit in Section 3.2. Next, we state the following continuity
assumption, which is standard in MDPs with continuous action and state spaces [53–55]. Note that
our analysis can be readily adapted to general Hölder continuous costs with minimal modifications.

Assumption 1 (Lipschitz costs). For any time step t ∈ [T], the cost function ct : X × U → R+ is
Lipschitz continuous with a Lipschitz constantLC <∞, i.e., for any t ∈ [T], |ct(x, u)− ct(x′, u′)| ≤
LC (∥x− x′∥X + ∥u− u′∥U). Moreover, 0 < ct(x, u) <∞ for all t ∈ [T], x ∈ X , and u ∈ U .

3 Consistency and Robustness in MDPs

Figure 1: Left: Overview of settings in our problem. Right: consistency and robustness tradeoff, with
RoE and ε defined in Definition 2 and Equation (4).

Our objective is to achieve a balance between the worst-case guarantees on cost minimization in terms
of dynamic regret provided by a robust policy, π, and the average-case performance of a valued-based
policy, π̃, in the context of MDP(X ,U , T, P, c). In particular, we denote by ROB ≥ 1 a ratio of
expectation bound of the robust policy π such that the worst case RoE(π) ≤ ROB. In the learning-
augmented algorithms literature, these two goals are referred to as consistency and robustness [3, 1].
Informally, robustness refers to the goal of ensuring worst-case guarantees on cost minimization
comparable to those provided by π and consistency refers to ensuring performance nearly as good as
π̃ when π̃ performs well (e.g., when the instance is not adversarial). Learning-augmented algorithms
seek to achieve consistency and robustness by combining π and π̃, as illustrated in Figure 1.

4

Table 1: Examples of models covered in this paper and the associated control baselines. For the right
column, bounds on the ratio of expectations RoE are exemplified, where ROB is defined in Section 3
and O omits inessential constants.

Model Robust Baseline π RoE

Time-varying MDP (Our General Model) Wasserstein Robust Policy (Definition 3) ROB

Discrete MDP (Appendix A.2) Any Policy that Induced a Regular Markov Chain —
Time-Varying LQR (Appendix A.1) MPC with Robust Predictions (Algorithm 3) O(1)

Our focus in this work is to design robust and consistent algorithms for two types of advice: black-box
advice and grey-box advice. The type of advice that is nearly always the focus in the learning-
augmented algorithm literature is black-box advice — only providing a suggested action ũt without
additional information. In contrast, on top of the action ũt, grey-box advice can also reveal the
internal state of the learning algorithm, e.g., the Q-value Q̃t in our setting. This contrast is illustrated
in Figure 1.

Compared to black-box advice, grey-box advice has received much less attention in the literature,
despite its potential to improve tradeoffs between consistency and robustness as recently shown
in [34, 17]. Nonetheless, the extra information on top of the suggested action in a grey-box setting
potentially allows the learning-augmented algorithm to make a better-informed decision based on the
advice, thus achieving a better tradeoff between consistency and robustness than otherwise possible.

In the remainder of this section, we discuss the robustness properties for the algorithms we consider
in our learning-augmented framework (Section 3.1), and introduce the notions of consistency in our
grey-box and black-box models in Section 3.2.

3.1 Locally Wasserstein-Robust Policies

We begin with constructing a novel notion of robustness for our learning-augmented framework based
on the Wasserstein distance as follows. Denote the robust policy by π := (πt : t ∈ [T]), where each
πt maps a system state to a deterministic action (or a probability of actions in the stochastic setting).
Denote by ρt1:t2(ρ) the joint distribution of the state-action pair (xt, ut) ∈ X × U at time t2 ∈ [T]
when implementing the baselines πt1 , . . . , πt2 consecutively with an initial state-action distribution ρ.
We use ∥ · ∥X×U := ∥ · ∥X + ∥ · ∥U as the included norm for the product space X ×U . Let Wp(µ, ν)
denote the Wasserstein p-distance between distributions µ and ν whose support set is X × U :

Wp(µ, ν) :=

(
inf

J∈J (µ,ν)

∫
∥(x, u)− (x′, u′)∥pX×UdJ ((x, u), (x′, u′))

)1/p

where p ∈ [1,∞) and J (µ, ν) denotes a set of all joint distributions J with a support set X × U
that have marginals µ and ν. Next, we define a robustness condition for our learning-augmented
framework.
Definition 3 (r-locally p-Wasserstein robustness). A policy π = (πt : t ∈ [T]) is r-locally p-
Wasserstein-robust if for any 0 ≤ t1 ≤ t2 < T and any pair of state-action distributions ρ, ρ′ where
the the p-Wasserstein distance between them is bounded by Wp(ρ, ρ

′) ≤ r, for some radius r > 0,
the following inequality holds:

Wp (ρt1:t2(ρ), ρt1:t2(ρ
′)) ≤s(t2 − t1)Wp (ρ, ρ

′) (2)
for some function s : [T]→ R+ satisfying

∑
t∈[T] s(t) ≤ Cs where Cs > 0 is a constant.

Our robustness definition is naturally more relaxed than the usual contraction property in the con-
trol/optimization literature [25, 35] — if any two different state-action distributions converge expo-
nentially with respect to the Wasserstein p-distance, then a policy π is r-locally p-Wasserstein-robust.
This is illustrated in Figure 2. Note that, although the Wasserstein robustness in Definition 3 well
captures a variety of distributional robustness metrics such as the total variation robustness de-
fined on finite state/action spaces, it can also be further generalized to other metrics for probability
distributions.

As shown in Appendix A (provided in the supplementary material), by establishing a connection
between the Wasserstein distance and the total variation metric, any policy that induces a regular

5

Figure 2: An illustration of an r-locally p-Wasserstein-robust policy.

Markov chain satisfies the fast mixing property and the state-action distribution will converge with
respect to the total variation distance to a stationary distribution [56]. A more detailed discussion can
be found in Appendix A.2. Moreover, the Wasserstein-robustmess in Definition 3 includes a set of
contraction properties in control theory as special cases. For example, for a locally Wasserstein-robust
policy, if the transition kernel P and the baseline policy π are deterministic, then the state-action
distributions become point masses, reducing Definition 3 to a state-action perturbation bound in terms
of the ℓ2-norm when implementing the policy π from different starting states [35, 19].

The connections discussed above highlight the existence of several well-known robust policies that
satisfy Definition 3. Besides the case of discrete MDPs discussed in Appendix A.2, another prominent
example is model predictive control (MPC), for which robustness follows from the results in [19]
(see Appendix A.1 for details). The model assumption below will be useful in our main results.

Assumption 2. There exists a γ-locally p-Wasserstein-robust baseline control policy (Definition 3) π
for some p ≥ 1, where γ is the diameter of the action space U .

3.2 Consistency and Robustness for RoE

In parallel with the notation of “consistency and robustness” in the existing literature on learning-
augmented algorithms [3, 1], we define a new metric of consistency and robustness in terms of RoE. To
do so, we first introduce an optimal policy π⋆. Based on MDP(X ,U , T, P, c), let π⋆

t = (π⋆
t : t ∈ [T])

denote the optimal policy at each time step t ∈ [T], whose optimal Q-value function is

Q⋆
t (x, u) := inf

π
EP,π

[
T−1∑
τ=t

cτ (xτ , uτ)
∣∣∣xt = x, ut = u

]
,

where EP,π denotes an expectation with respect to the randomness of the trajectory {(xt, ut) : t ∈
[T]} obtained by following a policy π and the transition probability P at each step t ∈ [T]. The
Bellman optimality equations can then be expressed as

Q⋆
t (x, u) =

(
ct + PtV

⋆
t+1

)
(x, u) , V ⋆

t (x) = inf
v∈U

Q⋆
t (x, v), V ⋆

t (x) = 0 (3)

for all (x, u) ∈ X ×U , t ∈ [T] and t ∈ [T], where we write (PtV
⋆) (x, u) := Ex′∼Pt(·|x,u) [V

⋆(x′)].
This indicates that for each time step t ∈ [T], π⋆

t is the greedy policy with respect to its optimal
Q-value functions (Q⋆

t : t ∈ [T]). Note that for any t ∈ [T], Q⋆
t (x, u) = 0. Given this setup, the

value-based policies π̃ := (π̃t : t ∈ [T]) take the following form. For any t ∈ [T], a value-based
policy π̃t : X → U produces an action ũt ∈ argminv∈U Q̃t (xt, v) by minimizing an estimate of the
optimal Q-value function Q̃t.

We make the following assumption on the machine-learned untrusted policy π̃ and the Q-value advice.

Assumption 3. The machine-learned untrusted policy π̃ is value-based. The Q-value advice Q̃t :
X × U → R is Lipschitz continuous with respect to u ∈ U for any x ∈ X , with a Lipschitz constant
LQ for all t ∈ [T]. Moreover, Q̃t (x, u)−Q⋆

t (x, u) = o(T) for all (x, u) ∈ X × U and t ∈ [T].

We can now define a consistency measure for Q-value advice Q̃t, which measures the error of the
estimates of the Q-value functions due to approximation error and time-varying environments, etc.
Let p ∈ (0,∞]. Fix a sequence of distributions ρ = (ρt : t ∈ [T]) whose support set is X ×U and let
ϕt be the marginal distribution of ρt on X . We define a quantity representing the error of the Q-value

6

advice

ε(p, ρ) :=
∑
t∈[T]

(∥∥∥Q̃t −Q⋆
t

∥∥∥
p,ρt

+
∥∥∥ inf

v∈U
Q̃t − inf

v∈U
Q⋆

t

∥∥∥
p,ϕt

)
(4)

where ∥ · ∥p,ρ :=
(∫
|·|p dρ

)1/p
denotes the Lp,ρ-norm. A policy with Q-value functions {Qt : t ∈

[T]} is said to be (ε, p, ρ)-consistent if there exists an ε satisfying (4). In addition, a policy is
(0,∞)-consistent if Q̃t is a Lebesgue-measurable function for all t ∈ [T] and (∞, ε)-consistent if
the L∞-norm satisfies

∑
t∈[T] ∥Q̃t −Q⋆

t ∥∞ ≤ ε. The consistency error of a policy in (4) quantifies
how the Q-value advice is close to optimal Q-value functions. It depends on various factors such the
function approximation error or training error due to the distribution shift, and has a close connection
to a rich literature on value function approximation [57–61]. The results in [59] generalized the worst-
case L∞ guarantees to arbitrary Lp,ρ-norms under some mixing assumptions via policy iteration
for a stationary Markov decision process (MDP) with a continuous state space and a discrete action
space. Recently, approximation guarantees for the average case for parametric policy classes (such as
a neural network) of value functions have started to appear [57, 58, 60]. These bounds are useful in
lots of supervised machine learning methods such as classification and regression, whose bounds
are typically given on the expected error under some distribution. These results exemplify richer
instances of the consistency definition (see (4)) and a summary of these bounds can be found in [61].

Now, we are ready to introduce our definition of consistency and robustness with respect to the ratio
of expectations, similar to the growing literature on learning-augmented algorithms [3, 22, 23, 4].
We write the ratio of expectations RoE(ε) of a policy π as a function of the Q-value advice error ε in
terms of the L∞ norm, defined in (4).

Definition 4 (Consistency and Robustness). An algorithm π is said to be k-consistent if its worst-case
(with respect to the MDP model MDP(X ,U , T, P, c)) ratio of expectations satisfies RoE(ε) ≤ k for
ε = 0. On the other hand, it is l-robust if RoE(ε) ≤ l for any ε > 0.

4 The Projection Pursuit Policy (PROP)

In this section we introduce our proposed algorithm (Algorithm 1), which achieves near-optimal con-
sistency while bounding the robustness by leveraging a robust baseline (Section 3.1) in combination
with value-based advice (Section 3.2). A key challenge in the design is how to exploit the benefits of
good value-based advice while avoiding following it too closely when it performs poorly. To address
this challenge, we propose to judiciously project the value-based advice into a neighborhood of the
robust baseline. By doing so, the actions we choose can follow the value-based advice for consistency
while staying close to the robust baseline for robustness. More specifically, at each step t ∈ [T], we
choose ut = ProjUt

(ũt) where a projection operator ProjUt
(·) : U → U is defined as

ProjUt
(u) := argmin

v∈U
∥u− v∥U subject to ∥v − πt (xt)∥U ≤ Rt, (5)

corresponding to the projection of u onto a ball U t := {u ∈ U : ∥u− πt (xt)∥U ≤ Rt}. Note that
when the optimal solution of (5) is not unique, we choose the one on the same line with πt (xt)− u.

The PROjection Pursuit policy, abbreviated as PROP, can be described as follows. For a time step
t ∈ [T], let π̃t : X → U denote a policy that chooses an action ũt (arbitrarily choose one if there
are multiple minimizers of Q̃t), given the current system state xt at time t ∈ [T] and step t ∈ [T].
An action ut = ProjUt

(ũt(xt)) is selected by projecting the machine-learned action ũt(xt) onto
a norm ball U t defined by the robust policy π given a radius Rt ≥ 0. Finally, PROP applies to
both black-box and grey-box settings (which differ from each other in terms of how the radius Rt

is decided). The results under both settings are provided in Section 5, revealing a tradeoff between
consistency and robustness.

The radii (Rt : t ∈ [T]) can be interpreted as robustness budgets and are key design parameters
that determine the consistency and robustness tradeoff. Intuitively, the robustness budgets reflect
the trustworthiness on the value-based policy π̃ — the larger budgets, the more trustworthiness and
hence the more freedom for PROP to follow π̃. How the robustness budget is chosen differentiates
the grey-box setting from the black-box one.

7

Algorithm 1 PROjection Pursuit Policy (PROP)
Initialize :Untrusted policy π̃ = (π̃t : t ∈ [T]) and baseline policy π = (πt : t ∈ [T])

1 for t = 0, . . . , T − 1 do
2 //Implement black-box (Section 4.1) or grey-box (Section 4.2) procedures
3 (ũt, Rt)←BLACK-BOX(xt) or (ũt, Rt)←GREY-BOX(xt)

4 Set action ut = ProjUt
(ũt) where U t := {u ∈ U : ∥u− πt (xt)∥U ≤ Rt}

5 Sample next state xt+1 ∼ Pt (·|xt, ut)
6 end

4.1 Black-Box Setting

In the black-box setting, the only information provided by π̃ is a suggested action ũ for the learning-
augmented algorithm. Meanwhile, the robust policy π can also be queried to provide advice u. Thus,
without additional information, a natural way to utilize both π̃ and π is to decide a projection radius
at each time based on the how the obtained ũ and u. More concretely, at each time t ∈ [T], the
robustness budget Rt is chosen by the following BLACK-BOX Procedure, where we set Rt = ληt
with ηt := ∥ũt − ut∥U representing the difference between the two advice measured in terms of the
norm ∥ · ∥U and 0 ≤ λ ≤ 1 being a tradeoff hyper-parameter that measures the trustworthiness on
the machine-learned advice. The choice of Rt = ληt can be explained as follows. The value of
ηt indicates the intrinsic discrepancy between the robust advice and the machine-learned untrusted
advice — the larger discrepancy, the more difficult to achieve good consistency and robustness
simultaneously. Given a robust policy and an untrusted policy, by setting a larger λ, we allow
the actual action to deviate more from the robust advice and to follow the untrusted advice more
closely, and vice versa. λ is a crucial hyper-parameter that can be pre-determined to yield a desired
consistency and robustness tradeoff. The computation of Rt is summarized in Procedure 1 below.

Procedure 1 BLACK-BOX Procedure at t ∈ [T] (Input: state xt and hyper-parameter 0 ≤ λ ≤ 1)

Implement π̃t and πt to obtain ũt and ut, respectively.
Set robustness budget Rt = ληt where ηt := ∥ũt − ut∥U ; Return (ũt, Rt)

4.2 Grey-Box Setting

In the grey-box setting, along with the suggested action ũ, the value-based untrusted policy π̃ also
provides an estimate of the Q-value function Q̃ that indicates the long-term cost impact of an action. To
utilize such additional information informed by Q̃t at each time t ∈ [T], we propose a novel algorithm
that dynamically adjusts the budget Rt to further improve the consistency and robustness tradeoff.
More concretely, let us consider the Temporal-Difference (TD) error TDt = ct−1 + Pt−1Ṽt − Q̃t−1.
Intuitively, if a non-zero TD-error is observed, the budget Rt needs to be decreased so as to minimize
the impact of the learning error. However, the exact TD-error is difficult to compute in practice, since
it requires complete knowledge of the transition kernels (Pt : t ∈ [T]). To address this challenge, we
use the following estimated TD-error based on previous trajectories:

δt (xt, xt−1, ut−1) :=ct−1 (xt−1, ut−1) + inf
v∈U

Q̃t (xt, v)− Q̃t−1 (xt−1, ut−1) . (6)

Denote by β > 0 a hyper-parameter. Based on the estimated TD-error in (6), the robustness budget
in Algorithm 1 is set as

Rt :=

[
∥π̃t (xt)− πt (xt)∥U︸ ︷︷ ︸

Decision Discrepancy ηt

− β

LQ

t∑
s=1

δs (xs, xs−1, us−1)︸ ︷︷ ︸
Approximate TD-Error

]+
, (7)

which constitutes two terms. The first term ηt := ∥π̃t (xt)− πt (xt)∥ measures the decision discrep-
ancy between the untrusted policy π̃ and the baseline policy π, which normalizes the total budget,
similar to the one used in the black-box setting in Procedure 1. The second term is the approximate
TD-error, which is normalized by the Lipschitz constant LQ of Q-value functions. With these terms
defined, the GREY-BOX Procedure below first chooses a suggested action ũt by minimizing Q̃t and
then decides a robustness budget Rt using (7).

8

Procedure 2 GREY-BOX Procedure at t ∈ [T] (Input: state xt and hyper-parameter 0 ≤ β ≤ 1)

Obtain advice Q̃t and ũt where ũt ∈ arg infv∈U Q̃t (xt, v)
Implement πt and obtain ut
Set robustness budget Rt as (7); Return (ũt, Rt)

5 Main Results

We now formally present the main results for both the black-box and grey-box settings. Our results
not only quantify the tradeoffs between consistency and robustness formally stated in Definition 4
with respect to the ratio of expectations, but also emphasize a crucial role that additional information
about the estimated Q-values plays toward improving the consistency and robustness tradeoff.

5.1 Black-Box Setting

In the existing learning-augmented algorithms, the untrusted machine-learned policy π̃ is often treated
as a black-box that generates action advice ũt at each time t ∈ [T]. Our first result is the following
general dynamic regret bound for the black-box setting (Section 4.1). We utilize the Big-O notation,
denoted as O(·) and o(·) to disregard inessential constants.
Theorem 5.1. Suppose the machine-learned policy π̃ is (∞, ε)-consistent. For any MDP model
satisfying Assumption 1,2, and 3, the expected dynamic regret of PROP with the BLACK-BOX
Procedure is bounded by DR(PROP) ≤ min{O(ε) + O((1 − λ)γT),O ((ROB+ λγ − 1)T)}
where ε is defined in (4), γ is the diameter of the action space U , T is the length of the time horizon,
ROB is the ratio of expectations of the robust baseline π, and 0 ≤ λ ≤ 1 is a hyper-parameter.

When λ increases, the actual action can deviate more from the robust policy, making the dynamic
regret potentially closer to that of the value-based policy. While the regret bound in Theorem 5.1
clearly shows the role of λ in terms of controlling how closely we follow the robust policy, the
dynamic regret given a fixed λ ∈ [0, 1] grows linearly in O(T). In fact, the linear growth of dynamic
regret holds even if the black-box policy π̃ is consistent, i.e., ε is small. This can be explained by
noting the lack of dynamically tuning λ to follow the better of the two policies — even when one
policy is nearly perfect, the actual action still always deviates from it due to the fixed choice of λ.

Consider any MDP model satisfying Assumptions 1,2, and 3. Following the classic definitions of
consistency and robustness (see Definition 4), we summarize the following characterization of PROP,
together with a negative result in Theorem 5.3. Proofs of Theorem 5.1, 5.2, and 5.3 are detailed in
Appendix C.
Theorem 5.2 (BLACK-BOX Consistency and Robustness). PROP with the BLACK-BOX Procedure
is (1 +O((1− λ)γ))-consistent and (ROB+O(λγ))-robust where 0 ≤ λ ≤ 1 is a hyper-parameter.
Theorem 5.3 (BLACK-BOX Impossibility). PROP with the BLACK-BOX Procedure cannot be both
(1 + o((1− λ)γ))-consistent and (ROB+ o(λγ))-robust for any 0 ≤ λ ≤ 1.

5.2 Grey-Box Setting

To overcome the impossibility result in the black-box setting, we dynamically tune the robustness
budgets by tapping into additional information informed by the estimated Q-value functions using the
GREY-BOX Procedure (Section 4.2). By setting the robustness budgets in (7), an analogous result of
Theorem 5.1 is given in Appendix D, which leads to a dynamic regret bound of PROP in the grey-box
setting (Theorem D.1 in Appendix D). Consider any MDP model satisfying Assumptions 1,2, and 3.
Our main result below indicates that knowing more structural information about a black-box policy
can indeed bring additional benefits in terms of the consistency and robustness tradeoff, even if the
black-box policy is untrusted.
Theorem 5.4 (GREY-BOX Consistency and Robustness). PROP with the GREY-BOX Procedure is
1-consistent and (ROB+ o(1))-robust for some β > 0.

Theorem 5.3 implies that using the BLACK-BOX Procedure, PROP cannot be 1-consistent and
(ROB+ o(1))-robust, while this can be achieved using the GREY-BOX Procedure. On one hand, this
theorem validates the effectiveness of the PROP policy with value-based machine-learned advice that

9

may not be fully trusted. On the other hand, this sharp contrast between the black-box and grey-box
settings reveals that having access to information of value function can improve the tradeoff between
consistency and robustness (see Definition 4) non-trivially. A proof of Theorem 5.4 can be found in
Appendix D. Applications of our main results are discussed in Appendix A.

6 Concluding Remarks

Our results contribute to the growing body of literature on learning-augmented algorithms for MDPs
and highlight the importance of considering consistency and robustness in this context. In particular,
we have shown that by utilizing the structural information of machine learning methods, it is possible
to achieve improved performance over a black-box approach. The results demonstrate the potential
benefits of utilizing value-based policies as advice; however, there remains room for future work in
exploring other forms of structural information.

Limitations and Future Work. One limitation of our current work is the lack of analysis of more
general forms of black-box procedures. Understanding and quantifying the available structural
information in a more systematic way is another future direction that could lead to advances in the
design of learning-augmented online algorithms and their applications in various domains.

Acknowledgement

We would like to thank the anonymous reviewers for their helpful comments. This work was supported
in part by the National Natural Science Foundation of China (NSFC) under grant No. 72301234,
the Guangdong Key Lab of Mathematical Foundations for Artificial Intelligence, and the start-up
funding UDF01002773 of CUHK-Shenzhen. Yiheng Lin was supported by the Caltech Kortschak
Scholars program. Shaolei Ren was supported in part by the U.S. U.S. National Science Foundation
(NSF) under grant CNS–1910208. Adam Wierman was supported in part by the U.S. NSF under
grants CNS–2146814, CPS–2136197, CNS–2106403, NGSDI–2105648.

References
[1] Michael Mitzenmacher and Sergei Vassilvitskii. Algorithms with predictions. Communications

of the ACM, 65(7):33–35, 2022.

[2] Tongxin Li. Learning-Augmented Control and Decision-Making: Theory and Applications in
Smart Grids. PhD thesis, California Institute of Technology, 2023.

[3] Manish Purohit, Zoya Svitkina, and Ravi Kumar. Improving online algorithms via ml predictions.
Advances in Neural Information Processing Systems, 31, 2018.

[4] Nicolas Christianson, Tinashe Handina, and Adam Wierman. Chasing convex bodies and
functions with black-box advice. In Conference on Learning Theory, pages 867–908. PMLR,
2022.

[5] Ofir Nachum, Mohammad Norouzi, Kelvin Xu, and Dale Schuurmans. Bridging the gap between
value and policy based reinforcement learning. Advances in neural information processing
systems, 30, 2017.

[6] Zhuoran Yang, Chi Jin, Zhaoran Wang, Mengdi Wang, and Michael I Jordan. On function
approximation in reinforcement learning: optimism in the face of large state spaces. In
Proceedings of the 34th International Conference on Neural Information Processing Systems,
pages 13903–13916, 2020.

[7] Noah Golowich and Ankur Moitra. Can q-learning be improved with advice? In Conference on
Learning Theory, pages 4548–4619. PMLR, 2022.

[8] Chen-Yu Wei and Haipeng Luo. Non-stationary reinforcement learning without prior knowledge:
An optimal black-box approach. In Conference on Learning Theory, pages 4300–4354. PMLR,
2021.

10

[9] Weichao Mao, Kaiqing Zhang, Ruihao Zhu, David Simchi-Levi, and Tamer Basar. Near-optimal
model-free reinforcement learning in non-stationary episodic mdps. In International Conference
on Machine Learning, pages 7447–7458. PMLR, 2021.

[10] Yuwei Luo, Varun Gupta, and Mladen Kolar. Dynamic regret minimization for control of non-
stationary linear dynamical systems. Proceedings of the ACM on Measurement and Analysis of
Computing Systems, 6(1):1–72, 2022.

[11] Peng Zhao, Long-Fei Li, and Zhi-Hua Zhou. Dynamic regret of online markov decision
processes. In International Conference on Machine Learning, pages 26865–26894. PMLR,
2022.

[12] Christian Scheller, Yanick Schraner, and Manfred Vogel. Sample efficient reinforcement
learning through learning from demonstrations in minecraft. In NeurIPS 2019 Competition and
Demonstration Track, pages 67–76. PMLR, 2020.

[13] Matthew Botvinick, Sam Ritter, Jane X Wang, Zeb Kurth-Nelson, Charles Blundell, and Demis
Hassabis. Reinforcement learning, fast and slow. Trends in cognitive sciences, 23(5):408–422,
2019.

[14] Xueying Bai, Jian Guan, and Hongning Wang. A model-based reinforcement learning with
adversarial training for online recommendation. Advances in Neural Information Processing
Systems, 32, 2019.

[15] Guanya Shi, Yiheng Lin, Soon-Jo Chung, Yisong Yue, and Adam Wierman. Online optimization
with memory and competitive control. Advances in Neural Information Processing Systems,
33:20636–20647, 2020.

[16] Gautam Goel and Babak Hassibi. Competitive control. IEEE Transactions on Automatic
Control, 2022.

[17] Tongxin Li, Ruixiao Yang, Guannan Qu, Guanya Shi, Chenkai Yu, Adam Wierman, and
Steven Low. Robustness and consistency in linear quadratic control with untrusted predictions.
Proceedings of the ACM on Measurement and Analysis of Computing Systems, 6(1):1–35, 2022.

[18] Oron Sabag, Sahin Lale, and Babak Hassibi. Optimal competitive-ratio control. arXiv preprint
arXiv:2206.01782, 2022.

[19] Yiheng Lin, Yang Hu, Guannan Qu, Tongxin Li, and Adam Wierman. Bounded-regret mpc
via perturbation analysis: Prediction error, constraints, and nonlinearity. Advances in Neural
Information Processing Systems, 35:36174–36187, 2022.

[20] Tongxin Li, Yue Chen, Bo Sun, Adam Wierman, and Steven H Low. Information aggregation
for constrained online control. Proceedings of the ACM on Measurement and Analysis of
Computing Systems, 5(2):1–35, 2021.

[21] Tongxin Li, Bo Sun, Yue Chen, Zixin Ye, Steven H Low, and Adam Wierman. Learning-
based predictive control via real-time aggregate flexibility. IEEE Transactions on Smart Grid,
12(6):4897–4913, 2021.

[22] Alexander Wei and Fred Zhang. Optimal robustness-consistency trade-offs for learning-
augmented online algorithms. Advances in Neural Information Processing Systems, 33:8042–
8053, 2020.

[23] Shom Banerjee. Improving online rent-or-buy algorithms with sequential decision making and
ml predictions. Advances in Neural Information Processing Systems, 33:21072–21080, 2020.

[24] Stephen Tu, Alexander Robey, Tingnan Zhang, and Nikolai Matni. On the sample complexity
of stability constrained imitation learning. In Learning for Dynamics and Control Conference,
pages 180–191. PMLR, 2022.

[25] Hiroyasu Tsukamoto, Soon-Jo Chung, and Jean-Jaques E Slotine. Contraction theory for
nonlinear stability analysis and learning-based control: A tutorial overview. Annual Reviews in
Control, 52:135–169, 2021.

11

[26] Mohammad Mahdian, Hamid Nazerzadeh, and Amin Saberi. Online optimization with uncertain
information. ACM Transactions on Algorithms (TALG), 8(1):1–29, 2012.

[27] Dhruv Rohatgi. Near-optimal bounds for online caching with machine learned advice. In
Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
1834–1845. SIAM, 2020.

[28] Thodoris Lykouris and Sergei Vassilvitskii. Competitive caching with machine learned advice.
Journal of the ACM (JACM), 68(4):1–25, 2021.

[29] Sungjin Im, Ravi Kumar, Aditya Petety, and Manish Purohit. Parsimonious learning-augmented
caching. In International Conference on Machine Learning, pages 9588–9601. PMLR, 2022.

[30] Antonios Antoniadis, Christian Coester, Marek Elias, Adam Polak, and Bertrand Simon. Online
metric algorithms with untrusted predictions. In International Conference on Machine Learning,
pages 345–355. PMLR, 2020.

[31] Etienne Bamas, Andreas Maggiori, and Ola Svensson. The primal-dual method for learning
augmented algorithms. Advances in Neural Information Processing Systems, 33:20083–20094,
2020.

[32] Keerti Anand, Rong Ge, Amit Kumar, and Debmalya Panigrahi. Online algorithms with multiple
predictions. In International Conference on Machine Learning, pages 582–598. PMLR, 2022.

[33] Tongxin Li, Ruixiao Yang, Guannan Qu, Yiheng Lin, Adam Wierman, and Steven H Low.
Certifying black-box policies with stability for nonlinear control. IEEE Open Journal of Control
Systems, 2023.

[34] Ilias Diakonikolas, Vasilis Kontonis, Christos Tzamos, Ali Vakilian, and Nikos Zarifis. Learning
online algorithms with distributional advice. In International Conference on Machine Learning,
pages 2687–2696. PMLR, 2021.

[35] Yiheng Lin, Yang Hu, Guanya Shi, Haoyuan Sun, Guannan Qu, and Adam Wierman.
Perturbation-based regret analysis of predictive control in linear time varying systems. Advances
in Neural Information Processing Systems, 34:5174–5185, 2021.

[36] Yiheng Lin, Yang Hu, Guannan Qu, Tongxin Li, and Adam Wierman. Bounded-regret mpc via
perturbation analysis: Prediction error, constraints, and nonlinearity. In Advances in Neural
Information Processing Systems, 2022.

[37] David Hoeller, Farbod Farshidian, and Marco Hutter. Deep value model predictive control. In
Conference on Robot Learning, pages 990–1004. PMLR, 2020.

[38] Richard Cheng, Abhinav Verma, Gabor Orosz, Swarat Chaudhuri, Yisong Yue, and Joel Burdick.
Control regularization for reduced variance reinforcement learning. In International Conference
on Machine Learning, pages 1141–1150. PMLR, 2019.

[39] Lukas Brunke, Melissa Greeff, Adam W Hall, Zhaocong Yuan, Siqi Zhou, Jacopo Panerati, and
Angela P Schoellig. Safe learning in robotics: From learning-based control to safe reinforcement
learning. Annual Review of Control, Robotics, and Autonomous Systems, 5:411–444, 2022.

[40] Lin Guan, Mudit Verma, Suna Sihang Guo, Ruohan Zhang, and Subbarao Kambhampati.
Widening the pipeline in human-guided reinforcement learning with explanation and context-
aware data augmentation. Advances in Neural Information Processing Systems, 34:21885–
21897, 2021.

[41] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing
systems, 30, 2017.

[42] James MacGlashan, Mark K Ho, Robert Loftin, Bei Peng, Guan Wang, David L Roberts,
Matthew E Taylor, and Michael L Littman. Interactive learning from policy-dependent human
feedback. In International Conference on Machine Learning, pages 2285–2294. PMLR, 2017.

12

[43] Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization.
In International Conference on Machine Learning, pages 10835–10866. PMLR, 2023.

[44] Felix Berkenkamp, Matteo Turchetta, Angela Schoellig, and Andreas Krause. Safe model-based
reinforcement learning with stability guarantees. Advances in neural information processing
systems, 30, 2017.

[45] Mengdi Xu, Zuxin Liu, Peide Huang, Wenhao Ding, Zhepeng Cen, Bo Li, and Ding Zhao.
Trustworthy reinforcement learning against intrinsic vulnerabilities: Robustness, safety, and
generalizability. arXiv preprint arXiv:2209.08025, 2022.

[46] Matthew E Taylor and Peter Stone. Transfer learning for reinforcement learning domains: A
survey. Journal of Machine Learning Research, 10(7), 2009.

[47] Irina Higgins, Arka Pal, Andrei Rusu, Loic Matthey, Christopher Burgess, Alexander Pritzel,
Matthew Botvinick, Charles Blundell, and Alexander Lerchner. Darla: Improving zero-shot
transfer in reinforcement learning. In International Conference on Machine Learning, pages
1480–1490. PMLR, 2017.

[48] Elynn Y Chen, Michael I Jordan, and Sai Li. Transferred q-learning. arXiv preprint
arXiv:2202.04709, 2022.

[49] Peter Auer, Thomas Jaksch, and Ronald Ortner. Near-optimal regret bounds for reinforcement
learning. Advances in neural information processing systems, 21, 2008.

[50] Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for
reinforcement learning. In International Conference on Machine Learning, pages 263–272.
PMLR, 2017.

[51] Allan Borodin and Ran El-Yaniv. Online computation and competitive analysis. cambridge
university press, 2005.

[52] Nikhil R Devanur and Thomas P Hayes. The adwords problem: online keyword matching with
budgeted bidders under random permutations. In Proceedings of the 10th ACM conference on
Electronic commerce, pages 71–78, 2009.

[53] Naman Agarwal, Brian Bullins, Elad Hazan, Sham Kakade, and Karan Singh. Online control
with adversarial disturbances. In International Conference on Machine Learning, pages 111–119.
PMLR, 2019.

[54] Elad Hazan, Sham Kakade, Karan Singh, and Abby Van Soest. Provably efficient maximum
entropy exploration. In International Conference on Machine Learning, pages 2681–2691.
PMLR, 2019.

[55] Paula Gradu, John Hallman, and Elad Hazan. Non-stochastic control with bandit feedback.
Advances in Neural Information Processing Systems, 33:10764–10774, 2020.

[56] Sheldon M Ross. Stochastic processes. John Wiley & Sons, 1995.

[57] Dimitri P Bertsekas and John N Tsitsiklis. Neuro-dynamic programming: an overview. In
Proceedings of 1995 34th IEEE conference on decision and control, volume 1, pages 560–564.
IEEE, 1995.

[58] Rémi Munos. Error bounds for approximate policy iteration. In ICML, volume 3, pages 560–567.
Citeseer, 2003.

[59] András Antos, Csaba Szepesvári, and Rémi Munos. Learning near-optimal policies with
bellman-residual minimization based fitted policy iteration and a single sample path. Machine
Learning, 71(1):89–129, 2008.

[60] Matthieu Geist, Bruno Scherrer, and Olivier Pietquin. A theory of regularized markov decision
processes. In International Conference on Machine Learning, pages 2160–2169. PMLR, 2019.

13

[61] Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. On the theory of policy
gradient methods: Optimality, approximation, and distribution shift. J. Mach. Learn. Res.,
22(98):1–76, 2021.

[62] Yiheng Lin, James A Preiss, Emile Timothy Anand, Yingying Li, Yisong Yue, and Adam
Wierman. Online adaptive policy selection in time-varying systems: No-regret via contractive
perturbations. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

[63] Runyu Zhang, Yingying Li, and Na Li. On the regret analysis of online LQR control with
predictions. In 2021 American Control Conference (ACC), pages 697–703. IEEE, 2021.

[64] James R Norris. Markov chains. Cambridge university press, 1998.

[65] Steve Lalley. Markov chains: Basic theory. https://galton.uchicago.edu/~lalley/
Courses/312/MarkovChains.pdf, 2016.

[66] Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is q-learning provably
efficient? Advances in neural information processing systems, 31, 2018.

[67] Yingying Li and Na Li. Online learning for markov decision processes in nonstationary
environments: A dynamic regret analysis. In 2019 American Control Conference (ACC), pages
1232–1237. IEEE, 2019.

[68] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[69] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In International conference on machine learning,
pages 387–395. Pmlr, 2014.

[70] Leonid Kantorovitch. On the translocation of masses. Management science, 5(1):1–4, 1958.

[71] Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger. Gaussian process
optimization in the bandit setting: no regret and experimental design. In Proceedings of the 27th
International Conference on International Conference on Machine Learning, pages 1015–1022,
2010.

14

https://galton.uchicago.edu/~lalley/Courses/312/MarkovChains.pdf
https://galton.uchicago.edu/~lalley/Courses/312/MarkovChains.pdf

A Application Examples

In this section, we delve deeper into the practical applications of our main results, which provide a
general consistency and robustness tradeoff. By presenting concrete examples, we aim to demonstrate
the versatility and relevance of our findings to various real-world problems and scenarios. We
consider the settings summarized in Table 1. These examples illustrate how our results can be
applied to optimize tradeoffs between consistency and robustness for more specific models that can
be represented as a nonstationary MDP. Additionally, these examples highlight the significance of
considering the tradeoff between consistency and robustness in the design and implementation of
decision-making algorithms in the learning-augmented framework, and the impact of the structural
information in the grey-box setting.

A.1 MPC baseline in time-varying dynamical systems

The first application is an online optimal control problem, which is a special case of the general MDP
in Section 2. Suppose that the dynamics and cost function in time t ∈ [T] are given by

xt+1 = Atxt +Btut + wt (8)

and

ct(xt, ut) =
1

2

(
(xt)

⊤Qtxt + (ut)
⊤Rtut

)
. (9)

Here, (wt : t ∈ [T]) is a sequence of bounded and oblivious disturbances that is unknown to the
online controller. 2 At each time step, the controller observes (At, Bt, Qt, Rt) for future k time steps
but all future disturbances are unknown. Since we assume cT ≡ 0, the optimal uT−1 is always 0 and
the online control problem in episode t actually terminates after the state xT−1 is revealed.

We show how to apply Model Predictive Control (MPC) with robust predictions as the robust baseline
in our framework [17, 62]. To define MPC with robust predictions, we first need to define the
finite-time optimal control problem (FTOCP) solved by MPC at every step: For t, t′ ∈ [T], we define

ψt,t′
(
xt,
(
wτ |t : τ ∈ [t : t′ − 1]

)
;Pt′

)
= argmin

ut:(t′−1)|t

t′−1∑
τ=t

cτ
(
xτ |t, uτ |t

)
+

1

2
x⊤t′|tPt′xt′|t

s.t. xτ+1|t = Atxτ |t +Btuτ |t + wτ |t,∀τ ∈ [t : t′ − 1];

xt|t = xt,

Here,
(
wτ |t : τ ∈ [t : t′ − 1]

)
can be viewed as the predicted future disturbances, and MPC with

robust predictions sets them to zero vectors, therefore becomes robust against (potentially) adversarial
environments with large disturbances (wt : t ∈ [nt]). The term x⊤t′|tPt′xt′|t/2 is a terminal cost that
regularizes the last predictive state. To simplify the notation, we use the shorthand ψt,t′(xt;P) :=
ψt,t′(xt, 0×(t′−t);P), where 0×(t′−t) denotes a sequence of (t′ − t) zeros, and

ψt,t′(xt) :=

{
ψt,t′(xt;Pt′) if t′ < T − 1,

ψt,t′(xt;Qt′) if t′ = T − 1.

With this notation, we define MPC with robust predictions formally in Algorithm 3. At each time
step, it solves a k-step predictive FTOCP and commits the first control action in the optimal solution.
Since the future disturbances are unknown, MPC predicts them to zero vectors. The terminal cost
matrices Pt are pre-determined.

We make some standard assumptions, following those in the literature of online control [35, 63, 19].
The first assumption is that the cost functions are well-conditioned and the dynamical matrices are
uniformly bounded.

Assumption 4. For any t ∈ [T], we have ∥At∥ ≤ a, ∥Bt∥ ≤ b, ∥wt∥ ≤ d, and

µIn ⪯ Qt ⪯ ℓIn, µIm ⪯ Rt ⪯ ℓIm, µIn ⪯ P ⪯ ℓIn.
2By oblivious, we mean the sequence (wt : t ∈ [T]) is determined by the environment before the game starts

and are not random.

15

Algorithm 3 MPC with Robust Predictions (MPCk)
Initialize :Prediction horizon k and terminal cost matrix P .

7 for t = 0, . . . , T − 1 do
8 Set t′ ← min{t+ k, T − 1}
9 Observe xt and (Aτ , Bτ , Qτ , Rτ : τ ∈ [t : t′ − 1])

10 Set action ut = ψt,t′(xt)[ut|t]
11 end

The second assumption guarantees that for arbitrary bounded disturbance sequences (wt : t ∈ [T]),
there exists a controller that can stabilize the system.
Assumption 5. For any t, t′ ∈ [T], t ≤ t′, define a block matrix

Ξt
t,t′ :=

I
−At −Bt I

. . .
−At′−1 −Bt′−1 I

 .
We assume σmin (Ξt,t′) ≥ σ for some positive constant σ, where σmin(·) denotes the smallest singular
value of a matrix.

The interpretation of Assumption 5 is as follows. It holds with σ if and only if for any sequence
xt, wt:t′−1 that satisfies

∥∥((xt)⊤, (wt)
⊤, . . . , (wt′−1)

⊤)∥∥ ≤ 1, there exists a feasible trajectory
xt, ut, xt+1, . . . , ut′−1, xt′ subject to∥∥((xt)⊤, (ut)⊤, (xt+1)

⊤, . . . , (ut′−1)
⊤, (xt′)

⊤)∥∥ ≤ 1

σ
.

Thus, Assumption 5 holds provided that there is an exponentially stabilizing controller. With these
assumptions, we are ready to present our main result about MPCk in Theorem A.1.
Theorem A.1. Suppose Assumptions 4 and 5 hold. Consider the case when the robust baseline policy
π is MPCk (Algorithm 3), and for some λ ∈ (λ, 1), the prediction horizon k satisfies that

k ≥ min

{
T,

1

2
log
(
C3baλ/(λ− λ)

)
/ log(1/λ)

}
.

We also assume that x0 = 0, and Rt ≤ R. Then, the following holds for the robust baseline π:

(i) The Wasserstein robustness (Definition 3) holds globally with s(t) = C(1 +C)(a+ b)λ
t−1

.

(ii) The PROP controller (Algorithm 1) is always stable in the sense that

∥xt∥ ≤ Rx :=
C(d+ bR)

1− λ
and ∥ut∥ ≤ Ru := CRx +R.

(iii) The competitive ratio of the robust baseline MPCk satisfies that

ROB ≤ 2ℓC2(1 + C2)(1 + a2 + b2)

µ(1− λ)2
.

Here, the coefficients C and λ are given by λ =
(

σ−σ
σ+σ

) 1
2

, C = 4(ℓ+1+a+b)
σ2·λ , where

σ := min(µ, 1) · (a+ b+ 1) ·

√
ℓ

2µℓ+ µσ2
, and σ :=

√
2(ℓ+ a+ b+ 1).

The first result of Theorem A.1 shows that MPCk satisfies the Wasserstein robustness (see Defini-
tion 3), which is the critical assumption we require for any robust baseline policy. The second result
guarantees that PROP (with MPCk as the robust baseline) will always stay in a bounded ball in the

16

Euclidean space as long as the radius Rt is uniformly upper bounded. Thus, we can assume X and U
are compact without loss of generality. The third result gives an upper bound of the robust competitive
ratio ROB, which in this application is a special deterministic case of the considered ratio of expecta-
tion (ROE) in the general results. With the settings above, we conclude that in the grey-box setting,
PROP with GREY-BOX Procedure can be 1-consistent and

(
2ℓC2(1+C2)(1+a2+b2)

µ(1−λ)2
+ o(1)

)
-robust.

We defer the detailed proof of Theorem A.1 to Appendix E.

A.2 Baseline Policies for MDPs with Finite State/Action Spaces

Our second example focuses on an MDP environment (S,A, (Pt : t ∈ [T]) , (ct : t ∈ [T]) , T) with
a finite state space S and a finite action space A. Given a policy πt : S → ∆(A) for t ∈ [T], let

(
Pt

)
denote the state transition probability that maps S to ∆(S), which is defined as

Pt(s; s
′) =

∑
a∈A

πt(s; a)Pt(s, a; s
′).

We consider the setting when every entry of Pt is strictly positive. Under this assumption, one can
show that the one-step transition probability Pt is a contractive mapping in total variance distance
[64]. We state this result formally in Lemma 1. To simplify the notation, for any 0 ≤ t ≤ t′ < T , we
define the multi-step transition matrix as Pt:t′ := PtPt+1 · · ·Pt′ .
Lemma 1. Under the assumption that mint∈[T] mins,s′∈S Pt(s; s

′) ≥ ϵ, for any 0 ≤ t ≤ t′ < T
and distributions µ, ν ∈ ∆(S), we have that

TV
(
µ⊤Pt:t′ , ν

⊤Pt:t′
)
≤ λt

′−tTV(µ, ν), (10)
where λ = 1− |S| ϵ.

Lemma 1 follows from Proposition 5 in [65]. In the case that not every entry of Pt is strictly positive,
but the entries of Pt:t+d are strictly positive for some constant d ∈ Z+, we can still obtain a similar
contraction property as Lemma 1 with a weaker decay rate λ. Note that the exponential contractive
property in Lemma 1 is different with the one in Wasserstein robustness (Definition 3) because the
distance between distributions are measured by total variance instead of Wasserstein distance. To
convert it into the form required by Wasserstein robustness, we need to define an underlying metric
for the discrete state/action space.

Without loss of generality, we assume X := {ei : i = 1, . . . , |S|} ⊆ R|S|, where each element of X
corresponds to a unique state in S. Here, each ei is an indicator vector of R|S| defined as

ei(j) =

{
1 if i = j,

0 otherwise.

Since a policy in the discrete MDP maps S to ∆(A), we set U = ∆(A) ⊆ R|A|, which denotes the
distribution of actions and is compact and convex. To define the Wasserstain distance, we adopt ℓ1
distance as the metric on the state space X , action space U , and state-action space X × U , i.e.,

∥(x, u)− (x′, u′)∥1 = ∥x− x′∥1 + ∥u− u
′∥1 , for all x, x′ ∈ X , u, u′ ∈ U .

Using these definitions, we can use the contraction property in the TV distance (Lemma 1) to establish
the Wasserstein robustness of the baseline policy π.
Theorem A.2. Suppose the Markov chain on state space S induced by the baseline policy π =
(πt : t ∈ [T]) satisfies that Pt(s; s

′) ≥ ϵ for all t ∈ [T] and s, s′ ∈ S, then Wasserstein robustness
(Definition 3) holds globally with s(t) = 2λt−1, where λ = 1− |S| ϵ.

We defer the proof of Theorem A.2 to Appendix F. Theorem A.2 shows that the Wasserstein robustness
in Definition 3 is general enough to capture a wide class of baseline policies in finite state/action
settings. It also enables comparison between our results and previous studies that assume discrete
state/action spaces [66, 9, 7].

A.3 Numerical Results

In light of the applications detailed in Appendix A.1, we present two case studies. We consider linear
dynamics as a specific instance of an MDP and use the MPC described in Algorithm 3 as our robust
baseline.

17

A.3.1 Basic Settings

Dynamics. We investigate the impact of the hyper-parameter β in the robustness budget Rt in (7)
by considering the following update rule:[

dt+1

vt+1

]
= A

[
dt
vt

]
+But + wt, (11)

which is cast in the canonical form (8). The system matrices A and B are defined as

A :=

1 0 0.2 0
0 1 0 0.2
0 0 1 0
0 0 0 1

 , B :=

 0 0
0 0
0.2 0
0 0.2

 , (12)

and wt := Ayt−yt+1, where (yt : t ∈ [T]) specifies an unknown trajectory to be tracked. The choice
of A,B and (wt : t ∈ [T]) specifies a two-dimensional robot tracking problem as detailed in [67, 17].
In this application, the robot controller maneuvers along a fixed but unknown trajectory, given by
(yt : t ∈ [T]). At each time t ∈ [T], the robot controller needs to decide an acceleration action ut,
without knowing the desired location yt. It can only access the past trajectories (yτ : τ ∈ [t]). The
location of the robot controller at time t+ 1, denoted lt+1 ∈ R2, is determined by its prior location
and its velocity vt ∈ R2 according to lt+1 = lt + 0.2vt. Furthermore, at each subsequent time t, the
controller has the ability to apply an adjustment ut to alter its velocity, resulting in vt+1 = vt +0.2ut
at the next time step. This system can be reformulated as (11) by letting xt = lt − yt, the tracking
error between the current location at time t and the desired location yt.

To efficiently track the trajectory, we use quadratic costs as in (9) with

Q :=

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 , R :=

[
10−2 0
0 10−2

]
. (13)

With the settings above, we encapsulate a Gym environment [68] with action space and state space
defined as hyper-cubes in R2 and R4 such that each action/state coordinate is within [−100, 100].

MPC Baseline π. With predictions (w̃t : t ∈ [T]) of the perturbations satisfy w̃t = 0 for all
t ∈ [T], with a terminal cost matrix P as the solution of the discrete algebraic Riccati equation
(DARE), the MPC baseline in Algorithm 3 can be stated as the following linear quadratic regulator
πMPC(xt) = −Kxt where K := (R+B⊤PB)−1B⊤PA.

Machine-Learned Policy π̃. We use the deep deterministic policy gradient (DDPG) algorithm [69]
to generate machine learned advice and Q-value functions, with hyper-parameters set as in Table 2.

Table 2: Hyper-parameters used in DDPG.

Parameter Value
Maximal number of episodes 103

Episode length 102

Discount factor 1.0

Actor network learning rate 10−3

Critic network learning rate 10−3

Soft target update parameter 10−3

Replay buffer size 106

Minibatch size 128

PROP Implementation In our empirical implementation of PROP, we set LQ = 1 in (6) and use
|δt| at each t-th time step, instead of

∑t
s=1 δs to generate more stable results.

18

Figure 3: Unknown trajectory y in the case study that illustrates the impact of β.

Figure 4: Average awards with varying choices of the hyper-parameter β in the robustness budget
of PROP. Shadow area depicts the range of standard deviations for 5 random tests. Left: β =
1, 10, 102, 103, and∞ (directly applying the MPC baseline); Right: β = 0, 0.05, 0.5, 1, and∞.

Figure 6: Average approximate TD-error (see (6)) with different choices of the hyper-parameter β in
the robustness budget of PROP. Shadow area depicts the range of standard deviations for 5 random
tests.

A.3.2 Case Studies

Impact of Hyper-Parameter β. With the basic settings described above, we delve into the effects
of the hyper-parameter β on the selection of the robustness budget as in (7). This, in turn, influences
the average rewards, projection radii, and the approximate TD-error for PROP.

19

Figure 5: The influence of hyper-parameter β on the projection radii (Rt : t ∈ [T]). The shaded
region represents the standard deviation range from 5 random tests. As β increases, the average trust
coefficient λ(Rt) decreases.

We set the unknown (yt : t ∈ [T]) to be tracked as a rose-shaped trajectory shown in Figure 3:

yt :=

[
2 cos

(
t
20

)
sin
(
t
5

)
2 sin

(
t
20

)
sin
(
t
5

)] , t ∈ [T]. (14)

We vary the value of β from 0 up to∞. It is important to highlight that when β = 0, PROP operates
the same as the pure DDPG in our experiments. In contrast, when β =∞, PROP is equivalent to
the MPC baseline discussed earlier. Arbitrary exploration in the action space will lead to unstable
states, causing the pure DDPG to remain non-convergent throughout its training process. From our
experiments, we observe that setting β between 5 and 25 yields the largest average reward. The
results are summarized in Figure 4.As noted in the proof of Lemma 3 in Appendix B.2, the action
given by PROP at each time t ∈ [T] can be written as

ut = λ (Rt) π̃t (xt) + (1− λ (Rt))πt (xt)

where λ (Rt) := min {1, Rt/∥π̃t (xt)− πt (xt)∥U} serves as a trust coefficient between 0 and 1.
Here, Rt is the robustness budget defined in (7). In Figure 5 we illustrate the behavior of λ(Rt)
averaged over all time steps and tests. Likewise, Figure 6 displays the evolution of the approximate
TD-error with various selections of the hyper-parameter β, averaged over all time steps and tests.
Notably, a distinct convergence of the approximate TD-error is evident when β = 10, which also
yields high average rewards, shown in Figure 4. It’s worth noting, however, that we did not actively
optimize for β.

Non-Stationary Environment In a subsequent experiment, we address scenarios where there is a
distribution shift in the underlying MDP. We use the same matrices A,B,Q, and R in (12) and (13).

For each wt in (11), we treat it as an independent Gaussian vector. Specifically, every entry wt(i) of
wt is considered as an independent Gaussian random variable. For the first 700 episodes, each wt(i)
is sampled from a normal distribution N (µ, σ) where µ = 0.5 and σ = 0.05. However, in the last
300 episodes, we adjust µ to −0.5.

In the context of this nonstationary MDP, Figure 7 illustrates the reward recovery after the occurrence
of a distribution shift for varying choices of β. The two top figures highlight the average rewards:
the top-left figure corresponds to an action space of U = [−100, 100], while the top-right is set to
U = [−5, 5]. On the bottom, the left figure presents the average behavior of λ(Rt), and the right
one illustrates the average approximate TD-error for the case U = [−100, 100] With β = 10 for
U = [−100, 100] and β = 1 for U = [−5, 5] respectively, there is an evident near-optimal tradeoff
between consistency and robustness. PROP consistently achieves notable average rewards before
the distribution shift and showcases a swift recovery afterwards, validating the algorithm’s efficacy.
Similar to the fist set of experiments, it is worth mentioning that we did not explicitly fine-tune the
value of β.

20

Figure 7: Stability against distribution shifts for different settings of the hyper-parameter β.

B Useful Lemmas

In this appendix, we present results that will be used when proving our main theorems.

B.1 Perturbation Lemma

We first prove the following perturbation lemma as a robustness guarantee, which holds for both the
black-box (Section 4.1) and grey-box (Section 4.2) settings.

Lemma 2 (Perturbation Lemma). Under Assumption 1 and 2, the dynamic regret of Algorithm (1) (de-
noted by PROP) can be bounded by DR(PROP) ≤ O ((ROB− 1)T) + LCCs

∑
t∈[T] E [(Rt)

p
]
1/p

for constants LC, Cs > 0.

Proof. Our proof consists of two parts. We first bound the Wasserstein distance between joint
action-state distributions for the robust baseline and PROP. Next, we bound the dynamic regret.

Step 1. Wasserstein Distance between Joint Action-State Distributions. Denote by π and π
the PROP policy (Algorithm 1) and an r-locally p-Wasserstein-robust policy respectively. For
any step t, t′ ∈ [T] with t′ ≤ t, denote by ρt|t′ the state-action distribution generated by applying
the actions given by Algorithm 1 until step t′ and applying the actions generated by the r-locally
p-Wasserstein-robust policy afterwards until step t. Let ρt and ρt be the state-action distributions
corresponding to Algorithm 1 and the r-locally p-Wasserstein robust baseline at each step t ∈ [T].
Using the triangle inequality, the state-action distribution difference between ρt and ρt in terms of
the Wasserstein p-distance satisfies:

W (ρt, ρt) ≤
t−1∑
τ=0

W
(
ρt|t−τ , ρt|t−τ−1

)
(15)

with ρt|0 := ρt and ρt|t := ρt. Abuse the notation π and denote by πt−τ :t an operator on state-action
distributions for applying the control baselines πt−τ , πt−τ+1, . . . , πt consecutively. Continuing
from (15), it follows that for any t ∈ [T] and 0 ≤ τ < t,

W
(
ρt|t−τ , ρt|t−τ−1

)
=W

(
πt−τ :t

(
ρt−τ |t−τ

)
, πt−τ :t

(
ρt−τ |t−τ−1

))
≤ s(τ)W

(
ρt−τ |t−τ , ρt−τ |t−τ−1

)
(16)

21

where ρt−τ |t−τ := ρt−τ and in (16) we have used the assumption of the r-locally p-Wasserstein-
robust policy (Definition 3). The assumption can be applied because by definition, for all t ∈ [T], the
Wasserstein p-distance between ρt−τ |t−τ and ρt−τ |t−τ−1 can be bounded by

W
(
ρt−τ |t−τ , ρt−τ |t−τ−1

)
≤E

[
∥(xt−τ−1, πt−τ (xt−τ−1))− (xt−τ−1, πt−τ (xt−τ−1))∥pX×U

]1/p
(17)

=E [∥πt−τ (xt−τ−1)− πt−τ (xt−τ−1)∥pU]
1/p (18)

≤E [(Rt−τ)
p
]
1/p ≤ r, (19)

where in (17) we have used the definition

Wp(µ, ν) :=

(
inf

J∈J (µ,ν)

∫
∥(x, u)− (x′, u′)∥pX×UdJ ((x, u), (x′, u′))

)1/p

.

Since ∥(x, u) − (x′, u′)∥X×U := ∥x − x′∥X + ∥u − u′∥U , (18) follows. Finally, we obtain (19)
considering the projection constraint in Algorithm 1. Combining (19) with (15),

Wp (ρt, ρt) ≤
t−1∑
τ=0

s(τ)EP,π [(Rt−τ)
p
]
1/p

. (20)

Step 2. Dynamic Regret Analysis. Since the cost functions (ct : t ∈ [T]) are Lipschitz contin-
uous with a Lipschitz constant LC, using the Kantorovich-Rubinstein duality theorem [70], since
Wp(µ, ν) ≤Wq(µ, ν) for all 1 ≤ p ≤ q <∞, for all t ∈ [T],

E(x,u)∼ρt
[ct (x, u)]− E(x,u)∼ρt

[ct (x, u)]

≤ sup
∥f∥L≤LC

E(x,u)∼ρt
[f (x, u)]− E(x,u)∼ρt

[f (x, u)] ≤ LCWp (ρt, ρt) , (21)

where ∥ · ∥L denotes the Lipschitz semi-norm and the supremum is over all Lipschitz continuous
functions f with a Lipschitz constant LC. Therefore, the difference between the expected cost of
Algorithm 1, denoted by π, and the baseline policy π satisfies

J(π)− J(π) =
∑
t∈[T]

E(x,u)∼ρt
[ct (x, u)]− E(x,x)∼ρt

[ct (x, u)]

≤ LC

∑
t∈[T]

t−1∑
τ=0

s(τ)EP,π [(Rt−τ)
p
]
1/p

≤ LCCs

∑
t∈[T]

EP,π [(Rt)
p
]
1/p (22)

where we have used the assumption of the r-locally robustness policy so that
∑

t∈[T] s(t) ≤ Cs for
some constant Cs > 0. Moreover, since the robust baseline π has a ratio of expectations bound such
that J(π)

J⋆ ≤ ROB. Using Assumption 1, from (22), we obtain

DR(PROP) := J(π)− J⋆ ≤ O ((ROB− 1)T) + LCCs

∑
t∈[T]

EP,π [(Rt)
p
]
1/p

.

B.2 Projection Lemma

The following lemma implies a useful consistency bound. It is worth noting that the lemma also
holds if PROP adopts an alternative approach instead of projecting the actions as shown in (5):

ut ∈ argmin
v∈U

Q̃t (xt, v) subject to ∥ut − v∥ ≤ Rt

Implementing the projection rule in PROP can significantly reduce computational complexity,
particularly when dealing with non-convex Q-advice.

22

Lemma 3 (Projection Lemma). Under Assumption 3, the actions and states (xt, ut) at t ∈ [T] and
t ∈ [T] generated by PROP (Algorithm 1) satisfy

Q⋆
t (xt, ut)− inf

v∈U
Q⋆

t (xt, v) ≤ LQ

(
[ηt (xt)−Rt]

+
)
+ µt (xt, ut) (23)

where ηt (x) := ∥π̃t (x)− πt (x)∥U , and Q⋆ denotes the optimal Q-value functions satisfying the
Bellman optimality equations in (3).

Proof. Let
(
Q̃t : t ∈ [T], t ∈ [T]

)
be the Q-value advice used in Algorithm 1, denoted by π. Since

ζQt := Q̃t(xt, ut)−Q⋆
t (xt, ut), we have, for any t ∈ [T] and (xt, ut) generated by Algorithm 1,

Q⋆
t (xt, ut)− inf

v∈U
Q⋆

t (xt, v) =Q̃t (xt, ut)−Q⋆
t (xt, u

⋆
t)− ζ

Q
t . (24)

Let π̃t (xt) := infu∈U Q̃t (xt, u). Note that since U is convex and compact, the projection step in the
PROP policy is equivalent to (we choose the ut on the line formed by π̃t (xt) and πt (xt) if there are
ties in the projection solution)

ut = λ (Rt) π̃t (xt) + (1− λ (Rt))πt (xt) ,

where λ (Rt) := min {1, Rt/∥π̃t (xt)− πt (xt)∥U}. Write ηt (·) := ∥π̃t (·)− πt (·)∥U . Therefore,
the Q-value advice satisfies

Q̃t (xt, ut) ≤Q̃t (xt, π̃t (xt)) + LQ ∥π̃t (xt)− ut∥
≤Q̃t (xt, π̃t (xt)) + LQ (1− λ (Rt)) ηt (xt)

=Q̃t (xt, π̃t (xt)) + LQ

(
1−min

{
1,

Rt

ηt (xt)

})
ηt (xt)

≤Q̃t (xt, π̃t (xt)) + LQ (ηt (xt)−Rt) , (25)

where (25) follows since by construction Rt ≤ ηt for all t ∈ [T]. Let ũt denote π̃t (xt). Continuing
from (24),

Q⋆
t (xt, ut)− inf

v∈U
Q⋆

t (xt, v)

=Q̃t (xt, ut)−Q⋆
t (xt, u

⋆
t)− ζ

Q
t

≤Q̃t (xt, ũt)−Q⋆
t (xt, u

⋆
t) + LQ [ηt (xt)−Rt]

+ − ζQt (26)

≤LQ [ηt (xt)−Rt]
+
+ µt (27)

where (26) follows from (25). Since ζVt := Q̃t(xt, ũt) − Q⋆
t (xt, u

⋆
t), ũt minimizes Q̃t, and µt :=

ζVt − ζ
Q
t , we obtain (27).

B.3 Analysis of Approximate TD-Error

The following result that rewrites the approximate TD-error (c.f. (6)) is useful.

Lemma 4. Consider the approximate TD-error in (6) such that

δt (ut−1, xt−1, xt) :=ct−1 (xt−1, ut−1) + inf
v∈U

Q̃t (xt, v)− Q̃t−1 (xt−1, ut−1) .

It follows that for any t ∈ [T],

EP,π [δt (ut−1, xt−1, xt)] = EP,π

[
ζVt (xt)− ζQt−1(xt−1, ut−1)

]
,

where ζQ−1 = 0, ζQt and ζVt are defined as

ζQt (xt, ut) := Q̃t (xt, ut)−Q⋆
t (xt, ut) ,

ζVt (xt) := inf
v∈U

Q̃t (xt, v)− inf
v∈U

Q⋆
t (xt, v) .

23

Proof. Taken expectation with randomness over the action and state trajectories, for any t ∈ [T],

EP,π [δt (ut−1, xt−1, xt)]

:=EP,π [ct−1 (xt−1, ut−1)] + EP,π

[
inf
v∈U

Q̃t (xt, v)

]
− EP,π

[
Q̃t−1 (xt−1, ut−1)

]
=EP,π

[
inf
v∈U

Q̃t(xt, v)− Pt−1V
⋆
t (xt−1, ut−1)

]
+ EP,π

[
Q⋆

t−1(xt−1, ut−1)− Q̃t−1(xt−1, ut−1)
]

(28)

=EP,π

[
inf
v∈U

Q̃t(xt, v)− Ex′∼Pt(·|xt−1,ut−1) inf
v∈U

Q⋆
t (x

′, v)

]
+ EP,π

[
Q⋆

t−1(xt−1, ut−1)− Q̃t−1(xt−1, ut−1)
]

=EP,π

[
ζVt (xt)− ζQt−1(xt−1, ut−1)

]
where we have used the Bellman optimality equations (3) to derive (28).

Next, we present our analysis of the black-box setting by proving Theorem 5.1 and Theorem 5.3.

C Black-Box Consistency and Robustness Analysis

C.1 Proof of Theorem 5.1

Consider an MDP model with Assumption 1,2, and 3. We prove the theorem below.
Theorem C.1. Suppose the machine-learned policy π̃ is (∞, ε)-consistent. The expected dynamic
regret of PROP with the BLACK-BOX Procedure is bounded by

DR(PROP) ≤ min
{
O(ε) +O((1− λ)γT),O ((ROB+ λγ − 1)T)

}
where ε is defined in (4), γ is the diameter of the action space U , T is the length of the time horizon,
ROB is the ratio of expectations of the robust baseline π, and 0 ≤ λ ≤ 1 is a hyper-parameter.

Consistency Analysis. To show the first bound in Theorem 5.1 regarding the consistency result,
we consider the following steps. For any t ∈ [T], denote by (xt, ut) the corresponding state and
action generated by the projection pursuit policy PROP, denoted by π. The Bellman optimality
equations (3) imply:

Q⋆
t (xt, ut) = ct (xt, ut) + EP

[
inf
v∈U

Q⋆
t+1 (xh+1, v)

∣∣xt, ut] . (29)

Therefore the dynamic regret of the projection pursuit policy π can be rewritten as

DR(PROP) =J(π)− J⋆ =

(
EP,π

[
T−1∑
t=0

ct (xt, ut)

]
− inf

v∈U
Q⋆

t,0 (x0, v)

)
. (30)

Combining (30) with (29), we obtain the following cost-difference bound:

DR(PROP)

=

T−1∑
t=0

(
EP,π [Q

⋆
t (xt, ut)]− EP

[
inf
v∈U

Q⋆
t+1 (xt+1, v)

])
− inf

v∈U
Q⋆

t,0 (x0, v)

=Q⋆
t,0 (x0, u0)− inf

v∈U
Q⋆

t,0 (x0, v) +

T−1∑
t=1

(
EP,π [Q

⋆
t (xt, ut)]− EP

[
inf
v∈U

Q⋆
t (xt, v)

])

=

T−1∑
t=0

EP,π

[
Q⋆

t (xt, ut)− inf
v∈U

Q⋆
t (xt, v)

]
.

24

Recall that for the BLACK-BOX Procedure in Section 4.1, the robustness budget is set as Rt = ληt
for all t ∈ [T]. Applying the bound in Lemma 3 gives the following consistency bound:

DR(PROP) = O

(
T−1∑
t=0

(
[ηt (xt)−Rt]

+
)
+ EP,π [µt]

)
≤ O

(
T−1∑
t=0

EP,π [µt]

)
+O ((1− λ)γT)

since ηt(xt) ≤ γ for all t ∈ [T], and

µt = ζVt − ζ
Q
t =Q̃t(xt, ũt)−Q⋆

t (xt, u
⋆
t)−

(
Q̃t(xt, ut)−Q⋆

t (xt, ut)
)

≤
∥∥∥ inf

v∈U
Q̃t(xt, v)− inf

v∈U
Q⋆

t (xt, v)
∥∥∥
∞

+
∥∥∥Q̃t(xt, ut)−Q⋆

t (xt, ut)
∥∥∥
∞
.

Noting that the machine-learned policy π̃ is (∞, ε)-consistent, we obtain
∑T−1

t=0 EP,π [µt] ≤ ε.
Hence,

DR(PROP) = O (ε) +O ((1− λ)γT) . (31)

Robustness Analysis. Note that for any t ∈ [T], ηt(xt) ≤ γ, where γ is the diameter of the compact
action space U . Hence, noting the black-box setting of the robustness budget Rt = ληt for all t ∈ [T]
and applying Lemma 2, the sum of expected discrepancies, over all t can be bounded by

DR(PROP) ≤O ((ROB− 1)T) + LCCs

∑
t∈[T]

EP,π [(λγ)
p
]
1/p

≤O ((ROB+ λγ − 1)T) . (32)

Combining (31) and (32), we complete the proof.

C.2 Proof of Theorem 5.2

LetMDP be the set of all MDP models MDP(X ,U , T, P, c) satisfying Assumption 1,2, and 3. To
prove Theorem 5.2, noting that by the definitions of consistency and robustness, we apply Theorem 5.1
to derive a bound on the worst-case ratio of expectations:

sup
MDP

RoE(ε) ≤ 1 + sup
MDP

DR(PROP)
J⋆

≤ min
{
1 +O

(ε
T

)
+O((1− λ)γ),ROB+O(λγ)

}
,

which implies that PROP with the BLACK-BOX Procedure is (1 + O((1 − λ)γ)-consistent and
(ROB+O(λγ))-robust.

C.3 Proof of Theorem 5.3

Proof. According to Lemma 3, the expected dynamic regret of PROP satisfies

DR(PROP) =
∑
t∈[T]

EP,π

[
Q⋆

t (xt, ut)− inf
v∈U

Q⋆
t (xt, v)

]
,

where π denotes PROP. For notational simplicity, we introduce the following notation:

∆Q⋆
t (P, π) :=EP,π

[
Q⋆

t (xt, ut)− inf
v∈U

Q⋆
t (xt, v)

]
,

∆Q̃t(P, π) :=EP,π

[
Q̃t(xt, ut)− inf

v∈U
Q̃t(xt, v)

]
.

With the BLACK-BOX Procedure, we setRt = ληt with some hyper-parameter 0 ≤ λ ≤ 1. Therefore,
there exists Lipschitz continuous Q-value predictions (Q̃t : t ∈ [T]) with a Lipschitz constant LQ

such that

DR (PROP(BLACK-BOX)) ≥
∑
t∈[T]

(
∆Q⋆

t (P, π)−∆Q̃t(P, π) + (1− λ)LQγ
)
. (33)

25

First, we verify that Wasserstein robust policies exist since we can construct a transition probability
P such that the states in different times are independent. Denote by OPT the expected optimal total
cost. We can construct cost functions (ct : t ∈ [T]) that are Lipschitz continuous with a Lipschitz
constant Lc and Q-advice (Q̃t : t ∈ [T]) satisfying∑

t∈[T]

(
∆Q⋆

t (P, π)−∆Q̃t(P, π)
)

OPT
≥ Ω

(
ROB+

λγLc

OPT
T

)
.

Note that the corresponding Q-value predictions satisfy Assumption 3. LetMDP be the set of all
MDP models MDP(X ,U , T, P, c) satisfying Assumption 1,2, and 3. Combining above with (33),
and noting that in Assumption 1, ct(x, u) > 0 for all t ∈ [T], x ∈ X , and u ∈ U , for any ε ≥ 0, the
ratio of expectations can be bounded by

RoE(PROP) = 1 + sup
MDP

DR(PROP)
OPT

= 1 + Ω
(
(1− λ)LQγ +min{ε, λγLc + ROB}

)
,

which implies that PROP cannot be both (1 + o(λγ))-consistent and (ROB+ o((1− λ)γ))-robust
for any 0 ≤ λ ≤ 1.

D Grey-Box Consistency and Robustness Analysis

In the following, we present a dynamic regret bound for the grey-box setting (Section 4.2) that is
analogous to the one presented in Theorem 5.1 for the black-box scenario.

First, in addition to Definition 4, we further recall the following quantities used in Lemma 4 for
notational convenience:

ζQt (xt, ut) := Q̃t (xt, ut)−Q⋆
t (xt, ut) , (34)

ζVt (xt) := inf
v∈U

Q̃t (xt, v)− inf
v∈U

Q⋆
t (xt, v) , (35)

where by definition, ζQt and ζVt depend on the random trajectory ((xt, ut) : t ∈ [T]). Denote
µt := ζVt − ζ

Q
t . Note that when the environment is stationary, under some model assumptions and

with a Reproducing kernel Hilbert space (RKHS) being the function class, the optimism lemma
(Lemma 5.2) in [6] shows that with probability at least 1 − (2T 2H2)−1, the generated Q-value
functions satisfy

∑
(h,t)∈[H]×[T] EP,π [δh,t + µh,t] = Õ(HΓK(T, λ)

√
T) where H is the number of

episodes and Õ(·) omits logarithmic terms and TΓK(T, λ) is the maximal information gain [71] that
characterizes the intrinsic complexity of the function class.

Denote the by φt the per-step cost difference between the robust baseline and the optimal policy at
time t ∈ [T] such that

∑
t∈[T] φt = Θ((ROB − 1)T). Suppose the robust baseline π is γ-locally

p-Wasserstein-robust. The following theorem presents a preliminary result that will be used to prove
Theorem 5.4.
Theorem D.1 (Grey-Box: Dynamic Regret). Consider any MDP model satisfying Assumption 1,2,
and 3. The expected dynamic regret of PROP (Algorithm 1) with the GREY-BOX Procedure satisfies
the following bound:

DR(PROP) ≤
∑
t∈[T]

min

{
EP,π [µt] + LQEP,π (ηt (xt)−Rt)︸ ︷︷ ︸

Consistency Bound (Lemma 3)

, φt + LCCsEP,π [(Rt)
p
]
1/p︸ ︷︷ ︸

Robustness Bound (Lemma 2)

}
,

(36)

where LQ and LC are Lipschitz constants, µt := ζVt − ζ
Q
t , and ηt (x) := ∥π̃t (x)− πt (x)∥U .

D.1 Proof of Theorem D.1

A central step in the proof of Theorem D.1 is to combine the per-step analysis in the consistency
and robustness results in Lemma 2 and 3 and apply the selection of budgets in (7) (see Section 4.2).
Combining (22) and (23) and summing over all t, (36) follows.

26

D.2 Proof of Theorem 5.4

Consistency Analysis. We first show that the PROP policy with the GREY-BOX procedure is
1-consistent. Let ε(p, ρ) = 0 for some p ∈ [0,∞] and let ρ be the trajectory distribution generated by
PROP (defined in (4)). Then we must have

EP,π

[
ζQt

]
=
[
Q̃t (xt, ut)−Q⋆

t (xt, ut)
]
= 0,

EP,π

[
ζVt
]
= EP,π

[
inf
v∈U

Q̃t (xt, v)− inf
v∈U

Q⋆
t (xt, v)

]
= 0,

for any t ∈ [T]. Consider the expectation of the TD-error (with randomness taken over the ac-
tion and state trajectories). From Lemma 4 we know EP,π[δt (ut−1, xt−1, xt)] = EP,π[ζ

V
t (xt) −

ζQt−1(xt−1, ut−1)]. This implies that the TD-error δt must satisfy

EP,π [δt] = EP,π[ζ
V
t − ζ

Q
t−1] = 0. (37)

Similarly, we have

EP,π [µt] = EP,π

[
ζVt − ζ

Q
t

]
= 0.

Therefore, by the construction of the robustness budget Rt in (7) for the GREY-BOX Procedure,

EP,π [ηt −Rt] ≤ EP,π

[
β

LQ

t∑
s=1

δs

]
= 0.

Applying Theorem D.1, we get when ε = 0 (i.e., the machine-learned policy π is optimal), then
RoE(0) = 1, implying that PROP is 1-consistent.

Robustness Analysis. By Lemma 4, we get for any trajectory ((xt, ut) : t ∈ [T]) and t ∈ [T],
µt − δt = ζQt−1 − ζ

Q
t . Therefore, denoting by ζQ−1 = 0,

t∑
s=0

(µs − δs) =
t∑

s=0

(
ζQs−1 − ζQs

)
= ζQt .

According to Assumption 3, there exist ∆ = o(T) such that |ζQt | ≤ ∆ for all t ∈ [T]. We consider
two cases. First, consider an event

∑
t∈[T] µt ≤ ∆. Let MDP be the set of all MDP models

MDP(X ,U , T, P, c) satisfying Assumption 1,2, and 3. Then, applying Theorem D.1,we derive a
bound on the worst-case ratio of expectations:

sup
ε≥0

sup
MDP

RoE(ε) ≤ 1 + sup
ε≥0

sup
MDP

DR(PROP)
J⋆

≤ 1 +O
(
∆

T

)
= 1 + o(1) ≤ ROB+ o(1).

Now, if
∑

t∈[T] µt > ∆, then we must have
∑

t∈[T] δt > 0. Since the action space is compact,
ηt ≤ γ, which is bounded. There exists some hyper-parameter β > 0 such that Rt = 0. Therefore,
the PROP with the GREY-BOX Procedure will be switched to the robust baseline π. Without loss of
generality, assume 0 ≤ m < T is the largest time index such that

∑m
s=1 µs > ∆ and

∑m−1
s=1 µs ≤ ∆.

Applying Theorem D.1, we have

DR(PROP) ≤
m−1∑
s=1

µs +

T−1∑
s=m

φs +O(ηm) ≤
m−1∑
s=1

µs +

T−1∑
s=m

φs +O(γ),

implying that

sup
ε≥0

sup
MDP

RoE(ε) ≤ ROB+O
(
∆+ γ

T

)
≤ ROB+ o(1).

27

E Proof of Theorem A.1

To show Theorem A.1, we first show a technical lemma with respect to MPCT , which plans until the
end of the episode from the first time step.

Lemma 5. Suppose Assumptions 4 and 5 hold. For each step t ∈ [T], the control policy of MPCT

can be rewritten as ut = Ktxt, for some matrices
(
Kt : t ∈ [T]

)
satisfy that

∥∥Kt

∥∥ ≤ C for all
t ∈ [T], and∥∥(At′−1 +Bt′−1Kt′−1) · · · (At +BtKt)

∥∥ ≤ Cλt′−t,∀t, t′ ∈ [T], t′ ≥ t,

where λ,C are as defined in Theorem A.1.

Proof. To simplify the notation, we define

Γt,t′ =

{
diag (Qt, Rt, . . . , Rt′−1, Qt′) if t′ = T − 1

diag (Qt, Rt, . . . , Rt′−1, Pt′) otherwise
. (38)

By the KKT conditions, we see that for any t ∈ [T], the predictive optimal solution ψt,T−1(xt) is
given by

xt|t
ut|t

...
xT−1|t
ηt|t

...
ηT−1|t

=

(
Γt,T−1 (Ξt,T−1)

⊤

Ξt,T−1

)−1

0
...
0
xt
0
...
0

. (39)

Therefore, ut|t is a linear function of xt, and this relationship defines Kt. Lemma G.2 in [19] implies
that

∥∥Kt

∥∥ ≤ C. Note that the block matrix is invertible since (Qt : t ∈ [T]) and (Rt : t ∈ [T]) are
positive definite.

To simplify the notation, we define the state transition matrix

Φt,t′ := (At′−1 +Bt′−1Kt′−1) · · · (At +BtKt).

Consider an arbitrary state xt. Note that
(
xt′|t : t ≤ t′ < T

)
is the optimal trajectory when there is

no disturbance after step t. By the principle of optimality, we see that
(
xt′|t : t ≤ t′ < T

)
is identical

with the actual trajectory of MPCT after step t. In other words, for arbitrary xt, the multi-step
transition matrix Φt,t′ satisfies

xt′|t = Φt,t′xt.

Lemma G.2 in [19] implies that ∥Φt,t′∥ ≤ Cλt
′−t.

Lemma 5 shows that MPCT has the same effect as a time-varying linear feedback controller that is
exponentially stable. We generalize this property to MPCk with a smaller prediction horizon (Lemma
6) by showing that MPCk behaves similar to MPCT when k is sufficiently large.

Lemma 6. Suppose Assumptions 4 and 5 hold. Let (C, λ) be the same as Lemma 5. For each step
t ∈ [T], the control policy of MPCk can be rewritten as ut = Kk

t xt, for some matrices {Kk
t }t∈[T]

satisfy that ∥∥Kk
t

∥∥ ≤ C, and
∥∥Kk

t −Kt

∥∥ ≤ C2a · λ2k.

Further, for any λ̂ > λ, when k ≥ min{T, 12 log
(
C3baλ/(λ̂− λ)

)
/ log(1/λ)}, we have∥∥(At′−1 +Bt′−1K

k
t′−1) · · · (At +BtK

k
t)
∥∥ ≤ Cλ̂t′−t, for any t, t′ ∈ [T], t′ ≥ t.

28

Proof. Let t := min{t+k, T−1}. By the KKT conditions, we see that for any t ∈ [T], the predictive
optimal solution ψt,t(xt;Pt) is given by

xt|t
ut|t

...
xt|t
ηt|t

...
ηt|t

=

(
Γt,t (Ξt,t)

⊤

Ξt,t

)−1

0
...
0
xt
0
...
0

. (40)

Therefore, ut|t is a linear function of xt, and this relationship defines Kk
t . By Lemma G.2 of [19],

we see that
∥∥Kk

t

∥∥ ≤ C.

When t < T − 1, construct an auxiliary disturbance sequence ŵt:T−2|t with ŵt|t := −Atψt,t(xt)

and ŵt′|t = 0 for all t′ ̸= t. We see that

ψt,t(xt)[ut|t] = ψt,T−1(xt, ŵt:T−2|t;QT−1)[ut|t].

Therefore, we see that∥∥ψt,t(xt)[ut|t]− ψt,T−1(xt)[ut|t]
∥∥

=
∥∥ψt,T−1(xt, ŵt:T−2|t;QT−1)[ut|t]− ψt,T−1(xt, 0×(T−t−1);QT−1)[ut|t]

∥∥
≤ Cλk

∥∥∥ŵt|t

∥∥∥ (41a)

≤ C2a · λ2k ∥xt∥ , (41b)

where we have applied the perturbation bounds in Lemma G.2 of [19] in (41a) and (41b). Since this
inequality holds for any arbitrary xt, we see that

∥∥Kk
t −Kt

∥∥ ≤ C2a · λ2k. To simplify the notation,
we denote ϵ := C2a · λ2k.

We can derive the following bound in terms of the ℓ2 norm:∥∥(At′−1 +Bt′−1K
k
t′−1) · · · (At +BtK

k
t)
∥∥

≤
t′−t∑
j=0

(
t′ − t
j

)
Cj+1λt−t′(bϵ)j (42a)

= Cλt
′−t (1 + Cbϵ)

t′−t

≤ Cλ̂t
′−t, (42b)

where we use the decomposition that for any t′′ ∈ {t, . . . , t′ − 1},

At′′ +Bt′′K
k
t′′ ≤ (At′′ +Bt′′Kt′′) +Bt′′(K

k
t′′ −Kt′′)

and
∥∥Bt′′(K

k
t′′ −Kt′′)

∥∥ ≤ bϵ in (42a). We also use Lemma 5 in (42a) and the assumption that

k ≥ 1

2
log
(
C3baλ/(λ̂− λ)

)
/ log(1/λ)

in (42b).

To establish a dynamic regret bound that depends on the offline optimal cost, we first need to show a
lower bound of J∗ that depends on the “power” of the unknown disturbances.

Lemma 7. The offline optimal cost is lower bounded by

J∗ ≥ µ

4(1 + a2 + b2)

T−2∑
t=0

∥wt∥2 .

29

Proof. Note that the dynamics of the LTV system can be rewritten as

xt+1 −Atxt −Btut = wt.

Taking norms on both sides of the equality gives

∥wt∥ = ∥xt+1 −Atxt −Btut∥
≤ ∥xt+1∥+ ∥Atxt∥+ ∥Btut∥ (43a)
≤ ∥xt+1∥+ a ∥xt∥+ b ∥ut∥ , (43b)

where we have used the triangle inequality in (43a) and the definition of the induced matrix ℓ2-norm
in (43b). Taking the squares of both sides and applying the Cauchy-Schwartz inequality together
imply

∥wt∥2 ≤ (∥xt+1∥+ a ∥xt∥+ b ∥ut∥)2 ≤
1 + a2 + b2

µ

(
µ ∥xt+1∥2 + µ ∥xt∥2 + µ ∥ut∥2

)
. (44)

By (44) and the assumptions on Qt and Rt, we obtain that

µ

2(1 + a2 + b2)
·
T−1∑
t=0

∥wt∥2 ≤
1

2

T−2∑
t=0

(
µ ∥xt+1∥2 + µ ∥xt∥2 + µ ∥ut∥2

)
≤ 2

T−1∑
t=0

ct(xt, ut).

Since the above inequality holds for any arbitrary trajectory ((xt, ut) : t ∈ [T]), we conclude that
Lemma 7 holds.

Since the Wasserstein robustness (see Definition 3) is for distributions on the state-action space, we
also prove a technical lemma below that helps convert the contraction on deterministic state/action
pairs to the contraction on distributions. Let W1(µ, ν) denote the Wasserstein 1-distance between
two distributions µ and ν.
Lemma 8. Suppose φ : Y → W is a deterministic function that satisfies ∥φ(v)− φ(v′)∥W ≤
κ ∥v − v′∥Y for any v, v′ ∈ Y . Then, for any pair of distributions ρ and ρ′ on Y , we have
W1(φ(ρ), φ(ρ

′)) ≤ κW1(ρ, ρ
′).

Proof. Recall that W1(ρ, ρ
′) := infJ

∫
∥v − v′∥Y dJ(v, v′), where J is a joint distribution on Y ×Y

with marginals ρ and ρ′. We define a mapping Φ : Y × Y → Z × Z as Φ(v, v′) := (φ(v), φ(v′)).
We see that ΦJ gives a joint distribution onW ×W with marginals φ(ρ) and φ(ρ′), and it satisfies∫

∥u− u∥W d(ΦJ)(u, u′) =

∫
∥φ(v)− φ(v′)∥Y dJ(v, v′) ≤ ε

∫
∥v − v′∥Y dJ(v, v′).

Note that the above inequality holds for any J with marginals ρ and ρ′. Thus Lemma 8 holds.

Now we are ready to show Theorem A.1.

For a state x at time step t ∈ [T], let xt:t′(x) and ut:t′(x) denote the corresponding state and action
of MPC at time step t′. By Lemma 6, we see that for any state-action pairs (x, u) and (x′, u′) at step
t1, we have

∥(xt1+1:t2 , ut1+1:t2)(At1x+Bt1u+ wt1)− (xt1+1:t2 , ut1+1:t2)(At1x
′ +Bt1u

′ + wt1)∥
≤ (1 + C) ∥xt1+1:t2(At1x+Bt1u+ wt1)− xt1+1:t2(At1x

′ +Bt1u
′ + wt1)∥ (45a)

≤ (1 + C)Cλ̂t2−t1−1 ∥At1(x− x′) +Bt1(u− u′)∥ (45b)

≤ (1 + C)C(a+ b)λ̂t2−t1−1 ∥(x, u)− (x′, u′)∥ , (45c)

where we have used Lemma 6 in (45a) and (45b); Moreover, we have applied the assumption that
∥At1∥ ≤ a and ∥Bt1∥ ≤ b and the triangle inequality in (45c). Since (45) establishes a contraction
for a deterministic state-action pair and the dynamics is deterministic, applying Lemma 8 finishes the
proof of the first conclusion of Theorem A.1.

30

Using a similar decomposition technique with [19], by Lemma 6, we see that the trajectory
(xt : t ∈ [T]) of PROP satisfies that

∥xt∥ ≤
t−1∑
t′=0

∥∥Φk
t′,t

∥∥ · (∥wt′∥+ bR) ≤ C
t−1∑
t′=0

λ̂t−t′(d+ bR) ≤ C(d+ bR)

1− λ̂
, (46)

where we denote Φk
t′,t := (At′−1 +Bt′−1K

k
t′−1) · · · (At +BtK

k
t) and the assumption that PROP

deviates at most R from MPCk’s action. We also see that

∥ut∥ ≤
∥∥Kk

t xt
∥∥+R ≤ CRx +R. (47)

This finishes the proof of the second statement in Theorem A.1.

Let the trajectory of MPCk when executed without the machine-learned advice be denoted by
(xt : t ∈ [T]). We see that

∥xt∥ =

∥∥∥∥∥
t−1∑
t′=0

Φk
t′,twt′

∥∥∥∥∥ ≤ C
t−1∑
t′=0

λ̂t−t′ ∥wt′∥ .

Applying the Cauchy-Schwarz inequality, we obtain

∥xt∥2 ≤

(
C

t−1∑
t′=0

λ̂t−t′ ∥wt′∥

)2

≤ C2

(
t−1∑
t′=0

λ̂t−t′

)(
t−1∑
t′=0

λ̂t−t′ ∥wt′∥2
)

≤ C2

1− λ̂

t−1∑
t′=0

λ̂t−t′ ∥wt′∥2 . (48)

For the control actions of MPCk, we also see that

∥ut∥2 =
∥∥Kk

t xt
∥∥2 ≤ C2 ∥xt∥2 ≤

C4

1− λ̂

t−1∑
t′=0

λ̂t−t′ ∥wt′∥2 . (49)

Therefore, we get the following bound on the total cost:

J(MPCk) =

T−1∑
t=0

(
1

2
(xt)

⊤Qtxt +
1

2
(ut)

⊤Rtut

)

≤ ℓ

2

T−1∑
t=0

(
∥xt∥2 + ∥ut∥2

)
(50a)

≤ C2(1 + C2)

2(1− λ̂)

T−1∑
t=0

t−1∑
t′=0

λ̂t−t′ ∥wt′∥2 (50b)

≤ C2(1 + C2)

2(1− λ̂)2

T−2∑
t=0

∥wt∥2 ,

where we have used the assumption that Qt ⪯ ℓI and Rt ⪯ ℓI in (50a); we have also used the
inequalities (48) and (49) in (50b). Combining (50) with the lower bound of J∗ in Lemma 7 finishes
the proof of the third Statement in Theorem A.1.

F Proof of Theorem A.2

Before showing Theorem A.2, we first state a technical lemma that establishes the relationship
between the TV distance and the Wasserstein distance.

Lemma 9. For any distributions µ, ν on X , we have

W1(µ, ν) = 2TV(µ, ν) = ∥µ− ν∥1 .

31

Proof. To see this, note that since ∥x− x′∥1 = 2 for any x ̸= x′, the Wasserstein 1-distanceW1(µ, ν)
equals 2 times the probability mass we need to transport to convert µ to ν. For every i ∈ {1, . . . , n}
such that µi > νi, we need to move out exactly (µi − νi) from the probability mass at ei to other
points (ej : j ̸= i). Therefore, we must have

W1(µ, ν) = 2

n∑
i=1

1(µi > νi) · (µi − νi) = 2TV(µ, ν) = ∥µ− ν∥1 .

Note that the MDP’s transition kernel acts as a deterministic function. It maps the current state-action
pair from X × U to the distribution of the subsequent state in X . Hence, the current state-action
distribution on X × U maps to a distribution on ∆(X). To proceed with this recursion, we require
the distribution of the next state, which should be on X . This is in contrast to needing the distribution
of the distribution of the next state, which would be on ∆(X). Therefore, to convert the distributions
on ∆(X) back to distributions on X , we require the following lemma.
Lemma 10. Let µ, µ′ be two distributions on ∆(X). It follows that ∥E[µ]− E[µ′]∥1 ≤W1(µ, µ

′).

Note that E[µ] and E[µ′] are distributions on X .

Proof. By the definition of the Wasserstein distance, we have

W1(µ, µ
′) = inf

J

∫
∥x− y∥1 dJ(x, y),

where J is a joint distribution on ∆(X) × ∆(X) with marginals µ and µ′. For any such joint
distribution J , we have∫

∥x− y∥1 dJ(x, y) ≥
∥∥∥∥∫ (x− y)dJ(x, y)

∥∥∥∥
1

= ∥E[µ]− E[µ′]∥1 .

This finishes the proof of Lemma 10.

We now resume our discussion with the proof of Theorem A.2.

Given the state-action distribution ρ at step t, let µt:t′(ρ) denote the resulting state distribution at step
t′. We slightly abuse the notation so that for any pair (x, u) ∈ X × U , µt:t′((x, u)) still outputs the
resulting state distribution at step t′. We see that

∥µt:t+1((x, u))− µt:t+1((x
′, u′))∥1 ≤ ∥x− x

′∥1 + ∥u− u
′∥1 .

Therefore, by Lemmas 8 and 10, we see that

W (µt1:t1+1(ρ), µt1:t1+1(ρ
′)) ≤W (ρ, ρ′). (51)

Note that Lemma 1 and Lemma 9 imply that

W (µt1:t2(ρ), µt1:t2(ρ
′)) ≤ λt2−t1−1W (µt1:t1+1(ρ), µt1:t1+1(ρ

′)).

Combining this with (51) gives that

W (µt1:t2(ρ), µt1:t2(ρ
′)) ≤ λt2−t1−1W (ρ, ρ′). (52)

For any distributions µ, µ′ on X , we also see that ∥π̄t2(µ)− π̄t2(µ′)∥1 ≤ ∥µ− µ′∥, which implies

W (π̄t2(µ), π̄t2(µ
′)) ≤W (µ, µ′).

Substituting this into (52) gives that

W (ρt1:t2(ρ), ρt1:t2(ρ
′)) ≤ 2λt2−t1−1W (ρ, ρ′),

validating that the Wasserstein robustness (Definition 3) is satisfied.

32

	Introduction
	Contributions
	Related Work

	Problem Setting
	Consistency and Robustness in MDPs
	Locally Wasserstein-Robust Policies
	Consistency and Robustness for RoE

	The Projection Pursuit Policy (PROP)
	Black-Box Setting
	Grey-Box Setting

	Main Results
	Black-Box Setting
	Grey-Box Setting

	Concluding Remarks
	Bibliography
	Application Examples
	MPC baseline in time-varying dynamical systems
	Baseline Policies for MDPs with Finite State/Action Spaces
	Numerical Results
	Basic Settings
	Case Studies

	Useful Lemmas
	Perturbation Lemma
	Projection Lemma
	Analysis of Approximate TD-Error

	Black-Box Consistency and Robustness Analysis
	Proof of Theorem 5.1
	Proof of Theorem 5.2
	Proof of Theorem 5.3

	Grey-Box Consistency and Robustness Analysis
	Proof of Theorem D.1
	Proof of Theorem 5.4

	Proof of Theorem A.1
	Proof of Theorem A.2

