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Abstract

We study the tradeoff between consistency and robustness in the context of a
single-trajectory time-varying Markov Decision Process (MDP) with untrusted
machine-learned advice. Our work departs from the typical approach of treating
advice as coming from black-box sources by instead considering a setting where
additional information about how the advice is generated is available. We prove a
first-of-its-kind consistency and robustness tradeoff given Q-value advice under a
general MDP model that includes both continuous and discrete state/action spaces.
Our results highlight that utilizing Q-value advice enables dynamic pursuit of the
better of machine-learned advice and a robust baseline, thus result in near-optimal
performance guarantees, which provably improves what can be obtained solely
with black-box advice.

1 Introduction

Machine-learned predictions and hand-crafted algorithmic advice are both crucial in online decision-
making problems, driving a growing interest in learning-augmented algorithms [1, 2] that exploit
the benefits of predictions to improve the performance for typical problem instances while bounding
the worst-case performance [3, 4]. To this point, the study of learning-augmented algorithms has
primarily viewed machine-learned advice as potentially untrusted information generated by black-box
models. Yet, in many real-world problems, additional knowledge of the machine learning models
used to produce advice/predictions is often available and can potentially improve the performance of
learning-augmented algorithms.

A notable example that motivates our work is the problem of minimizing costs (or maximizing
rewards) in a single-trajectory Markov Decision Process (MDP). More concretely, a value-based
machine-learned policy e⇡ can be queried to provide suggested actions as advice to the agent at each
step [5–7]. Typically, the suggested actions are chosen to minimize (or maximize, in case of rewards)
estimated cost-to-go functions (known as Q-value predictions) based on the current state.

Naturally, in addition to suggested actions, the Q-value function itself can also provide additional
information (e.g., the long-term impact of choosing a certain action) potentially useful to the design
of a learning-augmented algorithm. Thus, this leads to two different designs for learning-augmented
algorithms in MDPs: black-box algorithms and grey-box algorithms. A learning-augmented algorithm
using e⇡ is black-box if e⇡ provides only the suggested action eu to the learning-augmented algorithm,
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whereas it is value-based (a.k.a., grey-box) if e⇡ provides an estimate of the Q-value function eQ (that
also implicitly includes a suggested action eu obtained by minimizing eQ) to the learning-augmented
algorithm.

Value-based policies e⇡ often perform well empirically in stationary environments in practice [5, 6].
However, they may not have performance guarantees in all environments and can perform poorly at
times due to a variety of factors, such as non-stationary environments [8–11], policy collapse [12],
sample inefficiency [13], and/or when training data is biased [14]. As a consequence, such policies
often are referred to as “untrusted advice” in the literature on learning-augmented algorithms, where
the notion of “untrusted” highlights the lack of performance guarantees. In contrast, recent studies in
competitive online control [15–21] have begun to focus on worst-case analysis and provide control
policies ⇡ with strong performance guarantees even in adversarial settings, referred to as robustness,
i.e., ⇡ provides “trusted advice.” Typically, the goal of a learning-augmented online algorithm [1, 3]
is to perform nearly as well as the untrusted advice when the machine learned policy performs well,
a.k.a., achieve consistency, while also ensuring worst-case robustness. Combining the advice of
an untrusted machine-learned policy e⇡ and a robust policy ⇡ naturally leads to a tradeoff between
consistency and robustness. In this paper, we explore this tradeoff in a time-varying MDP setting and
seek to answer the following key question for learning-augmented online algorithms:

Can Q-value advice from an untrusted machine-learned policy, e⇡, in a grey-box scenario provide
more benefits than the black-box action advice generated by e⇡ in the context of consistency and
robustness tradeoffs for MDPs?

1.1 Contributions

We answer the question above in the affirmative by presenting and analyzing a unified projection-
based learning-augmented online algorithm (PROjection Pursuit policy, simplified as PROP in
Algorithm 1) that combines action feedback from a trusted, robust policy ⇡ with an untrusted ML
policy e⇡. In addition to offering a consistency and robustness tradeoff for MDPs with black-box
advice, our work moves beyond the black-box setting. Importantly, by considering the grey-box
setting, the design of PROP demonstrates that the structural information of the untrusted machine-
learned advice can be leveraged to determine the trust parameters dynamically, which would otherwise
be challenging (if not impossible) in a black-box setting. To our best knowledge, PROP is the first-of-
its-kind learning-augmented algorithm that applies to general MDP models, which allow continuous
or discrete state and action spaces.

Our main results characterize the tradeoff between consistency and robustness for both black-box and
grey-box settings in terms of the ratio of expectations, RoE, built upon the traditional consistency
and robustness metrics in [3, 22, 23, 4] for the competitive ratio. We show in Theorem 5.2 that for
the black-box setting, PROP is (1 +O((1� �)�))-consistent and (ROB + O(��))-robust where
0  �  1 is a hyper-parameter. Moreover, for the black-box setting, PROP cannot be both
(1 + o(��))-consistent and (ROB+ o((1� �)�))-robust for any 0  �  1 where � is the diameter
of the action space. In sharp contrast, by using a careful design of a robustness budget parameter in
PROP with Q-value advice (grey-box setting), PROP is 1-consistent and (ROB+ o(1))-robust.

Our result highlights the benefits of exploiting the additional information informed by the estimated
Q-value functions, showing that the ratio of expectations can approach the better of the two policies
e⇡ and ⇡ for any single-trajectory time-varying, and even possibly adversarial environments — if the
value-based policy e⇡ is near-optimal, then the worst-case RoE(PROP) can approach 1 as governed
by a consistency parameter; otherwise, RoE(PROP) can be bounded by the ratio of expectations of
⇡ subject to an additive term o(1) that decreases when the time horizon T increases.

A key technical contribution of our work is to provide the first quantitative characterization of the
consistency and robustness tradeoff for a learning-augmented algorithm (PROP) in a general MDP
model, under both standard black-box and novel grey-box settings. Importantly, PROP is able to
leverage a broad class of robust policies, called Wasserstein robust policies, which generalize the
well-known contraction principles that are satisfied by various robust policies [24] and have been
used to derive regrets for online control [19, 25]. A few concrete examples of Wasserstein robust
policies applicable for PROP are provided in Table 1(Section 3.1).
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1.2 Related Work

Learning-Augmented Algorithms with Black-Box Advice. The concept of integrating black-box
machine-learned guidance into online algorithms was initially introduced by [26]. [3] coined terms
“robustness" and “consistency" with formal mathematical definitions based on the competitive ratio.
Over the past few years, the consistency and robustness approach has gained widespread popularity
and has been utilized to design online algorithms with black-box advice for various applications,
including ski rental [3, 22, 23], caching [27–29], bipartite matching [30], online covering [31, 32],
convex body chasing [4], nonlinear quadratic control [33]. The prior studies on learning-enhanced
algorithms have mainly focused on creating meta-strategies that combine online algorithms with
black-box predictions, and typically require manual setting of a trust hyper-parameter to balance
consistency and robustness. A more recent learning-augmented algorithm in [33] investigated the
balance between competitiveness and stability in nonlinear control in a black-box setting. However,
this work limits the robust policy to a linear quadratic regulator and does not provide a theoretical
basis for the selection of the trust parameters. [34] generalized the black-box advice setting by
considering distributional advice.

Online Control and Optimization with Structural Information. Despite the lack of a systematic
analysis, recent studies have explored the usage of structural information in online control and
optimization problems. Closest to our work, [7] considered a related setting where the Q-value
function is available as advice, and shows that such information can be utilized to reduce regret in a
tabular MDP model. In contrast, our analysis applies to more general models that allow continuous
state/action spaces. In [17], the dynamical model and the predictions of disturbances in a linear
control system are shown to be useful in achieving a near-optimal consistency and robustness tradeoff.
The predictive optimization problem solved by MPC [35, 36, 16, 37] can be regarded as a special
realization of grey-box advice, where an approximated cost-to-go function is constructed from
structural information that includes the (predicted) dynamical model, costs, and disturbances.

MDP with External Feedback. Feedback from external sources such as control baselines [38, 39],
visual explanations [40], and human experts [41–43] is often available in MDP. This external feedback
can be beneficial for various purposes, such as ensuring safety [44], reducing variance [38], training
human-like chatbots [41], and enhancing overall trustworthiness [45], among others. The use of
control priors has been proposed by [38] as a way to guarantee the Lyapunov stability of the training
process in reinforcement learning. They used the Temporal-Difference method to tune a coefficient
that combines a RL policy and a control prior, but without providing a theoretical foundation. Another
related area is transfer learning in RL, where external Q-value advice from previous tasks can be
adapted and utilized in new tasks. Previous research has shown that this approach can outperform
an agnostic initialization of Q, but these results are solely based on empirical observations and lack
theoretical support [46–48].

2 Problem Setting

We consider a finite-horizon, single-trajectory, time-varying MDP with T discrete time steps. The
state space X is a subset of a normed vector space embedded with a norm k · kX . The actions are
chosen from a convex and compact set U in a normed vector space characterized by some norm k · kU .
Notably, U can represent either continuous actions or the probability distributions used when choosing
actions from a finite set.1 The diameter of the action space U is denoted by � := maxu2U kukU .
Denote [T ] := {0, . . . , T � 1}. For each time step t 2 [T ], let Pt : X ⇥ U ! PX be the transition
probability, where PX is a set of probability measures on X . We consider time-varying costs
ct : X ⇥ U ! R+, while rewards can be treated similarly by adding a negative sign. An initial state
x0 2 X is fixed. This MDP model is compactly represented by MDP(X ,U , T, P, c).

The goal of a policy in this MDP setting is to minimize the total cost over all T steps. The policy
agent has no access to the full MDP. At each time step t 2 [T ], only the incurred cost value ct(xt, ut)
and the next state xt+1 ⇠ Pt(·|xt, ut) are revealed to the agent after playing an action ut 2 U . We
denote a policy by ⇡ = (⇡t : t 2 [T ]) where each ⇡t : X ! U chooses an action ut when observing

1The action space U is assumed to be a continuous, convex, and compact set for more generality. When
the actions are discrete, U can be defined as the set of all probability distributions on a finite action space. We
relegate the detailed discussions in Appendix A.2 and F.
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xt at step t 2 [T ]. Note that our results can be generalized to the setting when ⇡t is stochastic and
outputs a probability distribution on U . Given MDP(X ,U , T, P, c), we consider an optimization with
time-varying costs and transition dynamics. Thus, our goal is to find a policy ⇡ that minimizes the
following expected total cost:

J(⇡) := EP,⇡

h X

t2[T ]

ct (xt,⇡t(xt))
i

(1)

where the randomness in EP,⇡ is from the transition dynamics P = (Pt : t 2 [T ]) and the policy
⇡ = (⇡t : t 2 [T ]). We focus our analysis on the expected dynamic regret and the ratio of expectations,
defined below, as the performance metrics for our policy design.
Definition 1 (Expected dynamic regret). Given MDP(X ,U , T, P, c), the (expected) dynamic regret
of a policy ⇡ = (⇡t : t 2 [T ]) is defined as the difference between the expected cost induced by the
policy ⇡, J(⇡) in (1), and the optimal expected cost J? := inf⇡ J(⇡), i.e., DR(⇡) := J(⇡)� J?.

Dynamic regret is a more general (and often more challenging to analyze) measure than classical static
regret, which has been mostly used for stationary environments [49, 50]. The following definition
of the ratio of expectations [51, 52] will be used as an alternative performance metric in our main
results.
Definition 2 (Ratio of expectations). Given MDP(X ,U , T, P, c), the ratio of expectations of a
policy ⇡ = (⇡t : t 2 [T ]) is defined as RoE(⇡) := J(⇡)/J? where J(⇡) and J? are the same as in
Definition 1.

Dynamic regret and the ratio of expectations defined above also depend on the error of the untrusted
ML advice; we make this more explicit in Section 3.2. Next, we state the following continuity
assumption, which is standard in MDPs with continuous action and state spaces [53–55]. Note that
our analysis can be readily adapted to general Hölder continuous costs with minimal modifications.
Assumption 1 (Lipschitz costs). For any time step t 2 [T ], the cost function ct : X ⇥ U ! R+ is
Lipschitz continuous with a Lipschitz constant LC <1, i.e., for any t 2 [T ], |ct(x, u)� ct(x0, u0)| 
LC (kx� x0

kX + ku� u0
kU ). Moreover, 0 < ct(x, u) <1 for all t 2 [T ], x 2 X , and u 2 U .

3 Consistency and Robustness in MDPs

Figure 1: Left: Overview of settings in our problem. Right: consistency and robustness tradeoff, with
RoE and " defined in Definition 2 and Equation (4).

Our objective is to achieve a balance between the worst-case guarantees on cost minimization in terms
of dynamic regret provided by a robust policy, ⇡, and the average-case performance of a valued-based
policy, e⇡, in the context of MDP(X ,U , T, P, c). In particular, we denote by ROB � 1 a ratio of
expectation bound of the robust policy ⇡ such that the worst case RoE(⇡)  ROB. In the learning-
augmented algorithms literature, these two goals are referred to as consistency and robustness [3, 1].
Informally, robustness refers to the goal of ensuring worst-case guarantees on cost minimization
comparable to those provided by ⇡ and consistency refers to ensuring performance nearly as good as
e⇡ when e⇡ performs well (e.g., when the instance is not adversarial). Learning-augmented algorithms
seek to achieve consistency and robustness by combining ⇡ and e⇡, as illustrated in Figure 1.
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Table 1: Examples of models covered in this paper and the associated control baselines. For the right
column, bounds on the ratio of expectations RoE are exemplified, where ROB is defined in Section 3
and O omits inessential constants.

Model Robust Baseline ⇡ RoE

Time-varying MDP (Our General Model) Wasserstein Robust Policy (Definition 3) ROB

Discrete MDP (Appendix A.2) Any Policy that Induced a Regular Markov Chain —
Time-Varying LQR (Appendix A.1) MPC with Robust Predictions (Algorithm 3) O(1)

Our focus in this work is to design robust and consistent algorithms for two types of advice: black-box
advice and grey-box advice. The type of advice that is nearly always the focus in the learning-
augmented algorithm literature is black-box advice — only providing a suggested action eut without
additional information. In contrast, on top of the action eut, grey-box advice can also reveal the
internal state of the learning algorithm, e.g., the Q-value eQt in our setting. This contrast is illustrated
in Figure 1.

Compared to black-box advice, grey-box advice has received much less attention in the literature,
despite its potential to improve tradeoffs between consistency and robustness as recently shown
in [34, 17]. Nonetheless, the extra information on top of the suggested action in a grey-box setting
potentially allows the learning-augmented algorithm to make a better-informed decision based on the
advice, thus achieving a better tradeoff between consistency and robustness than otherwise possible.

In the remainder of this section, we discuss the robustness properties for the algorithms we consider
in our learning-augmented framework (Section 3.1), and introduce the notions of consistency in our
grey-box and black-box models in Section 3.2.

3.1 Locally Wasserstein-Robust Policies

We begin with constructing a novel notion of robustness for our learning-augmented framework based
on the Wasserstein distance as follows. Denote the robust policy by ⇡ := (⇡t : t 2 [T ]), where each
⇡t maps a system state to a deterministic action (or a probability of actions in the stochastic setting).
Denote by ⇢t1:t2(⇢) the joint distribution of the state-action pair (xt, ut) 2 X ⇥ U at time t2 2 [T ]
when implementing the baselines ⇡t1 , . . . ,⇡t2 consecutively with an initial state-action distribution ⇢.
We use k · kX⇥U := k · kX + k · kU as the included norm for the product space X ⇥ U . Let Wp(µ, ⌫)
denote the Wasserstein p-distance between distributions µ and ⌫ whose support set is X ⇥ U :

Wp(µ, ⌫) :=

✓
inf

J2J (µ,⌫)

Z
k(x, u)� (x0, u0)kpX⇥UdJ ((x, u), (x0, u0))

◆1/p

where p 2 [1,1) and J (µ, ⌫) denotes a set of all joint distributions J with a support set X ⇥ U

that have marginals µ and ⌫. Next, we define a robustness condition for our learning-augmented
framework.
Definition 3 (r-locally p-Wasserstein robustness). A policy ⇡ = (⇡t : t 2 [T ]) is r-locally p-
Wasserstein-robust if for any 0  t1  t2 < T and any pair of state-action distributions ⇢, ⇢0 where
the the p-Wasserstein distance between them is bounded by Wp(⇢, ⇢0)  r, for some radius r > 0,
the following inequality holds:

Wp (⇢t1:t2(⇢), ⇢t1:t2(⇢
0)) s(t2 � t1)Wp (⇢, ⇢

0) (2)
for some function s : [T ]! R+ satisfying

P
t2[T ] s(t)  Cs where Cs > 0 is a constant.

Our robustness definition is naturally more relaxed than the usual contraction property in the con-
trol/optimization literature [25, 35] — if any two different state-action distributions converge expo-
nentially with respect to the Wasserstein p-distance, then a policy ⇡ is r-locally p-Wasserstein-robust.
This is illustrated in Figure 2. Note that, although the Wasserstein robustness in Definition 3 well
captures a variety of distributional robustness metrics such as the total variation robustness de-
fined on finite state/action spaces, it can also be further generalized to other metrics for probability
distributions.

As shown in Appendix A (provided in the supplementary material), by establishing a connection
between the Wasserstein distance and the total variation metric, any policy that induces a regular
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Figure 2: An illustration of an r-locally p-Wasserstein-robust policy.

Markov chain satisfies the fast mixing property and the state-action distribution will converge with
respect to the total variation distance to a stationary distribution [56]. A more detailed discussion can
be found in Appendix A.2. Moreover, the Wasserstein-robustmess in Definition 3 includes a set of
contraction properties in control theory as special cases. For example, for a locally Wasserstein-robust
policy, if the transition kernel P and the baseline policy ⇡ are deterministic, then the state-action
distributions become point masses, reducing Definition 3 to a state-action perturbation bound in terms
of the `2-norm when implementing the policy ⇡ from different starting states [35, 19].

The connections discussed above highlight the existence of several well-known robust policies that
satisfy Definition 3. Besides the case of discrete MDPs discussed in Appendix A.2, another prominent
example is model predictive control (MPC), for which robustness follows from the results in [19]
(see Appendix A.1 for details). The model assumption below will be useful in our main results.
Assumption 2. There exists a �-locally p-Wasserstein-robust baseline control policy (Definition 3) ⇡
for some p � 1, where � is the diameter of the action space U .

3.2 Consistency and Robustness for RoE

In parallel with the notation of “consistency and robustness” in the existing literature on learning-
augmented algorithms [3, 1], we define a new metric of consistency and robustness in terms of RoE. To
do so, we first introduce an optimal policy ⇡?. Based on MDP(X ,U , T, P, c), let ⇡?

t
= (⇡?

t
: t 2 [T ])

denote the optimal policy at each time step t 2 [T ], whose optimal Q-value function is

Q?

t
(x, u) := inf

⇡

EP,⇡

"
T�1X

⌧=t

c⌧ (x⌧ , u⌧ )
���xt = x, ut = u

#
,

where EP,⇡ denotes an expectation with respect to the randomness of the trajectory {(xt, ut) : t 2
[T ]} obtained by following a policy ⇡ and the transition probability P at each step t 2 [T ]. The
Bellman optimality equations can then be expressed as

Q?

t
(x, u) =

�
ct + PtV

?

t+1

�
(x, u) , V ?

t
(x) = inf

v2U
Q?

t
(x, v), V ?

t
(x) = 0 (3)

for all (x, u) 2 X ⇥ U , t 2 [T ] and t 2 [T ], where we write (PtV ?) (x, u) := Ex0⇠Pt(·|x,u) [V
?(x0)].

This indicates that for each time step t 2 [T ], ⇡?

t
is the greedy policy with respect to its optimal

Q-value functions (Q?

t
: t 2 [T ]). Note that for any t 2 [T ], Q?

t
(x, u) = 0. Given this setup, the

value-based policies e⇡ := (e⇡t : t 2 [T ]) take the following form. For any t 2 [T ], a value-based
policy e⇡t : X ! U produces an action eut 2 argmin

v2U
eQt (xt, v) by minimizing an estimate of the

optimal Q-value function eQt.

We make the following assumption on the machine-learned untrusted policy e⇡ and the Q-value advice.

Assumption 3. The machine-learned untrusted policy e⇡ is value-based. The Q-value advice eQt :
X ⇥ U ! R is Lipschitz continuous with respect to u 2 U for any x 2 X , with a Lipschitz constant
LQ for all t 2 [T ]. Moreover, eQt (x, u)�Q?

t
(x, u) = o(T ) for all (x, u) 2 X ⇥ U and t 2 [T ].

We can now define a consistency measure for Q-value advice eQt, which measures the error of the
estimates of the Q-value functions due to approximation error and time-varying environments, etc.
Let p 2 (0,1]. Fix a sequence of distributions ⇢ = (⇢t : t 2 [T ]) whose support set is X ⇥U and let
�t be the marginal distribution of ⇢t on X . We define a quantity representing the error of the Q-value
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advice

"(p, ⇢) :=
X

t2[T ]

✓��� eQt �Q?

t

���
p,⇢t

+
��� inf

v2U
eQt � inf

v2U
Q?

t

���
p,�t

◆
(4)

where k · kp,⇢ :=
�R

|·|
p d⇢

�1/p denotes the Lp,⇢-norm. A policy with Q-value functions {Qt : t 2
[T ]} is said to be (", p, ⇢)-consistent if there exists an " satisfying (4). In addition, a policy is
(0,1)-consistent if eQt is a Lebesgue-measurable function for all t 2 [T ] and (1, ")-consistent if
the L1-norm satisfies

P
t2[T ] k

eQt �Q?

t
k1  ". The consistency error of a policy in (4) quantifies

how the Q-value advice is close to optimal Q-value functions. It depends on various factors such the
function approximation error or training error due to the distribution shift, and has a close connection
to a rich literature on value function approximation [57–61]. The results in [59] generalized the worst-
case L1 guarantees to arbitrary Lp,⇢-norms under some mixing assumptions via policy iteration
for a stationary Markov decision process (MDP) with a continuous state space and a discrete action
space. Recently, approximation guarantees for the average case for parametric policy classes (such as
a neural network) of value functions have started to appear [57, 58, 60]. These bounds are useful in
lots of supervised machine learning methods such as classification and regression, whose bounds
are typically given on the expected error under some distribution. These results exemplify richer
instances of the consistency definition (see (4)) and a summary of these bounds can be found in [61].

Now, we are ready to introduce our definition of consistency and robustness with respect to the ratio
of expectations, similar to the growing literature on learning-augmented algorithms [3, 22, 23, 4].
We write the ratio of expectations RoE(") of a policy ⇡ as a function of the Q-value advice error " in
terms of the L1 norm, defined in (4).

Definition 4 (Consistency and Robustness). An algorithm ⇡ is said to be k-consistent if its worst-case
(with respect to the MDP model MDP(X ,U , T, P, c)) ratio of expectations satisfies RoE(")  k for
" = 0. On the other hand, it is l-robust if RoE(")  l for any " > 0.

4 The Projection Pursuit Policy (PROP)

In this section we introduce our proposed algorithm (Algorithm 1), which achieves near-optimal con-
sistency while bounding the robustness by leveraging a robust baseline (Section 3.1) in combination
with value-based advice (Section 3.2). A key challenge in the design is how to exploit the benefits of
good value-based advice while avoiding following it too closely when it performs poorly. To address
this challenge, we propose to judiciously project the value-based advice into a neighborhood of the
robust baseline. By doing so, the actions we choose can follow the value-based advice for consistency
while staying close to the robust baseline for robustness. More specifically, at each step t 2 [T ], we
choose ut = ProjUt

(eut) where a projection operator ProjUt
(·) : U ! U is defined as

ProjUt
(u) := argmin

v2U
ku� vkU subject to kv � ⇡t (xt)kU  Rt, (5)

corresponding to the projection of u onto a ball U t := {u 2 U : ku� ⇡t (xt)kU  Rt}. Note that
when the optimal solution of (5) is not unique, we choose the one on the same line with ⇡t (xt)� u.

The PROjection Pursuit policy, abbreviated as PROP, can be described as follows. For a time step
t 2 [T ], let e⇡t : X ! U denote a policy that chooses an action eut (arbitrarily choose one if there
are multiple minimizers of eQt), given the current system state xt at time t 2 [T ] and step t 2 [T ].
An action ut = ProjUt

(eut(xt)) is selected by projecting the machine-learned action eut(xt) onto
a norm ball U t defined by the robust policy ⇡ given a radius Rt � 0. Finally, PROP applies to
both black-box and grey-box settings (which differ from each other in terms of how the radius Rt

is decided). The results under both settings are provided in Section 5, revealing a tradeoff between
consistency and robustness.

The radii (Rt : t 2 [T ]) can be interpreted as robustness budgets and are key design parameters
that determine the consistency and robustness tradeoff. Intuitively, the robustness budgets reflect
the trustworthiness on the value-based policy e⇡ — the larger budgets, the more trustworthiness and
hence the more freedom for PROP to follow e⇡. How the robustness budget is chosen differentiates
the grey-box setting from the black-box one.
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Algorithm 1 PROjection Pursuit Policy (PROP)
Initialize :Untrusted policy e⇡ = (e⇡t : t 2 [T ]) and baseline policy ⇡ = (⇡t : t 2 [T ])

1 for t = 0, . . . , T � 1 do
2 //Implement black-box (Section 4.1) or grey-box (Section 4.2) procedures
3 (eut, Rt) BLACK-BOX(xt) or (eut, Rt) GREY-BOX(xt)
4 Set action ut = ProjUt

(eut) where U t := {u 2 U : ku� ⇡t (xt)kU  Rt}

5 Sample next state xt+1 ⇠ Pt (·|xt, ut)
6 end

4.1 Black-Box Setting

In the black-box setting, the only information provided by e⇡ is a suggested action eu for the learning-
augmented algorithm. Meanwhile, the robust policy ⇡ can also be queried to provide advice u. Thus,
without additional information, a natural way to utilize both e⇡ and ⇡ is to decide a projection radius
at each time based on the how the obtained eu and u. More concretely, at each time t 2 [T ], the
robustness budget Rt is chosen by the following BLACK-BOX Procedure, where we set Rt = �⌘t
with ⌘t := keut � utkU representing the difference between the two advice measured in terms of the
norm k · kU and 0  �  1 being a tradeoff hyper-parameter that measures the trustworthiness on
the machine-learned advice. The choice of Rt = �⌘t can be explained as follows. The value of
⌘t indicates the intrinsic discrepancy between the robust advice and the machine-learned untrusted
advice — the larger discrepancy, the more difficult to achieve good consistency and robustness
simultaneously. Given a robust policy and an untrusted policy, by setting a larger �, we allow
the actual action to deviate more from the robust advice and to follow the untrusted advice more
closely, and vice versa. � is a crucial hyper-parameter that can be pre-determined to yield a desired
consistency and robustness tradeoff. The computation of Rt is summarized in Procedure 1 below.

Procedure 1 BLACK-BOX Procedure at t 2 [T ] (Input: state xt and hyper-parameter 0  �  1)
Implement e⇡t and ⇡t to obtain eut and ut, respectively.
Set robustness budget Rt = �⌘t where ⌘t := keut � utkU ; Return (eut, Rt)

4.2 Grey-Box Setting

In the grey-box setting, along with the suggested action eu, the value-based untrusted policy e⇡ also
provides an estimate of the Q-value function eQ that indicates the long-term cost impact of an action. To
utilize such additional information informed by eQt at each time t 2 [T ], we propose a novel algorithm
that dynamically adjusts the budget Rt to further improve the consistency and robustness tradeoff.
More concretely, let us consider the Temporal-Difference (TD) error TDt = ct�1 + Pt�1

eVt �
eQt�1.

Intuitively, if a non-zero TD-error is observed, the budget Rt needs to be decreased so as to minimize
the impact of the learning error. However, the exact TD-error is difficult to compute in practice, since
it requires complete knowledge of the transition kernels (Pt : t 2 [T ]). To address this challenge, we
use the following estimated TD-error based on previous trajectories:

�t (xt, xt�1, ut�1) :=ct�1 (xt�1, ut�1) + inf
v2U

eQt (xt, v)� eQt�1 (xt�1, ut�1) . (6)

Denote by � > 0 a hyper-parameter. Based on the estimated TD-error in (6), the robustness budget
in Algorithm 1 is set as

Rt :=

"
ke⇡t (xt)� ⇡t (xt)kU| {z }

Decision Discrepancy ⌘t

�
�

LQ

tX

s=1

�s (xs, xs�1, us�1)| {z }
Approximate TD-Error

#+

, (7)

which constitutes two terms. The first term ⌘t := ke⇡t (xt)� ⇡t (xt)k measures the decision discrep-
ancy between the untrusted policy e⇡ and the baseline policy ⇡, which normalizes the total budget,
similar to the one used in the black-box setting in Procedure 1. The second term is the approximate
TD-error, which is normalized by the Lipschitz constant LQ of Q-value functions. With these terms
defined, the GREY-BOX Procedure below first chooses a suggested action eut by minimizing eQt and
then decides a robustness budget Rt using (7).
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Procedure 2 GREY-BOX Procedure at t 2 [T ] (Input: state xt and hyper-parameter 0  �  1)

Obtain advice eQt and eut where eut 2 arg inf
v2U

eQt (xt, v)
Implement ⇡t and obtain ut

Set robustness budget Rt as (7); Return (eut, Rt)

5 Main Results

We now formally present the main results for both the black-box and grey-box settings. Our results
not only quantify the tradeoffs between consistency and robustness formally stated in Definition 4
with respect to the ratio of expectations, but also emphasize a crucial role that additional information
about the estimated Q-values plays toward improving the consistency and robustness tradeoff.

5.1 Black-Box Setting

In the existing learning-augmented algorithms, the untrusted machine-learned policy e⇡ is often treated
as a black-box that generates action advice eut at each time t 2 [T ]. Our first result is the following
general dynamic regret bound for the black-box setting (Section 4.1). We utilize the Big-O notation,
denoted as O(·) and o(·) to disregard inessential constants.
Theorem 5.1. Suppose the machine-learned policy e⇡ is (1, ")-consistent. For any MDP model
satisfying Assumption 1,2, and 3, the expected dynamic regret of PROP with the BLACK-BOX
Procedure is bounded by DR(PROP)  min{O(") + O((1 � �)�T ),O ((ROB+ �� � 1)T )}
where " is defined in (4), � is the diameter of the action space U , T is the length of the time horizon,
ROB is the ratio of expectations of the robust baseline ⇡, and 0  �  1 is a hyper-parameter.

When � increases, the actual action can deviate more from the robust policy, making the dynamic
regret potentially closer to that of the value-based policy. While the regret bound in Theorem 5.1
clearly shows the role of � in terms of controlling how closely we follow the robust policy, the
dynamic regret given a fixed � 2 [0, 1] grows linearly in O(T ). In fact, the linear growth of dynamic
regret holds even if the black-box policy e⇡ is consistent, i.e., " is small. This can be explained by
noting the lack of dynamically tuning � to follow the better of the two policies — even when one
policy is nearly perfect, the actual action still always deviates from it due to the fixed choice of �.

Consider any MDP model satisfying Assumptions 1,2, and 3. Following the classic definitions of
consistency and robustness (see Definition 4), we summarize the following characterization of PROP,
together with a negative result in Theorem 5.3. Proofs of Theorem 5.1, 5.2, and 5.3 are detailed in
Appendix C.
Theorem 5.2 (BLACK-BOX Consistency and Robustness). PROP with the BLACK-BOX Procedure
is (1 +O((1� �)�))-consistent and (ROB+O(��))-robust where 0  �  1 is a hyper-parameter.
Theorem 5.3 (BLACK-BOX Impossibility). PROP with the BLACK-BOX Procedure cannot be both
(1 + o((1� �)�))-consistent and (ROB+ o(��))-robust for any 0  �  1.

5.2 Grey-Box Setting

To overcome the impossibility result in the black-box setting, we dynamically tune the robustness
budgets by tapping into additional information informed by the estimated Q-value functions using the
GREY-BOX Procedure (Section 4.2). By setting the robustness budgets in (7), an analogous result of
Theorem 5.1 is given in Appendix D, which leads to a dynamic regret bound of PROP in the grey-box
setting (Theorem D.1 in Appendix D). Consider any MDP model satisfying Assumptions 1,2, and 3.
Our main result below indicates that knowing more structural information about a black-box policy
can indeed bring additional benefits in terms of the consistency and robustness tradeoff, even if the
black-box policy is untrusted.
Theorem 5.4 (GREY-BOX Consistency and Robustness). PROP with the GREY-BOX Procedure is
1-consistent and (ROB+ o(1))-robust for some � > 0.

Theorem 5.3 implies that using the BLACK-BOX Procedure, PROP cannot be 1-consistent and
(ROB+ o(1))-robust, while this can be achieved using the GREY-BOX Procedure. On one hand, this
theorem validates the effectiveness of the PROP policy with value-based machine-learned advice that
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may not be fully trusted. On the other hand, this sharp contrast between the black-box and grey-box
settings reveals that having access to information of value function can improve the tradeoff between
consistency and robustness (see Definition 4) non-trivially. A proof of Theorem 5.4 can be found in
Appendix D. Applications of our main results are discussed in Appendix A.

6 Concluding Remarks

Our results contribute to the growing body of literature on learning-augmented algorithms for MDPs
and highlight the importance of considering consistency and robustness in this context. In particular,
we have shown that by utilizing the structural information of machine learning methods, it is possible
to achieve improved performance over a black-box approach. The results demonstrate the potential
benefits of utilizing value-based policies as advice; however, there remains room for future work in
exploring other forms of structural information.

Limitations and Future Work. One limitation of our current work is the lack of analysis of more
general forms of black-box procedures. Understanding and quantifying the available structural
information in a more systematic way is another future direction that could lead to advances in the
design of learning-augmented online algorithms and their applications in various domains.
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