
Differentially Private Decoupled Graph Convolutions
for Multigranular Topology Protection

Eli Chien∗

UIUC & GaTech
ichien3@illinois.edu
ichien6@gatech.edu

Wei-Ning Chen∗

Stanford University
wnchen@stanford.edu

Chao Pan∗

UIUC
chaopan2@illinois.edu

Pan Li
GaTech

panli@gatech.edu

Ayfer Özgür
Stanford University

aozgur@stanford.edu

Olgica Milenkovic
UIUC

milenkov@illinois.edu

Abstract

Graph Neural Networks (GNNs) have proven to be highly effective in solving
real-world learning problems that involve graph-structured data. However, GNNs
can also inadvertently expose sensitive user information and interactions through
their model predictions. To address these privacy concerns, Differential Privacy
(DP) protocols are employed to control the trade-off between provable privacy
protection and model utility. Applying standard DP approaches to GNNs directly
is not advisable due to two main reasons. First, the prediction of node labels,
which relies on neighboring node attributes through graph convolutions, can lead
to privacy leakage. Second, in practical applications, the privacy requirements
for node attributes and graph topology may differ. In the latter setting, existing
DP-GNN models fail to provide multigranular trade-offs between graph topology
privacy, node attribute privacy, and GNN utility. To address both limitations, we
propose a new framework termed Graph Differential Privacy (GDP), specifically
tailored to graph learning. GDP ensures both provably private model parameters
as well as private predictions. Additionally, we describe a novel unified notion of
graph dataset adjacency to analyze the properties of GDP for different levels of
graph topology privacy. Our findings reveal that DP-GNNs, which rely on graph
convolutions, not only fail to meet the requirements for multigranular graph topol-
ogy privacy but also necessitate the injection of DP noise that scales at least linearly
with the maximum node degree. In contrast, our proposed Differentially Private
Decoupled Graph Convolutions (DPDGCs) represent a more flexible and efficient
alternative to graph convolutions that still provides the necessary guarantees of
GDP. To validate our approach, we conducted extensive experiments on seven
node classification benchmarking and illustrative synthetic datasets. The results
demonstrate that DPDGCs significantly outperform existing DP-GNNs in terms of
privacy-utility trade-offs. Our code is publicly available2.

1 Introduction

Graph learning methods, such as Graph Neural Networks (GNNs) [1–5], are indispensable learning
tools due to the ubiquity of graph-structured data and their importance in solving real-world problems

∗Equal contribution.
2https://github.com/thupchnsky/dp-gnn

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/thupchnsky/dp-gnn

𝒟

Graph dataset

𝐗 𝐘 𝐀

(a)

𝒟

𝑘-neighbor-level (𝑘 = 2)
Private/Non-private node attributes

𝐗′ 𝐘′ 𝐀′

(b) (c)

(d)

Standard graph convolution (𝑨𝑿)
Noise 𝒔𝟐 ∝

𝐿 sup 𝑨𝑿 − 𝑨 𝑿 ∖𝒓
𝑭

= 4𝐿𝐷×

𝑨

+

Gaussian mechanism

𝑵(𝟎, 𝒔𝟐)
N

or
m

al
iz

e

𝑿

N
or

m
al

iz
e

× 𝐿

Decoupled graph convolution (𝑨𝑾||𝑿)

Tr
ai

n

×

Row normalized

𝑾

+ 𝑨

Bias
𝒃

𝜎 ×

Fixed projection
𝑹

G
en

er
at

e

×

Row-normalized
𝑾

+ 𝑨

Bias
𝒃

DP-optimizer

+

Gaussian mechanism
𝑵(𝟎, 𝒔𝟐)

𝒁

𝒀(𝑨)

𝒁

Noise 𝒔𝟐 ∝

sup 𝑨 − 𝑨 𝑾 ∖𝒓
𝑭

= 𝑘

(e)

No trade-off with 𝑘
Need bounded degree

GDP

𝑟

Non-private (𝑿, 𝒀)Private (𝑿, 𝒀)

No privacy(new)𝑘 = 0

Edge-level(new) 𝑘 = 1

(new)(new)𝑘

(new)Node-level𝑘 = 𝑛

Figure 1: Top: (a) Illustration of a training graph dataset. In the example, the graph involves 6
nodes and does not contain self-loops. Nodes 5 and 6 are left unlabeled in the training dataset D.
(b) An illustration of our novel notion of k-neighbor-level graph dataset adjacency, with/without
node attributes privacy. Red colors indicate entries that are to be replaced in the adjacent dataset
D′ with respect to a node r. (c) All possible combinations of graph topology and node attribute
privacy requirements under our k-neighbor definition. Bold letters indicate settings not covered by
prior literature. Bottom: Illustration of a (d) standard graph convolution and (e) our decoupled graph
convolution design. For decoupled graph convolution, we concatenate the node embedding Z with
node feature X to obtain the final prediction. See Figure 2 for a more detailed description of the
DPDGC model. Note that the required noise for standard graph convolution is independent of k, and
hence cannot leverage the intrinsic privacy-utility trade-off in k-neighbor level adjacency.

arising in recommendation systems [6], bioinformatics [7] and fraud detection [8]. Graph datasets,
which typically comprise records of users (i.e., node attributes) and their interaction patterns (i.e.,
graph topology), often contain sensitive information. For example, financial graph datasets contain
sensitive financial records and transfer logs between accounts [9, 10]. Online review system graphs
comprise information about customer identities and co-purchase records [11].

Given the sensitive nature of graph datasets, it is paramount to ensure that learned models do not reveal
information about user attributes or interactions. Unprotected learning models can inadvertently leak
information about the training data even if the data itself is not disclosed to the public [12]. Differential
privacy (DP) has been used as the gold standard for rigorous quantification of “privacy leakage” of
a learning algorithm, as it ensures that the output of a training algorithm remains indistinguishable
from that of “adjacent” datasets [13]. Classical DP approaches focus on DP guarantees for model
weights (i.e., DP-SGD [14]) when only node attributes are present. This suffices to ensure DP of
model predictions for standard classification settings when no graph structure is available. In such
settings, the prediction of a user is merely a function of model weights and its own attributes. This
assumption does not hold for graph learning methods in general, since graph convolution, by coupling
node attributes and topology information, also leverages information from neighboring users at the
prediction stage. Furthermore, in practice, there are usually different privacy level requirements for
node attributes and graph topology. For example, customer identities can be more sensitive compared
to co-purchase records in an online review system. A fine-grained trade-off between graph topology
privacy, node attribute privacy, and GNN utility is a necessary consideration overlooked by prior
literature. These require rethinking how to achieve adequate DP for GNNs.

Our contributions. We perform a formal analysis of Graph Differential Privacy (GDP), ensuring
that both the GNN weights and node predictions are DP. The key idea of GDP is to protect the privacy
of all nodes at the prediction step except those nodes whose labels are to be predicted, as users who
want to know their own predictions must have access to their own data. While this requirement
sounds straightforward, it leads to challenges in the analysis due to the interaction between the graph
structure and node attributes. To account for different degrees of graph topology and node attribute
privacy, we introduce the notion of k-neighbor-level adjacency which generalizes the notion of graph
dataset adjacency (see Figure 1 (a-c)). It not only unifies previous edge- and node-level adjacency

2

definitions [15, 16] but also allows for different granularities of privacy protection for the graph
topology. Our notion of k-neighbor-level adjacency can be used to establish the trade-offs among
graph topology privacy, node attribute privacy, and model utility.

The GDP analysis to follow demonstrates that the standard graph convolution operation has two
fundamental drawbacks. First, it can be shown that the required DP noise level for a standard
graph convolution does not decay even when there are no privacy constraints on the graph topology.
Hence, the standard graph convolution design fails to exploit the fine-grained trade-off pertaining
to graph topology privacy. Second, the required DP noise variance for standard graph convolutions
grows at least linearly with the maximum node degree [17], which leads to suboptimal utility. To
mitigate these drawbacks, we propose the Differentially Private Decoupled Graph Convolution
(DPDGC) design that provably enables the aforementioned trade-off and makes DP noise variance
independent of the maximum node degree. Our key idea is to prevent direct neighborhood aggregation
of (potentially transformed) node features so that the GDP guarantee can be improved via the DP
composition theorem (see Figure 1 (e)). This insight sheds new light on the benefits of decoupled
graph convolutions, and may lead to further advances in GDP-aware designs. We conclude by
demonstrating excellent privacy-utility trade-offs of DPDGC for different GDP settings via extensive
experiments on seven node classification benchmarking datasets and synthetic datasets generated
using the contextual stochastic block model (cSBM) [18, 19].

Missing proofs and details are relegated to the Appendix due to space limitations.

2 Related works

DP for neural networks and classical graph privacy analysis. Providing rigorous privacy guar-
antees for ML methods is a problem of significant interest [20–23], where DP gradient descent
algorithms and their variants were studied in [14]. On the other hand, classical graph analysis with
DP guarantees has been extensively studied previously. For example, problems of releasing graphs
or their statistics with DP guarantees were examined in [24] and [25]. In a different setting, [26]
investigated the problem of estimating degree distributions with DP guarantees, while [27] studied DP
PageRank algorithms. The interested reader is referred to the survey [28] for a more comprehensive
list of references.

DP-GNNs. Several attempts were made to establish formal GNN privacy guarantees via DP. [29]
propose a strategy achieving edge DP by privatizing the graph structure (i.e., perturbing the topology)
before feeding it into GNNs. [15] describe a node DP approach for training general GNNs via
extensions of DP-SGD, while [30] suggests to combine DP PageRank with DP-SGD GNN training.
These approaches can only guarantee DP model weights and fail to provide DP model predictions. [31]
study GNNs for graph classification instead of node classification. [32] propose node-level private
GNNs via the Private Aggregation of Teacher Ensembles framework [33], which is a different setting
than ours. [17] are the first to point out the importance of ensuring DP of GNN predictions, and to
propose the GAP model for this purpose. Still, their work did not include a formal GDP analysis nor
a study of the benefits of decoupled graph convolution designs.

3 Preliminaries

Notation. We reserve bold-font capital letters (e.g., S) for matrices and bold-font lowercase letters
(e.g., s) for vectors. We use Si to denote the ith row of S, S\r to denote the submatrix of S excluding
its rth row and Sij to denote the entry of S in the ith row and jth column. Furthermore, G = (V, E)
stands for a directed graph with node set V = [n] of size n and edge set E . For simplicity, we assume
that the graphs do not have self-loops. Standardly, we use A to denote the corresponding adjacency
matrix. Without loss of generality, we also assume a labeling such that the first m nodes are labeled
([m]) and the remaining [n] \ [m] nodes are subjects of our prediction. The feature matrix is denoted
by X ∈ Rn×F , where F stands for the feature vector dimension. For a C-class node classification
problem, the training labels are summarized in Y ∈ {0, 1}m×C , where each row of Y is a one-hot
vector. We reserve ∥ · ∥ for the ℓ2 norm and ∥ · ∥F for the Frobenius norm. We use ∥ for concatenation.
Throughout the paper, we letM(v;D) stand for the (graph) learning algorithm that leverages D to
generate label predictions for a node v in [n] \ [m]. We assume the graph model outputs both its
learned weights W and its label prediction Ŷv (i.e., (Ŷv,W) =M(v;D)).

3

Node classification. We focus on the transductive node classification problem. The training data is of
the form D = (X,Y,A), and this information is reused at the inference stage. Due to data reusing,
it is important to specify which node v is subject to prediction in the graph learning mechanism
M(v;D). Requiring that all of D is private inevitably leads to noninformative predictions. It is
therefore reasonable to only protect the information of D pertaining to the node that is not subject to
prediction. We refer interested readers to Appendix I for discussion on how our analysis generalizes
to inductive settings.

3.1 Differential Privacy (DP)

We start with a formal definition of (ε, δ)-differential privacy (DP) [13].
Definition 3.1 (Differential Privacy). For ε, δ ≥ 0, a randomized algorithm A satisfies a (ε, δ)-DP
condition if for all adjacent datasets D,D′ that differ in one record, and all S in the range of A,

Pr (A(D) ∈ S) ≤ eε Pr (A(D′) ∈ S) + δ.

Note that the standard DP definition does not depend on the choice of nodes to be predicted. Yet,
such a dependence is critical for the graph learning setting and constitutes the key difference between
Definition 3.1 and our definition of GDP in Section 4. We also make use of Rényi DP in order
to facilitate privacy accounting. A given (α, γ)-Rényi DP guarantee can be convert to a (ε, δ)-DP
guarantee via the conversion lemma [34–36] (see also Appendix F).
Definition 3.2 (Rényi Differential Privacy). Consider a randomized algorithm A that takes D as its
input. The algorithm A is said to be (α, γ)-Rényi DP if for every pair of adjacent datasets D and D′,
one has Dα(A(D)||A(D′)) ≤ γ, where Dα(·||·) denotes the Rényi divergence of order α:

Dα(X||Y) =
1

α− 1
log

(
Ex∼Q

[(
P (x)

Q(x)

)α])
, with X ∼ P and Y ∼ Q.

4 Graph Differential Privacy

We provide next a formal definition of Graph Differential Privacy (GDP). Recall that in this case
keeping the entire training data D private (as in standard DP definition, i.e., Definition 3.1) is
problematic since it inevitably leads to noninformative model predictions. This follows since in such
a setting the prediction Ŷv fully depends on D. This is unlike the case for standard classification
where the test label predictions are formed via access to additional test data that is not subject to
privacy constraints. Our key idea is to protect the privacy of all but the node v being predicted, as
users who query their own predictions should clearly have access to their own features and neighbors.

We start by describing our notion of k-neighbor-level adjacent graph datasets. Throughout the
remainder of the paper, we use r to denote the replaced node.
Definition 4.1 (k-neighbor-level adjacency). Two graph datasetsD andD′ are said to be k-neighbor-
level adjacent, which is denoted by D Nk∼ D′, if D′ can be obtained by replacing: 1) the rth node
feature Xr with X′

r ∈ Rd, 2) the rth node label Yr with Y′
r ∈ {0, 1}C , for r ∈ [m], and 3) replacing

k entries in rth row and column of A respectively excluding Arr.

Our Definition 4.1 unifies previous graph dataset adjacency notions such as edge- and node-level
adjacency. For example, if we drop 1), 2) (i.e., keep the node attributes unchanged), and set k = 1 for
replacement in a row only, our Definition 4.1 recovers that of edge-level adjacency [29]. If k = n,
we recover the definition of node-level adjacency [15, 17, 37, 38]. Edge-level adjacency may be too
weak of a privacy concept since it does not protect the privacy of node attributes. At the same time,
node-level adjacency may also be too restrictive since it allows arbitrary replacement of an entire
node neighborhood. In practice, there are cases where node features and labels carry more sensitive
information when compared to the graph topology. It is desirable to allow practitioners to decide
the granularity of privacy for the graph structure A while maintaining the privacy of X and Y. This
motivates our new and extended k-neighbor-level adjacency definition. Note that the parameter k
serves as a new graph-specific privacy parameter similar to, but independent of, ϵ and δ in DP. Our
k-neighbor definition can shed light on how a private graph learning design relies on the privacy of
A controlled by the parameter k and is discussed in more detail in Section 5. We also provide a

4

GAP information flow
𝑿, 𝒀 → 𝑯(𝟎), 𝑾(𝑿) , 𝑯(𝟎), 𝑨 → 𝒁, 𝒁, 𝒀 → (𝒀, 𝑾(𝒇))

Tr
ai

n

×

Row normalized

𝑾(𝑨)

+ 𝑨

Bias
𝒃

𝜎 ×

Fixed projection
𝑹

G
en

er
at

e

×

Row-normalized
𝑾(𝑨)

+ 𝑨

Bias
𝒃

DP-optimizer

+

Gaussian mechanism
𝑵(𝟎, 𝒔𝟐)

𝒁

DP-Emb𝑨 𝒁

DP-MLP𝑿

‖ DP-MLP +

Ca
ch

e

DP-MLP 𝒀

DPDGC
𝒀(𝑨)

𝒀

𝒁

𝒀
DP-MLP

𝑿

DP-MLP 𝒀

Ca
ch

e

GAP

× 𝑨

𝑨

+

Gaussian mechanism

𝑵(𝟎, 𝒔𝟐)
No training

N
or

m
al

iz
e

PMA

PMA

⋯× 𝐿

‖

Ca
ch

e

𝑯()

𝑯()

𝑯()

𝑯(𝒍) 𝑯(𝒍 𝟏)

𝑨

DPDGC information flow
𝑨, 𝒀 → 𝒁, 𝑾(𝑨), 𝒃 , 𝑿, 𝒁, 𝒀 → (𝒀, 𝑾(𝒇), 𝑾(𝑾), 𝑾(𝑿))

N
or

m
.

Figure 2: Illustration of the GAP and DPDGC (top) architectures and their corresponding information
flow (bottom). Green modules indicate DP-MLPs trained with a DP-optimizer [14]. Blue modules
are non-trainable modules. We use red frames to point to designs with DP guarantees (i.e., DP-Emb
and PMA [17]). Trainable weights are denoted by W(A) and b for the DP-Emb module. The black
dashed arrow indicates modules that are pretrained separately and the outputs are cached.

detailed discussion on the privacy meaning of k in Appendix J. In practice, the parameter k also offers
a unique trade-off between utility and graph structure privacy while preserving the same privacy
guarantees of the node features X and labels Y (i.e., it is independent of the DP parameters ϵ, δ).

We now provide our formal definition of Graph Differential Privacy (GDP). Unless otherwise specified,
we use the superscript ′ to refer to entities with respect to the adjacent dataset D′.

Definition 4.2 (Graph Differential Privacy). A graph modelM is said to be edge (node, k-neighbor)
(α, γ)-GDP if for any v ∈ [n] \ [m], for all D E∼ D′ (D N∼ D′, D Nk∼ D′), such that r ̸= v, one has:
Dα(M(v;D)||M(v;D′)) ≤ γ, where r is the index of the replaced node in the dataset pair D,D′.

The key difference between our definition and that of standard DP is that instead of requiring the
Rényi divergence bound to hold for all possible (D,D′) pairs, we only require it to hold for pairs for
which the replaced node r does not require prediction (i.e., r ̸= v). This is crucial since in this case,
the Rényi divergence has to be bounded for different sets of adjacent graph dataset pairs that depend
on v. At a high level, Definition 4.2 ensures that even if an adversary obtains the trained weights and
the predictions of node v, it cannot infer information about the remaining nodes.

5 Graph learning methods with GDP guarantees

We first perform the GDP analysis for GAP [17], the state-of-the-art DP-GNN with standard graph
convolution design in Section 5.1. In the same section, issues with standard graph convolutions
under k-neighbor GDP settings are discussed as well. We then proceed to introduce Differentially
Private Decoupled Graph Convolution (DPDGC), a model with the decoupled graph convolution
design that resolves all issues with GDP guarantees. DPDGC is motivated by the LINKX model [39]
which offers excellent performance on heterophilic graphs in a non-private setting. These models are
depicted in Figure 2, with the pseudocodes available in Appendix L. All missing formal statements
and proofs are relegated to Appendix B- E. We also defer the analysis of the simper edge GDP
scenario to Appendix G and formal GDP guarantees to Appendix H.

5.1 GDP guarantees of GAP and issues of standard graph convolution

GAP training and inference. We first describe the training process of GAP depicted in Figure 2.
GAP first pretrains the node feature encoder DP-MLPX separately from the DP-optimizer. The
row-normalized node embedding H(0) is generated and cached after the pretraining of DP-MLPX .
Then the privatized L multi-hop results {H(l)}Ll=0 are generated by applying the PMA module [17].
The intermediate node embedding Z constructed by the concatenation of {H(l)}Ll=0 is then cached.

5

Finally, a node classifier DP-MLPf is trained with input Z. At the inference stage, node predictions
are obtained by the cached embedding Z with the trained DP-MLPf .

Node and k-neighbor GDP. We assume that the out-degree (column-sum) of A is bounded from
above by D. Note that prior works [15, 17] also require this assumption. To meet this constraint in
practice, preprocessing of the form of graph subsampling is needed, which causes additional data
distortion. The first step of proving tight GDP guarantees for GAP is to ensure the cached embedding
Z to be DP, except for the replaced node r. We start with describing the PMA [17] module:

Input: H(l) ∈ Rn×h; Output: H(l+1) = row-normalization(AH(l) +N), (1)

where N ∈ Rn×h is a Gaussian noise matrix whose entries are i.i.d. zero mean Gaussian random
variables with standard deviation s.

Theorem 5.1. For any α > 1 and D N∼ D′ (or D Nk∼ D′), assume the trained parameter W(X) of
DP-MLPX in GAP satisfies Dα(W

(X)||W(X)′) ≤ γ1 and that both A, A′ have out-degree bounded
by D. Let the replaced node index be r and let Z\r be the matrix Z with the rth row excluded. Then
the embedding Z in GAP satisfies Dα(Z\r||Z′

\r) ≤ γ1 +
4DLα
2s2 .

Sketch of the proof: We start by showing that for any D N∼ D′, Dα(H
(1)
\r ||H

(1)
\r

′
) ≤ γ1 + 4Dα

2s2 ,
which is done by examining the sensitivity of

[
AH(0)

]
\r. For simplicity, we abbreviate H(0) to

H. Note that
∥∥∥[AH]\r − [A′H′]\r

∥∥∥2
F
=
∑

i∈[n]\{r} ∥[AH]i − [A′H′]i∥
2
. We find that there are

three cases of i that contribute to a nonzero norm in the summation. Let N(r) and N ′(r) denote the
out-neighbor node sets of r with respect to A and A′, respectively (i.e., N(r) = {i : Air = 1}).
The three cases are: (1) i ∈ N(r) \ N ′(r), (2) i ∈ N ′(r) \ N(r), and (3) i ∈ N(r) ∩ N ′(r). For
case (1) and (2), ∥ [AH]i − [A′H′]i ∥ = 1 due to H and H′ being row-normalized. For case (3), we
have ∥ [AH]i − [A′H′]i ∥ = ∥Hr −H′

r∥ ≤ 2. Since the out-degree is upper bounded by D, we
know that max(|N(r)|, |N ′(r)|) ≤ D. The worst case arises for |N(r) ∩N ′(r)| = D (i.e., shares
common neighbors). Thus the sensitivity equals 2

√
D (i.e., D of case (3)), which leads to the term

4Dα
2s2 in the divergence bound. By applying DP composition theorem [40] and the assumption on

W(X), we can prove that Dα(H
(1)
\r ||H

(1)
\r

′
) ≤ γ1 +

4Dα
2s2 . For the L-hop result Z\r, one can apply

DP composition theorem as part of an induction. For the case of k-neighbor-level adjacency, the
worst case scenario still arises for |N(r) ∩N ′(r)| = D for any k ≥ 0. Thus, the same result holds
for the case k-neighbor-level adjacency for all k ≥ 0. Note that the above analysis/result is tight, with
the worst case arising when Hr = −H′

r and max(|N(r)|, |N ′(r)|) = D.

Regarding the assumption on W(X), it can be met by invoking a standard DP-optimizer result [14],
where γ1 depends on the noise multiplier of the DP-optimizer. By using further the DP composition
theorem and standard DP-optimizer results, we can conclude that the weights of the DP-MLPf

module are also DP. At the inference stage, since our GDP definition requires that r ̸= v (i.e., nodes
to be predicted are not subject to replacement in adjacent graph dataset pairs), one only needs to
ensure that Z\r – instead of the entire Z – to be DP. This establishes the node and k-neighbor GDP
guarantees for GAP (Corollary H.5).

Surprisingly, the resulting divergence bound does not depend on the parameter k for the k-neighbor
GDP setting. It implies that the privacy noise scale s required by GAP is the same even when k
is much smaller than D, or even equal to zero. At first, this result seems counter-intuitive but can
be understood as follows. By replacing Hr with an all-zeros row, it becomes impossible to get
information about the rth row and column of A through [AH]\r. Therefore, DP-GNNs based on
standard graph convolution designs such as GAP cannot exploit the intrinsic privacy-utility trade-offs
induced by k-neighbor-level adjacency constraints. Furthermore, the resulting divergence bound
grows linearly to the value of the maximum degree D. Consequently, one has to preprocess the graph
so that the maximum degree is upper-bounded by a pre-defined value D, which inevitably causes
graph information distortion.

Based on our analysis, we observe that the issue arises from the graph convolution operation AH,
where both the graph structure (topology) A and transformed node feature H change simultaneously
to A′ and H′ onD′. As a result, rows corresponding to case (3) contribute 2 to the norm bound, which
indicates greater privacy leakage (sensitivity). This motivates us to decouple the graph convolution

6

so that there are no products of A and H to work with, which motivates introducing our DPDGC
model discussed in the next section.
Remark 5.2. While the proof of Theorem 5.1 is mainly inspired by the proof in [17], it has several
technical differences. First, the analysis in [17] asserts that the entire Z is DP (see Lemma 3 in [17]).
In contrast, we only ensure that Z\r is DP. This is crucial as ∥[AH]r − [A′H′]r∥ = 2D in the
worst-case sensitivity analysis, which leads to O(D2) in the divergence bound. Also, while we
leverage standard DP composition theorems [40] in the sketch of proof similar to [17] for the sake of
simplicity, we argue in Appendix B that it is more appropriate to use our novel generalized adaptive
composition theorem (Theorem B.1) for a rigorous GDP analysis.

5.2 GDP guarantees of DPDGC and benefits of decoupled graph convolution

DPDGC training and inference. We first describe the training process of DPDGC depicted in
Figure 2. We first pretrain the DP-Emb module separately and freeze its weights (W(A),b). Then we
generate the intermediate embedding Z and cache it. Finally, we use (X,Z,Y) to train the remaining
modules in an end-to-end fashion. At the inference stage, the node prediction is obtained by (X,Z)
and the trained weights. See the pseudocode in Appendix L for further details.

Node k-neighbor GDP guarantees. For DPDGC, we only need the bounded out-degree assumption
for node GDP but not k-neighbor GDP. The key idea of the GDP guarantee proof is to ensure the
cached embedding Z to be DP, except for the replaced node r. We start by introducing the DP-Emb
module in DPDGC, which guarantees both the model weight (W(A),b) and Z\r to be DP:

Training: Ŷ(A) = σ(AW(A) + b)R Generate Z: Z = AW(A) + b+N, (2)

where W(A) ∈ Rn×h and b ∈ Rh are learnable weights. Here, R ∈ Rh×C is a random but fixed
projection head of hidden dimension h, σ(·) is some nonlinear activation function, and N ∈ Rn×h is
a Gaussian noise matrix whose entries are i.i.d. zero mean Gaussian random variables with standard
deviation s. Importantly, we constraint W(A) to be row-normalized, which is critical in proving Z\r
DP. In what follows, we focus on privatizing Z\r, and the GDP guarantee for the overall model then
follows by applying DP composition theorem [40].

Theorem 5.3. For any α > 1 andD N∼ D′, assume that Dα((W
(A),b)||(W(A),b)′) ≤ γ1 and both

A, A′ have out-degree bounded by D. Let the replaced node index be r and let Z\r be the matrix Z

with the rth row excluded. Then the embedding Z in DPDGC satisfies Dα(Z\r||Z′
\r) ≤ γ1 +

2Dα
2s2 .

Theorem 5.4. For any D Nk∼ D′, assume that Dα((W
(A),b)||(W(A),b)′) ≤ γ1 and both A. Let

the replaced node index be r and let Z\r be the matrix Z with the rth row excluded. For any α > 1,
the embedding Z in DPDGC satisfies Dα(Z\r||Z′

\r) ≤ γ1 +
kα
2s2 .

Sketch of the proof: For any D N∼ D′ (D Nk∼ D′), we examine ∥
[
AW(A)

]
i
−
[
A′W(A)

]
i
∥, i ∈

[n]\{r}. The worst case row norm equals 1 for cases (1) and (2) (defined in the proof of Theorem 5.1)
since W(A) is row-normalized. The main difference to the proof in Section 5.1 is the case (3), where
∥
[
AW(A)

]
i
−
[
A′W(A)

]
i
∥ = 0, since Ai = A′

i for i ∈ N(r) ∩N ′(r). As a result, the worst case
arises for |N(r)∩N ′(r)| = ∅ and there are at most 2D (k) rows of cases (1) and (2). As a result, the
sensitivity of Z\r is

√
2D (
√
k) which leads to the term 2Dα

2s2 (kα
2s2) in the divergence bound. Once

more, our sensitivity bound can be shown to be tight, with the worst case as described above.

The key improvement, when compared to GAP, arises from using AW(A) instead of AH. In the
case of W(A) being DP, the sensitivity analysis only requires one to consider the difference between
AW(A) and A′W(A) of two adjacent graph datasets, D and D′. In contrast, for GAP, the sensitivity
analysis of AH requires taking both A and H into account since both can vary when the underlying
dataset changes. Note that even if DP-MLPX is trained via a DP-optimizer, H is not DP since it is
dependent on the weights of DP-MLPX and the node feature X.

The assumption on (W(A),b) can be met by applying a standard DP-optimizer with a group size [41]
of D + 1 (k + 1), where γ1 depends on the noise multiplier of the DP-optimizer. This follows from
the fact that the out-degree is bounded by D for node GDP or from the definition of k-neighbor-level
adjacency, since replacing one node can affect at most D (k) neighbors. By further applying the DP

7

Table 1: Dataset statistics. Datasets are sorted by homophily.

Squirrel Chameleon Facebook Pubmed Computers Cora Photo

nodes 5,201 2,277 26,406 19,717 13,471 2,708 7,535
edges 216,933 36,051 2,117,924 88,648 491,722 10,556 238,162

features 2,089 2,325 501 500 767 1,433 745
classes 5 5 6 3 10 7 8

edge density 0.0160 0.0139 0.0061 0.0005 0.0054 0.0029 0.0084
homophily 0.0254 0.0620 0.3687 0.6641 0.7002 0.7657 0.7722

composition theorem and the standard DP-optimizer result, we arrive at the node (k-neighbor) GDP
guarantees for DPDGC (see Corollary H.2, H.3).

Compared to GAP, DPDGC requires significantly lower DP noise whenever k < D. It can thus
ensure a graph topology privacy-utility trade-off that is not possible with GAP. Furthermore, the
divergence bound for DPDGC is independent of the maximum degree within the k-neighbor-level
adjacency setting. Hence, DPDGC does not require preprocessing the graph, which alleviates the
issue of added graph distortion.

6 Experiments

We test graph learning models that can achieve GDP guarantees under various settings, including
nonprivate, edge-level, k-neighbor-level (Nk) for k ∈ {1, 5, 25}, and node-level. Note that all node
GDP methods require the bounded out-degree constraint. We follow [15, 17] to subsample the graph
so as to satisfy this constraint.

Methods. In addition to DPDGC and GAP introduced in Section 5, we also test (DP-)MLP and
several DP-GNN baselines that can achieve GDP guarantees, including RandEdge+SAGE [29] and
DP-SAGE [15] for edge and node GDP, respectively. The RandEdge+SAGE approach privatizes the
adjacency matrix directly via randomized response [29] and feeds it to GraphSAGE [3], a standard
GNN backbone. The DP-SAGE approach trains the GraphSAGE model with the strategy proposed
in [15] so that the weights are DP. To further ensure that the predictions are DP as well, we follow
the strategy of [17] to add perturbations directly at the output layer during inference. For each GDP
setting, we specify ϵ to indicate that all methods satisfy GDP with privacy budget (ϵ, δ) according
to Lemma F.1. Note that δ is set to be smaller than either 1

#edges or 1
#nodes , depending on the GDP

setting. Addition experimental details are deferred to Appendix K.

Datasets. We test 7 benchmark datasets available from either Pytorch Geometric library [42] or
prior works. These datasets include the social network Facebook [43], citation networks Cora
and Pubmed [44, 45], Amazon co-purchase networks Photo and Computers [46], and Wikipedia
networks Squirrel and Chameleon [47]. The edge density equals 2|E|/(n × (n − 1)), while the
formal definition of the homophily measure is relegated to Appendix K.

Results. We examine the performance of each model under different GDP settings, including the
nonprivate case. The results are summarized in Table 2. For the edge GDP setting, we observe that
DPDGC achieves the best performance on heterophilic datasets, while on par with GAP on most
homophilic datasets. Surprisingly, for the node GDP setting, we find that DP-MLP achieves the best
performance on four datasets. This indicates that for some datasets, the benefits of graph information
cannot compensate for the utility loss induced by privacy noise that protects the graph information
(for all tested private graph learning methods). As a result, achieving node GDP effectively is highly
challenging and highlights the importance of investigating the k-neighbor GDP setting. For the
k-neighbor GDP setting, we can see that indeed DPDGC has a much better utility for k = 1 and the
performance gradually decreases as k grows. The required privacy noise scale is the same for GAP
and DP-MLP for any k: this phenomenon is discussed in more depth in Section 5. DPDGC starts
to outperform DP-MLP on Photo and Computers for sufficiently small k, which demonstrates the
unique utility-topology privacy trade-offs of our method that cannot be achieved via models with
standard graph convolution design such as GAP. However, DPDGC still underperforms compared to
DP-MLP on Cora and Pubmed.

Experiments on synthetic contextual stochastic block models (cSBMs). In order to test our
conjecture that DP-MLP can only outperform DPDGC when the graph information is “too weak,”
we conduct an experiment involving cSBMs [18], following a setup similar to that reported in [19].

8

Table 2: Test accuracy (%) with 95% confidence interval. A bold font indicates the best performance
one can achieve under the same GDP guarantee. Underlined entries indicate a result within the
confidence interval when compared to the best possible. Note that for the k-neighbor (Nk) GDP
setting, the results of GAP and DP-MLP are identical to those of node GDP.

Squirrel Chameleon Facebook Pubmed Computers Cora Photo

no
ne

pr
iv

at
e DPDGC 79.92 ± 0.26 79.24 ± 0.54 86.06 ± 0.24 88.34 ± 0.46 92.27 ± 0.15 82.44 ± 0.83 94.98 ± 0.29

GAP 36.86 ± 1.35 50.35 ± 1.37 79.52 ± 0.24 89.75 ± 0.12 91.05 ± 0.16 86.53 ± 0.46 95.13 ± 0.16
SAGE 35.47 ± 0.58 41.61 ± 0.86 84.62 ± 0.13 88.17 ± 0.98 91.76 ± 0.23 84.19 ± 0.76 94.05 ± 0.38
MLP 34.14 ± 0.77 46.78 ± 1.39 51.16 ± 0.16 87.25 ± 0.19 85.27 ± 0.28 76.48 ± 0.91 91.35 ± 0.22

ed
ge

ϵ
=

1

DPDGC 38.18 ± 1.48 53.83 ± 1.11 62.04 ± 0.33 88.59 ± 0.16 87.74 ± 0.26 77.71 ± 0.95 92.59 ± 0.41
GAP 35.15 ± 0.47 49.47 ± 0.88 69.75 ± 0.44 87.79 ± 0.22 87.74 ± 0.20 76.95 ± 0.90 92.94 ± 0.36

RandEdge+SAGE 19.79 ± 0.69 21.70 ± 1.23 25.27 ± 2.00 87.88 ± 0.18 48.44 ± 1.48 59.95 ± 1.98 46.42 ± 0.55
DP-MLP 34.14 ± 0.77 46.78 ± 1.39 51.16 ± 0.16 87.25 ± 0.19 85.27 ± 0.28 76.48 ± 0.91 91.35 ± 0.22

N
1

ϵ
=

1
6 DPDGC 42.71 ± 1.43 48.63 ± 1.78 80.94 ± 0.27 84.33 ± 0.40 83.49 ± 0.29 59.98 ± 0.81 88.38 ± 0.44

GAP 33.82 ± 0.60 38.68 ± 0.59 51.57 ± 0.28 85.28 ± 0.14 77.50 ± 0.20 54.36 ± 1.14 81.27 ± 0.31
DP-MLP 34.46 ± 1.09 38.19 ± 1.97 50.12 ± 0.22 85.72 ± 0.11 80.01 ± 0.37 64.29 ± 0.80 85.61 ± 0.42

N
5

ϵ
=

1
6 DPDGC 41.00 ± 1.19 47.22 ± 1.90 76.84 ± 0.36 84.31 ± 0.46 80.60 ± 0.44 59.56 ± 0.97 87.02 ± 0.49

GAP 33.82 ± 0.60 38.68 ± 0.59 51.57 ± 0.28 85.28 ± 0.14 77.50 ± 0.20 54.36 ± 1.14 81.27 ± 0.31
DP-MLP 34.46 ± 1.09 38.19 ± 1.97 50.12 ± 0.22 85.72 ± 0.11 80.01 ± 0.37 64.29 ± 0.80 85.61 ± 0.42

N
2
5

ϵ
=

1
6 DPDGC 40.51 ± 0.85 46.32 ± 1.87 68.66 ± 0.32 84.27 ± 0.38 78.25 ± 0.31 59.26 ± 0.87 84.82 ± 0.54

GAP 33.82 ± 0.60 38.68 ± 0.59 51.57 ± 0.28 85.28 ± 0.14 77.50 ± 0.20 54.36 ± 1.14 81.27 ± 0.31
DP-MLP 34.46 ± 1.09 38.19 ± 1.97 50.12 ± 0.22 85.72 ± 0.11 80.01 ± 0.37 64.29 ± 0.80 85.61 ± 0.42

no
de

ϵ
=

1
6 DPDGC 36.17 ± 0.62 46.43 ± 1.21 56.65 ± 0.64 84.55 ± 0.32 76.62 ± 0.47 58.97 ± 1.05 82.15 ± 0.54

GAP 33.82 ± 0.60 38.68 ± 0.59 51.57 ± 0.28 85.28 ± 0.14 77.50 ± 0.20 54.36 ± 1.14 81.27 ± 0.31
DP-SAGE 19.81 ± 0.99 20.96 ± 1.27 32.15 ± 0.78 39.68 ± 0.70 39.13 ± 0.52 15.86 ± 1.55 31.41 ± 0.93
DP-MLP 34.46 ± 1.09 38.19 ± 1.97 50.12 ± 0.22 85.72 ± 0.11 80.01 ± 0.37 64.29 ± 0.80 85.61 ± 0.42

1 2 4 8 16

30

40

50

60

70

80

A
cc

ur
ac

y
(%

)

Edge GDP, Facebook

DPDGC
GAP
RandEdge+SAGE
MLP

1 2 4 8 16

40

50

60

70

80

Node and Nk GDP, Facebook
DPDGC (N1)
DPDGC (N5)
DPDGC (N25)
DPDGC (node)
GAP (node)
MLP (node)

1 5 25 node GDP
k

76

78

80

82

84
 Nk-neighbor GDP, = 16, Computers

DPDGC
GAP (node)
MLP (node)

1.0 0.5 0.0 0.5 1.0

50

60

70

80

90

100
 cSBM experiment, = 16

DPDGC (nopriv)
DPDGC (N1)
DPDGC (node)
GAP (nopriv)
GAP (node)
MLP (nopriv)
DPMLP (node)

Figure 3: (a): Trade-off between utility and the parameter ϵ for edge-GDP on the Facebook dataset.
(b): Trade-off between utility and the parameter ϵ for node and k-neighbor (Nk) GDP on the Facebook
dataset. (c): Trade-off between utility and the parameter k for k-neighbor GDP. (d): The cSBM
experiment, which shows that when the graph information is strong enough (i.e., |ϕ| is large enough),
DPDGC can indeed outperform DP-MLP.

The parameter ϕ ∈ [−1, 1] indicates the “strength of information” in the graph topology (|ϕ| → 1)
and the node features (|ϕ| → 0). The sign of ϕ indicates whether the graph topology is homophilic
(+) or heterophilic (−). See Appendix K for full details about the experiment setting. The result is
depicted in Figure 3 (d). When |ϕ| is small, DP-MLP outperforms DPDGC. In contrast, when |ϕ| is
sufficiently large (i.e., the information in the graph topology is strong enough), DPDGC outperforms
DP-MLP. This experiment suggests that one should not leverage DP-GNNs when the graph topology
information is too weak, as the cost of privatizing the graph topology information is too high.

Utility-privacy trade-off. Lastly, we examine the utility-privacy trade-off for different GDP settings
in greater detail. In Figure 3 (left) we show that DPDGC starts to outperform GAP for larger privacy
budgets – ϵ ≥ 4 – in the edge GDP setting. This figure also shows the advantage of GAP when the
privacy budget ϵ is small for edge GDP. Whether a more advanced decoupled graph convolution
design can outperform GAP in this regime is left for future studies. Figure 3 (middle) reports the
trade-offs between utility and the privacy budget ϵ of all methods under different GDP settings
(node, N1, N5, N25) for the Facebook dataset. We report the trade-off between utility and k under
k-neighbor GDP with ϵ = 16 for the Computer dataset in Figure 3 (right). Adopting the k-neighbor
GDP definition allows us to control the privacy of the graph structure while maintaining the same
privacy guarantee on node features and labels. This is in contrast with changing the parameters (ϵ, δ)
directly as they control the privacy of the entire dataset. DPDGC along with the k-neighbor GDP
definitions hence allows a more fine-grained privacy control of the graph topology as needed in
different practical applications.

9

7 Conclusions

We performed an analysis of a novel notion of Graph Differential Privacy (GDP), specifically tailored
to graph learning settings. Our analysis established theoretical privacy guarantees for both model
weights and predictions. In addition, to offer multigranular protection for the graph topology, we
introduced the concept of k-neighbor-level adjacency, which is a relaxation of standard node-level
adjacency. This allows for controlling the strength of privacy protection for node neighborhood
information via a parameter k. The supporting GDP approach ensured a flexible trade-off between
utility and topology privacy for graph learning methods. The GDP analysis also revealed that standard
graph convolution designs failed to offer this trade-off. To provably mitigate the problem associated
with standard convolutions, we introduced Differentially Private Decoupled Graph Convolution
(DPDGC), a model that comes with GDP guarantees. Extensive experiments conducted on seven
node classification benchmark datasets and synthetic cSBM datasets demonstrated the superior
privacy-utility trade-offs offered by DPDGC when compared to existing DP-GNNs that rely on
standard graph convolution designs.

Acknowledgments and Disclosure of Funding

EC, CP and OM were funded by NSF grants CCF-1816913 and CCF-1956384. PL was supported by
JPMC AI Research award. WC and AÖ were supported by NSF grant CCF-2213223. The authors
would like to thank Sina Sajadmanesh for answering questions regarding the GAP method. The
authors would like to thank the anonymous reviewers and area chair for their feedback and effort,
which helped to significantly improve the manuscript.

References

[1] J. Bruna, W. Zaremba, A. Szlam, and Y. Lecun, “Spectral networks and locally connected
networks on graphs,” in International Conference on Learning Representations (ICLR2014),
CBLS, April 2014, 2014, pp. http–openreview.

[2] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional
networks,” in International Conference on Learning Representations, 2017. [Online]. Available:
https://openreview.net/forum?id=SJU4ayYgl

[3] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on large graphs,”
Advances in neural information processing systems, vol. 30, 2017.

[4] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, “Graph attention
networks,” in International Conference on Learning Representations, 2018. [Online]. Available:
https://openreview.net/forum?id=rJXMpikCZ

[5] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neural message passing
for quantum chemistry,” in International conference on machine learning. PMLR, 2017, pp.
1263–1272.

[6] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec, “Graph convolu-
tional neural networks for web-scale recommender systems,” in Proceedings of the 24th ACM
SIGKDD international conference on knowledge discovery & data mining, 2018, pp. 974–983.

[7] X.-M. Zhang, L. Liang, L. Liu, and M.-J. Tang, “Graph neural networks and their current
applications in bioinformatics,” Frontiers in Genetics, vol. 12, 2021.

[8] Z. Liu, Y. Dou, P. S. Yu, Y. Deng, and H. Peng, “Alleviating the inconsistency problem of
applying graph neural network to fraud detection,” in Proceedings of the 43rd international ACM
SIGIR conference on research and development in information retrieval, 2020, pp. 1569–1572.

[9] Z. Liu, C. Chen, X. Yang, J. Zhou, X. Li, and L. Song, “Heterogeneous graph neural networks
for malicious account detection,” in Proceedings of the 27th ACM international conference on
information and knowledge management, 2018, pp. 2077–2085.

[10] Q. Zhong, Y. Liu, X. Ao, B. Hu, J. Feng, J. Tang, and Q. He, “Financial defaulter detection
on online credit payment via multi-view attributed heterogeneous information network,” in
Proceedings of The Web Conference 2020, 2020, pp. 785–795.

10

https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=rJXMpikCZ

[11] J. Wang, R. Wen, C. Wu, Y. Huang, and J. Xiong, “Fdgars: Fraudster detection via graph
convolutional networks in online app review system,” in Companion proceedings of the 2019
World Wide Web conference, 2019, pp. 310–316.

[12] N. Carlini, C. Liu, Ú. Erlingsson, J. Kos, and D. Song, “The secret sharer: Evaluating and
testing unintended memorization in neural networks.” in USENIX Security Symposium, vol. 267,
2019.

[13] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to sensitivity in private
data analysis,” in Theory of cryptography conference. Springer, 2006, pp. 265–284.

[14] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and L. Zhang, “Deep
learning with differential privacy,” in Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security, 2016, pp. 308–318.

[15] A. Daigavane, G. Madan, A. Sinha, A. G. Thakurta, G. Aggarwal, and P. Jain, “Node-level
differentially private graph neural networks,” arXiv preprint arXiv:2111.15521, 2021.

[16] E. Chien, C. Pan, and O. Milenkovic, “Certified graph unlearning,” arXiv preprint
arXiv:2206.09140, 2022.

[17] S. Sajadmanesh, A. S. Shamsabadi, A. Bellet, and D. Gatica-Perez, “Gap: Differentially private
graph neural networks with aggregation perturbation,” in 32nd USENIX Security Symposium
(USENIX Security 23). Anaheim, CA: USENIX Association, Aug. 2023.

[18] Y. Deshpande, S. Sen, A. Montanari, and E. Mossel, “Contextual stochastic block models,”
Advances in Neural Information Processing Systems, vol. 31, 2018.

[19] E. Chien, J. Peng, P. Li, and O. Milenkovic, “Adaptive universal generalized pagerank graph
neural network,” in International Conference on Learning Representations, 2021. [Online].
Available: https://openreview.net/forum?id=n6jl7fLxrP

[20] A. D. Sarwate and K. Chaudhuri, “Signal processing and machine learning with differential
privacy: Algorithms and challenges for continuous data,” IEEE signal processing magazine,
vol. 30, no. 5, pp. 86–94, 2013.

[21] R. Bassily, A. Smith, and A. Thakurta, “Private empirical risk minimization: Efficient algorithms
and tight error bounds,” in 2014 IEEE 55th annual symposium on foundations of computer
science. IEEE, 2014, pp. 464–473.

[22] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in Proceedings of the 22nd
ACM SIGSAC conference on computer and communications security, 2015, pp. 1310–1321.

[23] X. Wu, F. Li, A. Kumar, K. Chaudhuri, S. Jha, and J. Naughton, “Bolt-on differential privacy
for scalable stochastic gradient descent-based analytics,” in Proceedings of the 2017 ACM
International Conference on Management of Data, 2017, pp. 1307–1322.

[24] A. Sala, X. Zhao, C. Wilson, H. Zheng, and B. Y. Zhao, “Sharing graphs using differentially
private graph models,” in Proceedings of the 2011 ACM SIGCOMM conference on Internet
measurement conference, 2011, pp. 81–98.

[25] Z. Qin, T. Yu, Y. Yang, I. Khalil, X. Xiao, and K. Ren, “Generating synthetic decentralized social
graphs with local differential privacy,” in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, 2017, pp. 425–438.

[26] M. Hay, C. Li, G. Miklau, and D. Jensen, “Accurate estimation of the degree distribution of
private networks,” in 2009 Ninth IEEE International Conference on Data Mining. IEEE, 2009,
pp. 169–178.

[27] A. Epasto, V. Mirrokni, B. Perozzi, A. Tsitsulin, and P. Zhong, “Differentially private graph
learning via sensitivity-bounded personalized pagerank,” Advances in Neural Information
Processing Systems, vol. 35, pp. 22 617–22 627, 2022.

[28] T. T. Mueller, D. Usynin, J. C. Paetzold, D. Rueckert, and G. Kaissis, “Sok: Differential privacy
on graph-structured data,” arXiv preprint arXiv:2203.09205, 2022.

[29] F. Wu, Y. Long, C. Zhang, and B. Li, “Linkteller: Recovering private edges from graph neural
networks via influence analysis,” in 2022 IEEE Symposium on Security and Privacy (SP).
IEEE, 2022, pp. 2005–2024.

[30] Q. Zhang, J. Ma, J. Lou, C. Yang, and L. Xiong, “Towards training graph neural networks with
node-level differential privacy,” arXiv preprint arXiv:2210.04442, 2022.

11

https://openreview.net/forum?id=n6jl7fLxrP

[31] T. T. Mueller, J. C. Paetzold, C. Prabhakar, D. Usynin, D. Rueckert, and G. Kaissis, “Differ-
entially private graph neural networks for whole-graph classification,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2022.

[32] I. E. Olatunji, T. Funke, and M. Khosla, “Releasing graph neural networks with differential
privacy guarantees,” arXiv preprint arXiv:2109.08907, 2021.

[33] N. Papernot, M. Abadi, U. Erlingsson, I. Goodfellow, and K. Talwar, “Semi-supervised knowl-
edge transfer for deep learning from private training data,” arXiv preprint arXiv:1610.05755,
2016.

[34] S. Asoodeh, J. Liao, F. P. Calmon, O. Kosut, and L. Sankar, “A better bound gives a hundred
rounds: Enhanced privacy guarantees via f-divergences,” in 2020 IEEE International Symposium
on Information Theory (ISIT). IEEE, 2020, pp. 920–925.

[35] C. L. Canonne, G. Kamath, and T. Steinke, “The discrete gaussian for differential privacy,”
arXiv preprint arXiv:2004.00010, 2020.

[36] M. Bun and T. Steinke, “Concentrated differential privacy: Simplifications, extensions, and
lower bounds,” in Theory of Cryptography Conference. Springer, 2016, pp. 635–658.

[37] E. Chien, C. Pan, and O. Milenkovic, “Efficient model updates for approximate unlearning of
graph-structured data,” in The Eleventh International Conference on Learning Representations,
2023. [Online]. Available: https://openreview.net/forum?id=fhcu4FBLciL

[38] C. Pan, E. Chien, and O. Milenkovic, “Unlearning graph classifiers with limited data
resources,” in Proceedings of the ACM Web Conference 2023, ser. WWW ’23. New York,
NY, USA: Association for Computing Machinery, 2023, p. 716–726. [Online]. Available:
https://doi.org/10.1145/3543507.3583547

[39] D. Lim, F. Hohne, X. Li, S. L. Huang, V. Gupta, O. Bhalerao, and S. N. Lim, “Large scale
learning on non-homophilous graphs: New benchmarks and strong simple methods,” Advances
in Neural Information Processing Systems, vol. 34, pp. 20 887–20 902, 2021.

[40] I. Mironov, “Rényi differential privacy,” in 2017 IEEE 30th Computer Security Foundations
Symposium (CSF). IEEE, 2017, pp. 263–275.

[41] C. Dwork, A. Roth et al., “The algorithmic foundations of differential privacy,” Foundations
and Trends® in Theoretical Computer Science, vol. 9, no. 3–4, pp. 211–407, 2014.

[42] M. Fey and J. E. Lenssen, “Fast graph representation learning with pytorch geometric,” arXiv
preprint arXiv:1903.02428, 2019.

[43] A. L. Traud, P. J. Mucha, and M. A. Porter, “Social structure of facebook networks,” Physica A:
Statistical Mechanics and its Applications, vol. 391, no. 16, pp. 4165–4180, 2012.

[44] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-Rad, “Collective classifica-
tion in network data,” AI magazine, vol. 29, no. 3, pp. 93–93, 2008.

[45] Z. Yang, W. Cohen, and R. Salakhudinov, “Revisiting semi-supervised learning with graph
embeddings,” in International conference on machine learning. PMLR, 2016, pp. 40–48.

[46] O. Shchur, M. Mumme, A. Bojchevski, and S. Günnemann, “Pitfalls of graph neural network
evaluation,” arXiv preprint arXiv:1811.05868, 2018.

[47] B. Rozemberczki, C. Allen, and R. Sarkar, “Multi-scale attributed node embedding,” Journal of
Complex Networks, vol. 9, no. 2, p. cnab014, 2021.

[48] C. Sun and G. Wu, “Scalable and adaptive graph neural networks with self-label-enhanced
training,” arXiv preprint arXiv:2104.09376, 2021.

[49] W. Zhang, Z. Yin, Z. Sheng, Y. Li, W. Ouyang, X. Li, Y. Tao, Z. Yang, and B. Cui, “Graph
attention multi-layer perceptron,” in Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, 2022, pp. 4560–4570.

[50] P. Kairouz, S. Oh, and P. Viswanath, “The composition theorem for differential privacy,” in
International conference on machine learning. PMLR, 2015, pp. 1376–1385.

[51] T. Van Erven and P. Harremos, “Rényi divergence and kullback-leibler divergence,” IEEE
Transactions on Information Theory, vol. 60, no. 7, pp. 3797–3820, 2014.

12

https://openreview.net/forum?id=fhcu4FBLciL
https://doi.org/10.1145/3543507.3583547

[52] J. Zhu, Y. Yan, L. Zhao, M. Heimann, L. Akoglu, and D. Koutra, “Beyond homophily in graph
neural networks: Current limitations and effective designs,” Advances in Neural Information
Processing Systems, vol. 33, pp. 7793–7804, 2020.

[53] A. Yousefpour, I. Shilov, A. Sablayrolles, D. Testuggine, K. Prasad, M. Malek, J. Nguyen,
S. Ghosh, A. Bharadwaj, J. Zhao, G. Cormode, and I. Mironov, “Opacus: User-friendly
differential privacy library in PyTorch,” arXiv preprint arXiv:2109.12298, 2021.

[54] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter, “Self-normalizing neural networks,”
Advances in neural information processing systems, vol. 30, 2017.

13

A Limitations and Broader Impacts

Limitations. While our experimental results demonstrate several benefits of using DPDGC designs
over standard convolutions, we do not believe that the current DPDGC model is the ultimate solution
for GDP-aware graph learning methods. To support this claim, we note that the nonprivate state-
of-the-art performance for learning on large-scale homophilic graphs is achieved by standard graph
convolution models [48, 49]. Our experiments for edge GDP settings also reveal that standard graph
convolution designs (such as GAP) appear to work well when the parameter ϵ is small. We therefore
conjecture that further improvements for decoupled graph convolution designs are possible.

Broader Impacts. We are not aware of any negative social impacts of our work. In fact, our
work establishes a formal DP framework for graph learning termed GDP. This is beneficial to many
applications that require rigorous protection of the privacy of users when their sensitive information
is stored as a graph dataset to be leveraged by graph learning methods. Note that DP is the gold
standard for quantifying the privacy of user data and it has found widespread applications. Given the
popularity of graph learning methods and the need for user privacy protection, we believe that our
work will actually have a positive social impact.

B Generalized adaptive composition theorem

In order to ensure that a graph learning method satisfies GDP, we need to follow a commonly
employed approach that involves the following steps: (1) introducing appropriate perturbations to the
learned graph representation (e.g., H(0) for GAP or Z for DP-DGC as shown in Figure 2), and (2)
training the downstream DP-MLP using DPSGD. Subsequently, employing composition theorems
allows for establishing an overall privacy budget. However, as we argued in Section 4, it is important
to establish “partial DP” guarantees for intermediate node embeddings H(k) or Z (i.e., ensure that
only Z\r is DP and exclude Zr from latter mechanisms, as in Theorem 5.3). When feeding the
entire Z to the subsequent mechanism B(Z\r,Zr), part of the input may not be DP and may exhibit
correlations with other (processed) data components. This renders the standard composition theorem
for DP [40, 41, 50] inapplicable. To address this issue, we developed a novel generalized composition
theorem that can handle potential dependencies.

Theorem B.1. Let A : D → (A1(D),A2(D)) ∈ Z1 ×Z2 satisfy the (α, ε1)-RDP constraint in its
first output argument, i.e., Dα (A1(D)∥A1(D′)) ≤ ε1. Let B : Z1 × Z2 → W satisfy the (α, ε2)-
RDP constraint in its second input argument, i.e., maxz1,z2,z′

2
Dα (B(z1, z2)∥B(z1, z′2)) ≤ ε2. Let

the random noise used in A and B be independent. Then (A1(D),B(A(D))) jointly meets the
(α, ε1 + ε2)-RDP guarantee.

Proof. For ease of explanation, we assume that the density (and the conditional density) of A and B
with respect to the Lebesgue measure exist. Let

• (A1(D),A2(D)) := (Z1,Z2) and (A1(D′),A2(D′)) := (Z′
1,Z

′
2);

• B(A(D)) := W and B(A(D′)) := W′.

14

In addition, let fW(w), fZ1(z1), and fZ2(z2) be the density of W,Z1 and Z2, respectively. Observe
that

Dα ((Z1,W(Z1,Z2))∥(Z′
1,W(Z′

1,Z
′
2)))

=
1

α− 1
logEw,z1

[(∫
z2

fW|Z1=z1,Z2=z2
(W(z1, z2) = w) · fZ2|Z1=z1

(z2) · fZ1(z1)dz2∫
z2

fW|Z′
1=z1,Z′

2=z′
2
(W(z1, z2) = w) · fZ′

2|Z′
1=z1

(z2) · fZ′
1
(z1)dz′2

)α]
(a)
≤ 1

α− 1
logEz1

[
Ew

[(∫
z2

fW|Z1=z1,Z2=z2
(W(z1, z2) = w) · fZ2|Z1=z1

(z2)dz2∫
z2

fW|Z′
1=z1,Z′

2=z′
2
(W(z1, z2) = w) · fZ′

2|Z′
1=z1

(z2)dz′2

)α∣∣∣∣∣z1
]

·
(
fZ1

(z1)

fZ′
1
(z1)

)α
]

(b)
≤ 1

α− 1
logEz1

[
max
z2,z′

2

(
Ew

[(
fW|Z1=z1,Z2=z2

(W(z1, z2) = w)

fW|Z′
1=z1,Z′

2=z′
2
(W(z1, z2) = w)

)α∣∣∣∣∣z1
])
·
(
fZ1

(z1)

fZ′
1
(z1)

)α
]

(c)
≤ 1

α− 1
logEz1

[
eε1·(α−1)

(
fZ1

(z1)

fZ′
1
(z1)

)α]
(d)
≤ ε1 + ε2,

where (a) holds by the tower rule of conditional expectations; (b) holds due to the joint quasi-convexity
of the Rényi divergence [51]; (c) holds since B is ε2 Rényi DP; and (d) holds because A1 is ε2 Rényi
DP.

Remark B.2. Note that if A2(D) is independent of A1(D), then the above composition theorem
reduces to the standard sequential composition [40], which follows directly from the chain rule for
the Rényi divergence. However, in the analysis of GDP, we need a stronger result capable of handling
the dependence between A1(D) and A2(D).

In the privacy analysis of our proposed DPDGC, we set A1(D) and A2(D) in Theorem B.1 to
Z\r and Zr, respectively, and let B(D) be the weights of the DP-MLPW trained via DP-SGD (see
Appendix H). Nevertheless, we note that since the Gaussian noise samples added to Z\r and Zr are
indeed independent in DPDGC, by grouping (A2(D),B(D)), one can directly apply the classical
composition theorem [40] toA1(D) and (A2(D),B(D)) and arrive at the same conclusion. Similarly,
in the one-hop GAP illustrated in Figure 2, we applied the same privacy analysis, with A1(D),
A2(D), and B(D) set to H

(0)
\r , H(0)

r , and the weights of DP-MLPW , respectively, which allowed us
to obtain the GDP guarantee.

However, it is worth noting that for a L-hop GAP (i.e., when aggregation is performed L times),
the DP noise introduced in H

(L)
\r and that introduced in H

(L)
r are no longer independent due to the

aggregation step, and hence the standard composition theorem may not be applicable. In this case,
our generalized composition theorem rigorously leads to the desired GDP guarantees.

In summary, our generalized composition theorem (Theorem B.1) provides a “cleaner argument” for
the case that merely part of intermediate node embedding Z and H(k) are DP (i.e., Z\r and H

(k)
\r are

DP but not the entire Z and H(k)). Furthermore, our Theorem B.1 also allows for handling more
complicated cases (i.e., when the noise in A1(D) and the one in A2(D) are not independent).

C Proof of Theorem 5.3

Theorem. For any α > 1 and D N∼ D′, assume that Dα((W
(A),b)||(W(A),b)′) ≤ γ1 and that

both A, A′ has bounded out-degree D. Let the replaced node index be r and Z\r be the matrix Z

excluding its rth row. Then the embedding Z in DPDGC satisfies Dα(Z\r||Z′
\r) ≤ γ1 +

2Dα
2s2 .

15

Proof. We start by examining ∥[A′W(A)]\r − [AW(A)]\r∥F . Note that

∥[A′W(A)]\r − [AW(A)]\r∥2F =
∑

i∈[n]\{r}

∥(A′
i −Ai)W

(A)∥2,

which is the sum of row-norms of all nodes except for node r. Let us denote the out-neighborhood of
node r with respect to A as N(r) = {i : Air = 1}. Similarly, we also have N ′(r) = {i : A′

ir = 1}.
There are four possible cases for i ∈ [n] \ {r}: (1) i ∈ N(r) \ N ′(r), (2) i ∈ N ′(r) \ N(r), (3)
i ∈ N(r) ∩ N ′(r), and (4) i /∈ N(r) ∪ N ′(r). Clearly, for i covered by cases (3) and (4), the
corresponding row norm is 0 since A′

i = Ai for i ∈ N(r)∩N ′(r) and i /∈ N(r)∪N ′(r). For cases
(1) and (2), we have

∥(A′
i −Ai)W

(A)∥2 = ∥eTr W(A)∥2 (a)
= 1,

where (a) is due to the fact that W(A) is row-normalized. By the bounded out-degree assumption,
we know that max(|N(r)|, |N ′(r)|) ≤ D. Thus, the worst case upper bound of ∥[A′W(A)]\r −
[AW(A)]\r∥2F arises when N(r) and N ′(r) are disjoint, which results in a contribution of 2D for
cases (1) and (2). As a result, we have

∥[A′W(A)]\r − [AW(A)]\r∥2F =
∑

i∈[n]\{r}

∥(A′
i −Ai)W

(A)∥2 ≤ 2D.

This implies a sensitivity bound
√
2D. As a result, using the Gaussian noise mechanism with standard

deviation s leads to the term 2Dα
2s2 in the divergence bound. Finally, since the entire W(A) is DP by

the assumption, applying the standard DP composition theorem [40] completes the proof.

Regarding the assumption used, it can met by applying a standard DP-optimizer with an group size
D + 1, where γ1 depends on the noise multiplier of the DP-optimizer. This is due to the fact that the
out-degree is bounded by D, so replacing one node can affect at most D neighbors.

D Proof of Theorem 5.4

Theorem. For any D Nk∼ D′, let the index of the replaced node be r; also, let Z\r be the matrix Z

with its rth row excluded, and assume that Dα((W
(A),b)||(W(A),b)′) ≤ γ1. For any α > 1, the

embedding Z in DPDGC satisfies Dα(Z\r||Z′
\r) ≤ γ1 +

kα
2s2 .

Proof. The proof is nearly identical to the proof for the node-GDP case (Theorem 5.3). The only
difference arises when for the case i ∈ [n] \ {r}. Recall that our goal is to analyze

∥[A′W(A)]\r − [AW(A)]\r∥2F =
∑

i∈[n]\{r}

∥(A′
i −Ai)W

(A)∥2.

Again, there are four possible cases for i ∈ [n] \ {r}: (1) i ∈ N(r) \N ′(r); (2) i ∈ N ′(r) \N(r);
(3) i ∈ N(r) ∩ N ′(r); and (4) i /∈ N(r) ∪ N ′(r). Clearly, for i covered by cases (3) and (4), the
corresponding row norm is 0 as in this case, A′

i = Ai. For cases (1) and (2), we have

∥(A′
i −Ai)W

(A)∥2 = ∥eTr W(A)∥2 (a)
= 1,

where (a) is due to the fact that W(A) is row-normalized. By the definition of D Nk∼ D′, we know
that there are at most k rows corresponding to cases (1) and (2):

|{i ∈ N(r) \N ′(r)}|+ |{i ∈ N(r)′ \N(r)}| ≤ k.

As a result, we have

∥[A′W(A)]\r − [AW(A)]\r∥2F =
∑

i∈[n]\{r}

∥(A′
i −Ai)W

(A)∥2 ≤ k.

This implies a sensitivity bound of
√
k. As a result, applying the Gaussian noise mechanism with

standard deviation s leads to the term kα
2s2 in the divergence bound. Finally, since the entire W(A) is

DP by assumption, applying the standard DP composition theorem [40] completes the proof.

16

E Proof of Theorem 5.1

Theorem. For any α > 1 and D N∼ D′ or D Nk∼ D′, assume that Dα(W
(X)||W(X)′) ≤ γ1 and that

both A, A′ have bounded out-degree D. Let the replaced node index be r and let Z\r be the matrix
Z excluding its rth row. Then the embedding Z used in GAP satisfies Dα(Z\r||Z′

\r) ≤ γ1 +
4DLα
2s2 .

Proof. We start by showing that for any D N∼ D′, Dα(H
(1)
\r ||H

(1)
\r

′
) ≤ γ1 +

4Dα
2s2 . By examining

∥ [AH]i − [A′H′]i ∥ for all i ∈ [n] \ {r}, we find that there are three cases that contribute nonzero
norms. Let N(r) and N ′(r) denotes the neighbor node set of r with respect to A and A′, respectively.
The three cases are: (1) i ∈ N(r) \ N ′(r), (2) i ∈ N ′(r) \ N(r), and (3) i ∈ N(r) ∩ N ′(r). For
cases (1) and (2), ∥ [AH]i − [A′H′]i ∥ ≤ 1 due to H(0) and H(0)′ being row-normalized. For case
(c), we have ∥ [AH]i − [A′H′]i ∥ = ∥Hr −H′

r∥ ≤ 2. Since the out-degree is upper bounded by D,
we know that max(|N(r)|, |N ′(r)|) ≤ D. The worst-case arises for |N(r) ∩N ′(r)| = D. Hence
we have the following worst-case upper bound

∥ [AH]\r − [A′H′]\r ∥
2
F =

∑
i∈[n]\{r}

∥ [AH]i − [A′H′]i ∥
2 ≤ 4D2.

This leads to the term 4Dα
2s2 in the divergence bound. By applying Theorem B.1 and the assumption

on W(X), we can show that Dα(H
(1)
\r ||H

(1)
\r

′
) ≤ γ1 +

4Dα
2s2 .

For the L-hop result Z\r, one can apply Theorem B.1 and induction. The base case L = 1 is already

established above. For the induction step, we have Dα(H
(L−1)
\r ||H(L−1)

\r
′
) ≤ γ1 +

4D(L−1)α
2s2 . By

applying Theorem B.1 and repeating the previous analysis, we have

Dα(H
(L)
\r ||H

(L)
\r

′
) ≤ γ1 +

4D(L− 1)α

2s2
+

4Dα

2s2
= γ1 +

4DLα

2s2
. (3)

Here, the key idea is that although H
(L−1)
r is not private, it is still row-normalized so that the above

sensitivity analysis still applies. For the case of D Nk∼ D′, the worst case scenario still arises for
|N(r) ∩N ′(r)| = D, for all k ≥ 0. This is in fact the case for N0 (i.e., A = A′). Thus, the same

result holds for the case D Nk∼ D′, for all k ≥ 0. This completes the proof.

F RDP to DP conversion

For a given (α, γ) Rényi DP guarantee, the following conversion lemma [34–36] allows us to convert
it back to a (ε, δ)-DP guarantee:
Lemma F.1. If A satisfies (α, γ(α))-RDP for all α > 1, then, for any δ > 0, A satisfies (εDP(δ), δ)-
DP, where

εDP(δ) = inf
α>1

γ(α) +
log (1/αδ)

α− 1
+ log(1− 1/α).

G Edge GDP analysis for DPDGC and GAP

DPDGC. In this setting, ensuring that the embedding Z is DP is sufficient to guarantee the overall
model being GDP. We can replace the remaining DP-MLP modules in Figure 2 with standard MLP
(i.e., training with a standard optimizer).

Theorem G.1. For any α > 1 and D E∼ D′, assume Dα((W
(A),b)||(W(A),b)′) ≤ γ1. Then the

embedding Z of DPDGC satisfies Dα(Z||Z′) ≤ γ1 +
α
2s2 .

Proof. Since there is only one replaced entry of the adjacency matrix for any D E∼ D′, ∥(A′ −
A)W(A)∥F ≤ maxi∈[n] ∥W

(A)
i ∥2 = 1 (i.e., the maximum row-norm of W(A)). This implies that

the sensitivity of AW(A) is 1. Thus, applying the Gaussian noise mechanism with standard deviation
s and standard DP composition rule [40] results in Dα(Z||Z′) ≤ γ1 +

α
2s2 .

17

Regarding the assumption, it can be met by applying a standard DP-optimizer with group size 1,
where γ1 depends on the noise multiplier of the DP-optimizer. This is due to the fact that at most one
row of A is different for any D E∼ D′. By further applying Theorem B.1, we can establish the edge
GDP guarantees for DGDGC (Corollary H.1).

GAP. In this setting, all DP-MLP modules in Figure 2 can be replaced with a standard MLP for GAP.
Thus, we only need to ensure that the non-trainable module in GAP (i.e., PMA) is DP.

Theorem G.2. For any α > 1 and D E∼ D′, the embedding Z of GAP satisfies Dα(Z||Z′) ≤ Lα
2s2 .

Proof. The analysis is similar to that of Theorem G.1, except that we have AH instead of AWA.
Following the same argument, we know that Dα(H

(1)||H(1)′) ≤ α
2s2 . Then, by the standard DP

composition theorem, we arrive at the claimed result.

H Formal GDP guarantees for the complete DPDGC and GAP models

Corollary H.1. For any α > 1, the DPDGC model is edge (α, γ1 +
α
2s2)-GDP.

Proof. This is a direct consequence of applying Theorem G.1 (for guarantees pertaining to Z) and
the DP composition theorem.

Corollary H.2. Assume that the graph has bounded out-degree D. For any α > 1, the DPDGC
model is node (α, γ1 + γ2 +

2Dα
2s2)-GDP, where the remaining weights satisfy (α, γ2)-RDP.

Proof. This is a direct consequence of Theorem 5.3 (for guarantees pertaining to Z\r), the standard
DP-optimizer result [14] and Theorem B.1 (the generalized adaptive composition theorem).

Corollary H.3. For any α > 1, the DPDGC model is k-neighbor (α, γ1 + γ2 +
kα
2s2)-GDP, with the

remaining weights are (α, γ2)-RDP.

Proof. This follows by applying Theorem 5.4 (with guarantees for Z\r), the standard DP-optimizer
result [14], and Theorem B.1 (generalized adaptive composition theorem).

Corollary H.4. For any α > 1, the GAP model is edge (α, Lα
2s2)-GDP.

Proof. This follows by applying Theorem G.2 (guarantees of Z) and the DP composition theorem.

Corollary H.5. Assume that the underlying graph has bounded out-degree D. For any α > 1,
the GAP model is node or k-neighbor (α, γ1 + γ2 +

4DLα
2s2)-GDP, while the remaining weights are

(α, γ2)-RDP.

Proof. This follows by applying Theorem 5.1 (with guarantees for Z\r), the standard DP-optimizer
result [14], and Theorem B.1 (generalized adaptive composition theorem).

I Discussion on inductive settings

While we focus on the main text was on the transductive setting, we note that the inductive setting is
actually significantly easier from the perspective of insuring privacy. There are two different settings
for inductive graph learning. We call the first scenario the “fully inductive setting”. What this means
is that the information pertaining to test nodes is completely unavailable during the training phase
and not subject to privacy protection [3]. One can think of this as a case where the training graph
and the test graph are disjoint. In this case, model DP is sufficient to guarantee prediction DP, as one
can only access training data information through the model weights. As a result, the extension of
DP-SGD for GNNs [15] suffices to ensure rigorous user data privacy.

We refer to the second setting as the “incrementally inductive setting”. What this means is that we
will use all training and test node information during inference, despite the test nodes not being used
during the training phase. In this case, DP of model weight does not ensure the DP of the model

18

prediction. Hence, we will need our GDP guarantees to ensure user data privacy protection. Since we
only need to ensure the privacy of training data, the RDP condition in Definition 4.2 no longer needs
to specify which test node is to be predicted. This is due to the fact that any test node v that could be
the target for prediction cannot be a training node. Thus, we will not replace it in the adjacent dataset.
The remainder of the GDP analysis is similar to the previous one.

J Practical privacy meaning of k in k-neigbor GDP

The notion of k-neighbor GDP with (ϵ, δ) = (0, 0) implies that an adversary cannot simultaneously
infer information about any k in-edges and k out-edges in A. As discussed in the main text, even
the case k = 1 already provides a similar but stronger topology privacy protection than edge GDP.
Although an adversary cannot infer the existence of any edges for the k = 1 case, they might
be confident that there is one edge among two node pairs even though they cannot be certain
which one it is. For instance, even though an adversary cannot individually infer whether A12

and A13 are 1 or 0, they may be confident that the event {A12 = 1 ∨ A13 = 1} is true. The
k = 2 setting provides additional protection so that the adversary cannot simultaneously infer
information about any k = 2 edges. Nevertheless, the adversary may still be confident that the event
{A12 = 1 ∨A13 = 1 ∨A14 = 1} is true (in the worst case). A similar reasoning holds for general
values of k. As a result, selecting an intermediate value of k may reveal some edge information, but
it allows for a trade-off between the potentially sensitive edge information and model utility. It is
worth noting that in many practical scenarios, edge information is less sensitive than that of node
features, making this notion of privacy particularly useful. For instance, if we are satisfied with the
graph structure protection from edge-level GDP, we can simply use k = 1 for additional protection
of sensitive node features and labels, with similar graph topology privacy.

K Additional experimental details

Datasets. We test seven benchmark datasets available from either the Pytorch Geometric library [42]
or prior works. These datasets include the social network Facebook [17, 43], citation networks Cora
and Pubmed [44,45], the Amazon co-purchase networks Photo and Computers [46], and Wikipedia
networks Squirrel and Chameleon [47]. Pertinent dataset statistics can be found in Table 1. We also
report the class insensitive edge homophily measure defined in [39], with value in [0, 1]; the value 1
indicates the strongest possible homophily. Its definition is as follows:

homophily =
1

C − 1

C∑
c=1

max(0, hc −
|{i : Yic = 1}|

n
),

hc =
|{(v, w) : (v, w) ∈ E ∧Yvc = Ywc = 1}|

|E|
.

Note that hc represents the edge homophily ratio of nodes of class c, where the general edge
homophily is defined in [52].

The cSBM model. We mainly follow the cSBM model as described in [19]. The cSBM model
includes Gaussian random vector node features in addition to the classical SBM graph topology.
For simplicity, we assume that there are C = 2 equally sized communities with node labels vi ∈
{+1,−1}. Each node i is associate with a f dimensional Gaussian vector bi =

√
µ
nviu+

Zi√
f
, where

n is the number of nodes, u ∼ N(0, I/f), and Zi ∈ Rf has independent standard normal entries.
The graph in cSBM is described by an adjacency matrix A defined as

P (Aij = 1) =

{
d+λ

√
d

n , if vivj > 0
d−λ

√
d

n , otherwise
.

Similar to the classical SBM, given the node labels, the edges are independent. The symbol d stands
for the average degree of the graph. Also, recall that µ and λ control the strength of the information
content conveyed by the node features and the graph structure, respectively.

One reason for using the cSBM to generate synthetic data is that the information-theoretic limit of
the model has already been characterized in [18]. This result is summarized below.

19

Theorem K.1 (Informal main result from [18]). Assume that n, f → ∞, n
f → ξ and d → ∞.

Then there exists an estimator v̂ such that lim infn→∞
|⟨v̂,v⟩|

n is bounded away from 0 if and only if

λ2 + µ2

ξ > 1.

In our experiment, we set n = 10, 000,f = 200, so that ξ = 50. We vary µ and λ along the arc
λ2 + µ2/ξ = 1 + ϵ, for some ϵ > 0, to ensure that we are within the allowed parameter regime. We
also set ϵ = 3.25 in all our experiments.

Experiment environments. All experiments are performed on a Linux Machine with 48 cores,
376GB of RAM, and an NVIDIA Tesla P100 GPU with 12GB of GPU memory. We use PyTorch
Geometric3 [42] for graph-related operations and models, autodp4 for privacy accounting and Opa-
cus5 [53] for the DP-optimizer. Our code is developed based on the GAP repository6 [17] and follows
a similar experimental pipeline.

Hyperparameters. For all methods, we set the hidden dimension to 64, and use SeLU [54] as the
nonlinear activation function. The learning rate is set to 10−3, and do not decay the weights. Training
involves 100 epochs for both pretraining and classifier modules. We use a dropout 0.5 for nonprivate
and edge GDP experiments and no dropout for the node GDP and k-neighbor GDP experiments. For
DPDGC, we find that row-normalizing W(A) to 10−8 and reducing s accordingly gives better utility
in practice (see Algorithm 2, where we set c = 10−8). Following the analysis of DPDGC, we know
that this changes the sensitivity of AW(A) to

√
2Dc for node GDP and

√
kc for k-neighbor GDP,

respectively. Note that when c = 1, we recover the results of Theorem 5.3 and 5.4. For GAP, we tune
the number of hops L ∈ {1, 2, 3}. For both DPDGC and GAP, the MLP modules have 2 layers in
general, except for the MLPA and MLPX modules in DPDGC which have 1 layer. For MLP, we use
3 layers following the choice of [17]. We upper bound the out-degree by D = 100 for all datasets,
following the default choice stated in [17]. The batch size depends on the dataset size, where we
choose 256 for Facebook and Pubmed, and 64 for the rest. Note that we train without mini-batching
whenever the training does not involve a DP-optimizer and the method has better performance. For
the cSBM experiments, we adopted the settings used for the Facebook dataset. We observe that
DPDGC (nopriv) can have severe overfitting issues for ϕ = 0, which causes the results to be unstable.
For this particular case, we change the learning rate of the embedding module to 10−5 in order to
mitigate the issue.

DP-optimizer. We use DP-Adam by leveraging the Opacus library. We retain the default setting for
all methods.

L Pseudocode for GAP and DPDGC

3https://github.com/pyg-team/pytorch_geometric
4https://github.com/yuxiangw/autodp
5https://github.com/pytorch/opacus
6https://github.com/sisaman/GAP

20

Algorithm 1 Training process of GAP
1: Model input: node feature X, adjacency matrix A, training labels Y.
2: Parameters: noise std s, hops L, and max degree D.
3: if edge GDP then
4: Train DP-MLPX using a standard optimizer.
5: else
6: Train DP-MLPX using a DP-optimizer with group size of 1.
7: end if
8: H← DP-MLPX(X).
9: H(0) ← row-normalized(H) and cache H(0).

10: if node or k-neighbor GDP then
11: Subsample A so that the out-degree (column-sum) is bounded by D.
12: end if
13: for 1 ≤ i ≤ L do
14: H(i) ← row-normalized(H(i−1) + N(0, s2)).
15: end for
16: Z← ∥Li=0H

(i) and cache Z.
17: if edge GDP then
18: Train DP-MLPf using a standard optimizer.
19: else
20: Train DP-MLPf using a DP-optimizer with a group size 1.
21: end if

Algorithm 2 Training process of DPDGC
1: Model input: node feature X, adjacency matrix A, training labels Y.
2: Parameters: noise std s, maximum degree D (for node GDP) or k for k-level GDP, row-

normalized constant c.
3: if node GDP then
4: Subsample A so that the out-degree (column-sum) is bounded by D.
5: end if
6: if node GDP then
7: x = D + 1
8: else if k-neighbor GDP then
9: x = k + 1

10: else
11: x = 1
12: end if
13: (W(A),b)← Train DP-Emb using a DP-optimizer with group size x and constrain W(A) to be

row-normalized to c.
14: s← c× s.
15: Z← row-normalized(AW(A) +N(0, s2) + b) and cache Z.
16: if edge GDP then
17: Train the remaining modules using a standard optimizer.
18: else
19: Train the remaining modules using a DP-optimizer with group size 1.
20: end if

21

	Introduction
	Related works
	Preliminaries
	Differential Privacy (DP)

	Graph Differential Privacy
	Graph learning methods with GDP guarantees
	GDP guarantees of GAP and issues of standard graph convolution
	GDP guarantees of DPDGC and benefits of decoupled graph convolution

	Experiments
	Conclusions
	Limitations and Broader Impacts
	Generalized adaptive composition theorem
	Proof of Theorem 5.3
	Proof of Theorem 5.4
	Proof of Theorem 5.1
	RDP to DP conversion
	Edge GDP analysis for DPDGC and GAP
	Formal GDP guarantees for the complete DPDGC and GAP models
	Discussion on inductive settings
	Practical privacy meaning of k in k-neigbor GDP
	Additional experimental details
	Pseudocode for GAP and DPDGC

