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A Abstract Proofs and Derivations550

A.1 Proof of the Non-Parametric Estimation Theorem 1551

In this subsection we give a formal proof for the uniqueness of minima of EDq(pdata, U) as a552

functional in the energy function U . We first reiterate the theorem as stated in the paper:553

Theorem 1. Let pdata be a positive probability density on (X , dx). Under mild technical assumptions,554

the energy discrepancy EDq is functionally convex in U and has a unique global minimiser U⇤ =555

argminEDq(pdata, U) with pdata / exp(�U⇤).556

For this theorem we need to make mild additional assumptions on the conditional distribution q557

and on the optimisation domain to guarantee uniqueness. Firstly, we require the energy-based558

distribution to be normalisable which implies that exp(�U) 2 L1(X , dx). For the existence and559

uniqueness of minimisers we have to constrain the space of energy functions since EDq(pdata, U) =560

EDq(pdata, U + c) for any constant c 2 R. Hence, we restrict the optimisation domain to functions561

U that satisfy minx2X U(x) = 0. The sufficient condition for q is that x can not be fully recovered562

from y ⇠ q(y|x) even if pdata(x) is known, i.e., for every x 2 X and y ⇠ q(y|x), Var(z|y) > 0.563

Such a perturbation may also be deterministic. For image data, for example, y can be defined as a564
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maxed-pooled version of the image which always takes information from the image. We summarise565

these assumptions as follows:566

Assumption 1. For every y 2 X , we define the recovery probability density567

pdata(z|y) =
q(y|z)pdata(z)R

q(y|z0)pdata(z0)dz0
.

Furthermore, we define the optimisation domain568

G :=

⇢
U : X 7! R such that exp(�U) 2 L1(X , dx) , U 2 L1(pdata) , and min

x2X
U(x) = 0

�

We then make the following assumptions on q and U :569

1. For every x 2 X and y ⇠ q(·|x) it holds that Varpdata(z|y)(z) > 0.570

2. There exists a U⇤ 2 G such that exp(�U⇤) / pdata571

Under Assumption 1, EDq(pdata, U) has a unique global minimiser U⇤ = � log pdata + c in G. We572

prove this by computing the first and second variation of EDq . Note that G may not be a vector space573

in general since in some cases 0 /2 G. We will omit this technical issue in this discussion. We start574

from the following lemmata and then complete the proof of Theorem 1 in Corollary 1.575

Lemma 1. Let h 2 G be arbitrary. The first variation of EDq is given by576

d

d✏
EDq(pdata, U + ✏h)

����
✏=0

= Epdata(x)[h(x)]� Epdata(x)Eq(y|x)EpU (z|y)[h(z)] (7)

where pU (z|y) = q(y|z) exp(�U(z))R
q(y|z0) exp(�U(z0))dz0 .577

Proof. We define the short-hand notation U✏ := U + ✏h. The energy discrepancy at U" reads578

EDq(pdata, U✏) = Epdata(x)[U✏(x)] + Epdata(x)Eq(y|x)


log

Z
q(y|z) exp(�U✏(z))dz

�
.

For the first functional derivative, we only need to calculate579

d

d✏
log

Z
q(y|z) exp(�U✏(z))dz =

Z �q(y|z)h(z) exp(�U✏(z))R
q(y|z0) exp(�U✏(z0))dz0

dz = �EpU✏ (z|y)[h(z)]. (8)

Plugging this expression into EDq(pdata, U✏) and setting ✏ = 0 yields the first variation of EDq .580

Lemma 2. The second variation of F is given by581

d2

d✏2
EDq(pdata, U + ✏h)

����
✏=0

= Epdata(x)Eq(y|x)VarpU (z|y)[h(z)].

Proof. For the second order term, we have based on equation 8 and the quotient rule for derivatives:582

d2

d✏2
log

Z
q(y|z) exp(�U✏(z))dz

=

R
q(y|z) exp(U✏(z))h2(z) dz

R
q(y|z0) exp(�U✏(z0))dz0�R

q(y|z0) exp(�U✏(z0))dz0
�2

�
R
q(y|z) exp(U✏(z))h(z)dz

R
q(y|z0) exp(�U✏(z0))h(z0)dz0�R

q(y|z0) exp(�U✏(z0))dz0
�2

= EpU✏ (z|y)[h
2(z)]� EpU✏ (z|y,U)[h(z)]

2 = VarpU✏ (z|y)[h(z)] .

We obtain the desired result by interchanging the outer expectations with the derivatives in ✏.583
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Corollary 1. Let c = minx2X (� log pdata(x)). For U⇤ = � log(pdata)� c 2 G it holds that584

d

d✏
EDq(pdata, U

⇤ + ✏h)

����
✏=0

= 0

d2

d✏2
EDq(pdata, U

⇤ + ✏h)

����
✏=0

> 0 for all h ,

Furthermore, U⇤ is the unique global minimiser of EDq(pdata, ·) in G.585

Proof. By definition, the variance is non-negative, i.e. for every h 2 G:586

d2

d✏2
EDq(pdata, U + ✏h)

����
✏=0

= VarpU (z|y)[h(z)] � 0 .

Consequently, the energy discrepancy is convex and an extremal point of EDq(pdata, ·) is a global587

minimiser. We are left to show that the minimiser is obtained at U⇤ and unique. First of all, we have588

for U⇤:589

EpU⇤ (z|y)[h(z)] =

Z
q(y|z) exp(�U⇤(z))R

q(y|z0) exp(�U⇤(z0))dz0
h(z)dz

=

Z
q(y|z)pdata(z)R

q(y|z0)pdata(z0)dz0
h(z)dz.

By applying the outer expectations we obtain590

Epdata(x)Eq(y|x)EpU⇤ (z|y)[h(z)] =

Z Z
pdata(x)q(y|x)dx

Z
q(y|z)pdata(z)R

q(y|z0)pdata(z0)dz0
h(z) dy dz

=

Z Z
q(y|x)pdata(z)h(z) dy dz

= Epdata(z)[h(z)],

where we used that the marginal distributions
R
pdata(x)q(y|x)dx cancel out and the conditional591

probability density integrates to one. This implies592

d

d✏
EDq(pdata, U

⇤ + ✏h)

����
✏=0

= Epdata(z)[h(z)]� Epdata(z)[h(z)] = 0.

for all h 2 G. We now show that593

d2

d✏2
EDq(pdata, U

⇤ + ✏h)

����
✏=0

= Epdata(x)Eq(y|x)Varpdata(z|y)[h(z)] > 0 .

Assume that the second variation was zero. Since the perturbed data distribution
R
pdata(x)q(y|x)dx594

is positive, the second variation at U⇤ is zero if and only if the conditional variance595

Varpdata(z|y)[h(z)] = 0. Since U⇤ + "h 2 G, the function h can not be constant. By definition of the596

conditional variance, h(z) must then be a deterministic function of y ⇠
R
q(y|x)pdata(x)dx. Since597

h was arbitrary, there exists a measurable map g such that z = g(y) and Varpdata(z|y)[z] = 0 which598

is a contradiction to Assumption 1. Consequently, U⇤ is the unique global minimiser of EDq which599

completes the statement in Theorem 1.600

A.2 Equivalence of Energy Discrepancy for Brownian Motion and Ornstein-Uhlenbeck601

Processes602

In this subsection we show that an energy discrepancy based on an Ornstein-Uhlenbeck process is603

equivalent to the energy discrepancy based on a time-changed Brownian motion.604

Proposition 1. Let qt be the transition density for the Ornstein-Uhlenbeck process dxt = ↵xtdt+605 p
�dwt with standard Brownian motion wt, and let �t(y|x) / exp(�ky�xk2/2t) be the Gaussian606

transition density of Brownian motion. Then,607

EDqt(pdata, U) = ED��2
�↵(t)

(pdata, U)� ↵t

where �↵(t) =
q

�
2↵ (e

2↵t � 1) and �0(t) =
p
�t.608
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Proof. At time t, the Ornstein-Uhlenbeck process has distribution609

xt
d
= e↵tx0 + �↵(t)⇠ , ⇠ ⇠ N (0, I) (9)

with �↵(t) =
q

�
2↵ (e

2↵t � 1) and �0(t) =
p
�t. The Ornstein-Uhlenbeck process is variance610

exploding for ↵ � 0 and variance preserving for ↵ < 0. Based on (9). the transition density of xt is611

given as612

qt(y|x) =
1

p
2⇡�↵(t)

d
exp

✓
�ky � e↵txk2

2�2
↵(t)

◆

Hence, we obtain via the change of variables ⇠0 := (y � e↵tx)/�↵(t) ⇠ N (0, I) for the contrastive613

potential614

Ut(y) = � log

Z
qt(y|x) exp(�U(x))dx

= � log

Z
�1(⇠

0) exp
�
�U

�
e�↵t(y � �↵(t)⇠

0)
��

d⇠0 � ↵t .

We now evaluate the contrastive potential at the forward process y = xt which yields615

Ut(xt) = � log

Z
�1(⇠

0) exp
�
�U

�
e�↵t(e↵tx0 + �↵(t)⇠ � �↵(t)⇠

0)
��

d⇠0 � ↵t

= � log

Z
�1(⇠

0) exp (�U (x0 + ��↵(t)⇠ � ��↵(t)⇠
0))) d⇠0 � ↵t

= � log

Z
��2

�↵(t)

⇣
w�2

�↵(t) � x
⌘
exp(�U(x)dx� ↵t

where we used that e�↵t�↵(t) = ��↵(t) in the second equality and the change of variables x =616

w�2
�↵(t) � ⇠0 in the third equality. Hence, the energy discrepancy for the Ornstein-Uhlenbeck process617

is equivalent to the energy discrepancy for Brownian motion with time parameter618

��↵(t) =

r
�

2↵
(1� e�2↵t)

619

Notice that for the variance-exploding process with ↵ > 0 the contrasting particles have a finite620

horizon since ��↵(t)
t!1���!

q
�
2↵ < 1. Hence, the maximum-likelihood limit in Theorem 2 is only621

achieved for the variance preserving process with ↵ < 0 and for the critical case of Brownian motion622

with ↵ = 0.623

A.3 Interpolation between Score-Matching and Maximum-Likelihood Estimation624

We first prove the result as stated in the Gaussian case. We then show how the result can be generalised625

to arbitrary diffusions by using Ito calculus.626

Gaussian case Denote the Gaussian density as627

�t(y � x) :=
1

p
2⇡t

d
exp

✓
�ky � xk2

2t

◆
.

and define the convolved distributions pt := �t ⇤ pdata and exp(�Ut) := �t ⇤ exp(�U).628

Proposition 2. The energy discrepancy is the multi noise-scale score-matching loss629

ED(pdata, U) =

Z t

0
Eps(xs)


��Us(xs) +

1

2
krUs(xs)k2

�
ds
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Proof. It is known that �t is the solution of the heat equation:630

@t�t(y � x) =
1

2
�y�t(y � x) .

Consequently, both, pt and exp(�Ut) satisfy the heat-equation because the integral commutes with631

the differential operators. Based on the heat-equation we can derive the following non-linear partial632

differential equation for the contrastive potential Ut:633

@te
�Ut(y) =

Z
@t�t(y � x)e�U(x)dx

=
1

2

Z
�y�t(y � x)e�U(x)dx

=
1

2
�ye

�Ut(y)

= �1

2
ry ·

⇣
(ryUt(y)) e

�Ut(y)
⌘

=

✓
1

2
kryUt(y)k2 �

1

2
�yUt(y)

◆
e�Ut(y)

Since @te�Ut = �e�Ut@tUt, we get after cancellation of the exponentials:634

@tUt(y) =
1

2
�yUt(y)�

1

2
kryUt(y)k2

The integral notation of the contrastive term in energy discrepancy takes the form635

Epdata(x)E�t(y�x)[Ut(y)] =

Z
Ut(y)pt(y)dy .

We now take a derivative of the energy discrepancy and find636

@tED�t(pdata, U) = �@t

Z
Ut(y)pt(y)dy

= �
Z

(@tUt(y)) pt(y)dy �
Z

Ut(y)@tpt(y)dy

= �
Z

(@tUt(y)) pt(y)dy �
Z

Ut(y)
1

2
�ypt(y)dy

= �
Z

(@tUt(y)) pt(y)dy �
Z

1

2
(�yUt(y)) pt(y)dy

where we used integration by parts twice in the final equation to shift the differential operator from pt637

to Ut. Now, plugging in the differential equation for Ut we find638

@tED�t(pdata, U) =

Z ✓
�1

2
�yUt(y) +

1

2
kryUt(y)k2 �

1

2
�yUt(y)

◆
pt(y)dy

= Epdata(x)E�t(y�x)


��yUt(y) +

1

2
kryUt(y)k2

�

Finally, we obtain energy discrepancy by integrating above expression:639

ED�t(pdata, U) =

Z t

0
@sED�s(pdata, U)ds

=

Z t

0
Epdata(x)E�s(y�x)


��yUs(y) +

1

2
kryUs(y)k2

�
ds

This gives the desired integral representation in Proposition 2.640

Proposition 3. Let �t be the Gaussian transition density and pebm / exp(�U) the energy-based641

distribution. The energy discrepancy converges to a cross entropy loss at a linear rate in time642

��ED�t(pdata, U) + Epdata(x) [log pebm(x)]� c(t)
��  1

2t
W2

2 (pdata, pebm)
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where c(t) is a renormalising constant independent of U .643

For the proof we employ the following lemma of Yihong Wu which was given in Raginsky & Sason644

(2013).645

Lemma 3. Let �t be the Gaussian transition density of a standard Brownian motion. Let µ, ⌫ be646

probability distributions and denote µt := �t⇤µ and ⌫t := �t⇤⌫. The following information-transport647

inequality holds:648

KL(µt k ⌫t) 
1

2t
W2

2(µ, ⌫)

Proof. Let ⇡ be a probability density of (x,x0) with marginal distributions µ(x) and ⌫(x0) (also649

called a coupling in optimal transport). We have650
Z

KL(�t(·� x) k �t(·� x0))⇡(x,x0)dxdx0 �KL(µt k ⌫t)

=

Z
KL(

�t(y � x)⇡(x,x0)

µt(y)
k �t(y � x)⇡(x,x0)

⌫t(y)
)µt(y)dy � 0

Hence, we find by rearranging the inequality651

KL(µt k ⌫t) 
Z

KL(�t(·� x) k �t(·� x0))⇡(x,x0)dxdx0

The right hand side is the Kullback-Leibler divergence between Gaussians, so652

KL(�t(·� x) k �t(·� x0)) =
1

2t
kx� x0k2

Since the coupling was arbitrary, we can minimise over all couplings ⇡ of µ and ⌫ which results in653

the Wasserstein-distance654

KL(µt k ⌫t)  min
⇡2⇧(µ,⌫)

Z
KL(�t(·� x) k �t(·� x0))⇡(x,x0)dxdx0 =

1

2t
W2

2(µ, ⌫)

where ⇧(µ, ⌫) denotes the set of all joint distributions with marginals µ and ⌫.655

The proof of Proposition 3 then follows:656

Proof. Let µ = pdata and ⌫ = pebm, denote the convolved distributions as pt,data and pt,ebm. Notice657

that for any x,y 2 Rd658

log
pt,ebm(y)

pebm(x)
= U(x)� Ut(y)

since both models have the same normalising constant. We then have for arbitrary x659

KL(pt,data k pt,ebm) =

Z
(log pt,data(y)� log pt,ebm(y)) pt,data(y)dy

=

Z ✓
log pt,data(y)� log

pt,ebm(y)

pebm(x)
� log pebm(x)

◆
pt,data(y)dy

=

Z
(log pt,data(y) + Ut(y)� U(x)) pt,data(y)dy � log pebm(x)

= c(t) +

Z
Ut(y)pt,data(y)dy � U(x)� log pebm(x)

with U independent entropy term c(t) := Ept,data(y)[log pt,data(y)]. Since x was chosen arbitrarily,660

we can integrate with respect to pdata(x) and find661

0  KL(pt,data k pt,ebm)

= c(t) +

Z
Ut(y)pt,data(y)dy �

Z
U(x)pdata(x)�

Z
log pebm(x)pdata(x)

= c(t)� ED�t(pdata, U)� Epdata(x)[log pebm(x)] 
1

2t
W2

2(pdata, pebm)

662
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A.4 Representing ED as multi-scale SM for general Diffusion Processes663

We now prove the connection between energy discrepancy and multi-noise scale score matching in a664

general context. For all following results we will assume that xt is some stochastic diffusion process665

which satisfies the SDE dxt = a(xt)dt+ b(xt)dwt and assume that x0 ⇠ pdata. Let qt denote the666

associated transition probability density. To make the exposition cleaner we write Ut := Uqt .667

The main idea will be the following observation:668

Proposition 4. The diffusion-based energy discrepancy is given by the expectation of the Ito integral669

EDqt(pdata, U) = �E
Z t

0
dUs(xs)

�

Proof. The stochastic integral with respect to the differential dUs(xs) is defined to satisfy the670

following generalisation of the fundamental theorem of calculus:671

Ut(xt) = U0(x0) +

Z t

0
dUs(xs)

We obtain the desired result by taking expectations on both sides.672

Notice that the law of the random variable xs is fixed by the initial distribution of the diffusion673

x0 ⇠ pdata. These distributions are implied when taking the expectation. We will now explore this674

connection further. For this we make some basic assumptions which allow us to connect stochastic675

differential equations with partial differential equations.676

Assumption 2. Consider the stochastic differential equation dxt = a(xt)dt+ b(xt)dwt for drift677

a : Rd ! Rd and b : Rd ! Rk. Further, define the diffusion matrix ⌃(x) = b(x)b(x)T 2 Rd⇥d. We678

make the following assumptions:679

1. There exists a µ > 0 such that for all ⇠,x 2 Rd h⇠,⌃(x)⇠i � µk⇠k2680

2. ⌃ and a are bounded and uniformly Lipschitz-continuous in x on every compact subset of681

Rd682

3. ⌃ is uniformly Hölder-continuous in x683

Theorem 4 (Fokker-Planck equation). Under Assumption 2, xt has a transition density function684

given by685

P(xt 2 A|x0 = x) =

Z

A
qt(y|x)dy .

Furthermore, qt satisfies the Fokker-Planck partial differential equation686

@tqt(y|x) =
dX

i=1

@yi

0

@�ai(y)qt(y|x) +
1

2

dX

j=1

@yj (⌃ij(y)qt(y|x))

1

A (10)

q0(y|x) = �(y � x)

For a reference, see (Friedman, 2012, Theorem 5.4)687

The Fokker-Planck equation yields the following important differential equation for the contrastive688

potential Ut:689

Proposition 5. Consider the stochastic differential equation dxt = a(xt)dt + b(xt)dwt for drift690

a : Rd ! Rd and b : Rd ! Rk, and diffusion matrix ⌃(x) = b(x)b(x)T 2 Rd⇥d that satisfies691

assumptions 2. Let qt be the associated transition density and define the contrastive potential692

Ut(y) := � log
R
qt(y|x) exp(�U(x))dx. Furthermore, we define the scalar field693

c(a,⌃)(y) :=
dX

i=1

0

@@yiai(y)�
1

2

dX

j=1

@yi@yj⌃ij

1

A
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and the linear operator694

L(a,⌃) :=
dX

i=1

�ai
@

@yi
+

1

2

dX

i,j=1

✓
2@yj⌃ij

@

@yi
+ ⌃ij

@2

@yi@yj

◆
.

Then, the contrastive potential satisfies the non-linear partial differential equation695

@tUt(y) = L(a,⌃)Ut(y) +
1

2
kbT (y)rUt(y)k2 + c(a,⌃)(y)

Proof. We commute the linear operator of the Fokker-Planck equation to see that e�Ut satisfies the696

Fokker-Planck equation in Theorem 4, too, i.e.697

@te
�Ut(y) =

dX

i=1

@yi

0

@�ai(y)e
�Ut(y) +

1

2

dX

j=1

@yj

⇣
⌃ij(y)e

�Ut(y)
⌘
1

A

e�U0(y) = e�U(x) .

We now expand the term corresponding to the drift term:698

dX

i=1

@yi

⇣
�ai(y)e

�Ut(y)
⌘
=

dX

i=1

(�@yiai(y) + ai(y)@yiUt(y)) e
�Ut(y)

Similarly, we treat the diffusion term:699

1

2

dX

i,j=1

@yi@yj

⇣
⌃ij(y)e

�Ut(y)
⌘
=

1

2

dX

i,j=1

⇣
@yi@yj⌃ij(y) + ⌃ij(y)@yjUt(y)@yiUt(y)

� 2@yj⌃ij(y)@yiUt(y)� ⌃ij(y)@yj@yiUt(y)
⌘
e�Ut(y)

Finally, the time derivative simply becomes @te�Ut(y) = �@tUt(y)e�Ut(y). We can now collect all700

terms independent of U and identify701

c(a,⌃)(y) =
dX

i=1

0

@@yiai(y)�
1

2

dX

j=1

@yi@yj⌃ij(y)

1

A

as well as the linear operator term702

L(a,⌃) :=
dX

i=1

�ai
@

@yi
+

1

2

dX

i,j=1

✓
2@yj⌃ij

@

@yi
+ ⌃ij

@2

@yi@yj

◆

Finally, we have703

dX

i,j=1

⌃ij(y)@yjUt(y)@yiUt(y) =
dX

i,j=1

kX

l=1

bil(y)bjl(y)@yjUt(y)@yi

=
kX

l=1

dX

i=1

(bTl,i(y)@yiUt(y))
2 = kbT (y)rUt(y)k2

This gives us the partial differential equation704

�@tUt(y)e
�Ut(y) =

✓
�L(a,⌃)Ut(y) +

1

2
kbT (y)rUt(y)k2 � c(a,⌃)(y)

◆
e�Ut(y)

Cancelling all exponentials from both sides of the equation yields the desired result.705

Theorem 5. The energy discrepancy takes the form of a generalised multi-noise scale score matching706

loss:707

EDqt(pdata, U) = E

2

4
Z t

0
�

dX

i,j=1

@xj (⌃ij(xs)@xiU(xs)) +
1

2
kbT (xs)rUs(xs)k2ds

3

5+ const.
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Proof. For this proof we return to the stochastic process Us(xs) from Proposition 4. By Ito’s formula,708

Us(xs) satisfies the stochastic differential equation709

dUs(xs) =

0

@@sUs(xs) +
dX

i=1

ai(xs)@xiUs(xs) +
1

2

dX

i,j=1

⌃ij(y)@xi@xjU(xs)

1

A ds

+
dX

i=1

kX

l=1

@xiUs(xs)bi,l(xs)dw
l
s

Under the additional integrability condition that E
R t
0kb

T (xs)rUs(xs)k2ds < 1, the stochastic710

integral with respect to Brownian motion dws has expectation zero. Furthermore, we can replace711

@sUs(xs) with our previously obtained non-linear partial differential equation712

@sUs(xs) = L(a,⌃)Us(xs) +
1

2
kbT (xs)rUs(xs)k2 + c(a,⌃)(xs) .

Due to opposing signs, the drift a cancels, i.e.713

L(a,⌃)Us(xs) +
dX

i=1

ai(xs)@xiUs(xs) +
1

2

dX

i,j=1

⌃ij(y)@xi@xjU(xs)

=
dX

i,j=1

✓
@yj⌃ij(y)

@

@yi
+ ⌃ij(y)

@2

@xi@xj

◆
Us(xs)

=
dX

i,j=1

@xj (⌃ij@xiU(xs))

Consequently, we obtain the final energy discrepancy expression using Proposition 4714

EDqt(pdata, U) = �E
Z t

0
dUs(xs)

�

= �E

2

4
Z t

0

dX

i,j=1

@xj (⌃ij(xs)@xiU(xs))�
1

2
kbT (xs)rUs(xs)k2ds

3

5+ const.

with U -independent constant
R t
0 c(a,⌃)(xs)ds. This completes the proof.715

As a corollary we obtain the proof of the first statement in Theorem 2: Assume that qt is de-716

fined through the stochastic differential equation dxt = a(xt)dt + dwt. In this case, ⌃ = I and717 Pd
i,j=1 @xj (⌃ij(xs)@xiU(xs)) = �U(xs). Consequently, we obtain from Theorem 5 the score718

matching representation of EDqt in Theorem 2. In the special case that ⌃ = bbT is independent of x719

we obtain an integrated sliced score-matching loss.720

A.5 Connections of Energy Discrepancy with Contrastive Divergence721

The contrastive divergence update can be derived from an energy discrepancy when, for E✓ fixed, q722

satisfies the detailed balance relation723

q(y|x) exp(�E✓(x)) = q(x|y) exp(�E✓(y)) .

To see this, we calculate the contrastive potential induced by q: We have724

� log

Z
q(y|x) exp(�E✓(x))dx = � log

Z
q(x|y) exp(�E✓(y))dx = E✓(y) .

Consequently, the energy discrepancy induced by q is given by725

EDq(pdata, E✓) = Epdata(x)[E✓(x)]� Epdata(x)Eq(y|x)[E✓(y)] .

Updating ✓ based on a sample approximation of this loss leads to the contrastive divergence update726

�✓ / 1

N

NX

i=1

r✓E✓(x
i)� 1

N

NX

i=1

r✓E✓(y
i) yi ⇠ q(·|xi)

Three things are important to notice:727
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1. Implicitly, the distribution q depends on E✓ and needs to adjusted in each step of the728

algorithm729

2. For fixed q, EDq(pdata, E✓) satisfies Theorem 1. This means that each step of contrastive730

divergence optimises a loss with minimiser E⇤
✓ = � log pdata + c. However, q needs to731

be adjusted in each step as otherwise the contrastive potential is not given by the energy732

function E✓ itself.733

3. This result highlights the importance to use Metropolis-Hastings adjusted Langevin-samplers734

to implement CD to ensure that the implied q distribution satisfies the detailed balance735

relation. This matches the observations found by Yair & Michaeli (2021).736

A.6 Derivation of Energy Discrepancy from KL Contractions737

A Kullback-Leibler contraction is the divergence function KL(pdata k pebm)�KL(Qpdata k Qpebm)738

(Lyu, 2011) for the convolution operator Qp(y) =
R
q(y|x)p(x)dx. The linearity of the convolution739

operator retains the normalisation of the measure, i.e. for the energy-based distribution pebm we have740

Qpebm =
1

ZU

Z
q(y|x) exp(�U(x) with ZU =

Z
exp(�U(x))dx .

The KL divergences then become with Uq := � logQ exp(�U(x))741

KL(pdata k pebm) = Epdata(x)[log pdata(x)] + Epdata(x)[U(x)] + logZU

KL(Qpdata k Qpebm) = EQpdata(y)[logQpdata(y)] + EQpdata(y) [Uq(y)] + logZU

Since the normalisation cancels when subtracting the two terms we find742

KL(pdata k pebm)�KL(Qpdata k Qpebm) = EDq(pdata, U) + c

where c is a constant that contains the U -independent entropies of pdata and Qpdata.743

B Aspects of Training EBMs with Energy Discrepancy744

B.1 Conceptual Understanding of the w-Stabilisation745

The critical step for using energy discrepancy in practice is a stable approximation of the contrastive746

potential. For the Gaussian-based energy discrepancy, we can write the contrastive potential as747

Ut(y) = � logE[exp(�U(y +
p
t⇠0))] with ⇠0 ⇠ N (0, I) and y 2 Rd. A naive approximation of748

the expectation with a Monte-Carlo estimator, however, is biased because of Jensen’s inequality, i.e.749

for ⇠0, ⇠0j ⇠ N (0, I) we have750

Ut(y) = � logE [exp(�U(y +
p
t⇠0))] < �E

2

4log 1

M

MX

j=1

exp(�U(y +
p
t⇠0j))

3

5 .

Our first observation is that the appearing bias can be quantified to leading order. For this, define751

vt(y) := E [exp(�U(y +
p
t⇠0))] and bvt(y) := 1

M

PM
j=1 exp(�U(y +

p
t⇠0j)). We use the752

Taylor-expansion of log(1 + u) ⇡ u� 1/2u2 + h.o.t. which gives753

E log bvt(y)� log vt(y) = E

log

✓
1 +

bvt(y)� vt(y)

vt(y)

◆�
(11)

⇡ �1

2
E
"
(bvt(y)� vt(y))

2

vt(y)2

#
+ h.o.t.

= � 1

2Mvt(y)2
Var

h
exp(�U(y +

p
t⇠0))

i
+ h.o.t .

The linear term in the Taylor-expansion does not contribute because E[bvt(y)] = vt(y). In the final754

equation we used that Var(bvt(y)) = Var[exp(�U(y +
p
t⇠0))]/M because all ⇠0j are independent.755

The Taylor expansion shows that the dominating contribution to the bias is the variance of the756

approximated convolution integral.757
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Our second observation is that this occurring bias can become infinite for malformed energy functions.758

For this reason, the optimiser may start to increase the bias instead of minimising our target loss. To759

illustrate how a high-variance estimator of the contrastive potential can be divergent, consider the760

energy function761

U(x) =

⇢
0 for x  0
bx for x > 0 .

The energy function does not strictly adhere to our conditions that the energy based model should be762

normalisable. Our argument still holds when exp(�U) is changed to be normalisable. In theory, the763

contrastive potential at 0 is upper bounded because764

Ut(0)  � lim
b!1

logE
h
exp(�U(

p
t⇠0))

i
= � logP(⇠0  0) = � log(1/2)

because exp(�U(x)) converges to an indicator function on {x  0} as b ! 1. The Monte Carlo765

estimator of the contrastive potential, on the other hand, has upper bound766

bUt(0) = � log
1

M

MX

j=1

exp(�U(
p
t⇠0j))  min[U(

p
t⇠01), . . . , U(

p
t⇠0M )] + log(M)

which can be seen by applying standard inequalities for the logsumexp function3. Hence, as long as767

there exists a j such that ⇠j  0, the estimated contrastive potential does not diverge. If, however,768

⇠0j > 0 for every j = 1, . . . ,M , then769

bUt(0) � min[U(
p
t⇠01), . . . , (

p
t⇠0M )] = b

p
tmin[⇠01, . . . , ⇠0M ]

b!1���! 1 .

Consequently, the approximate contrastive potential may attain diverging values at discontinuities in770

the energy function. Indeed, this phenomenon is observed for w = 0 in Figure 2. Here, the learned771

energy becomes discontinuous at the edge of the support and the energy discrepancy loss diverges772

during training. In low dimensions, this problem can be alleviated by using variance reduction773

techniques such as antithetic variables or by using large enough values of M during the training. The774

stabilising effect of M is observed in our ablation studies in Figure 21. In high-dimensional settings,775

however, such variance reduction techniques are infeasible.776

The idea of the w-stabilisation is that the value of the energy at non-perturbed data points U(x0) is777

guaranteed to stay controlled since it is minimised in the optimisation of ED. Hence, the diverging778

contrasting potential can be controlled by including U(x0) in the summation in the logsumexp779

operation which acts as a soft-min over all contrasting energy contributions. Indeed, this augmentation780

provides a deterministic upper bound to the approximated contrastive potential:781

bUt,w(xt) = � log

0

@ w

M
exp(�U(x0)) +

1

M

MX

j=1

exp(�U(xt +
p
t⇠0j))

1

A

 min[U(xt +
p
t⇠01), . . . , U(xt +

p
t⇠0M ), U(x)� log(w)] + log(M)

Additionally, the w-stabilisation introduces a negative bias to the approximated contrastive potential.782

Hence, if tuned correctly, it counteracts the bias introduced by the Jensen-gap of the logarithm.783

To gain additional intuition on the effect of w, notice that by the same bounds as before,784

U(x0)� bUt,w(xt)  min
h
U(x0)� U(xt +

p
t⇠01), . . . , U(x0)� U(xt +

p
t⇠0M ), log(w)

i

for every data point x. This tells us that, roughly speaking, a perturbed data point with U(x0) �785

U(xt +
p
t⇠0) > log(w) should have a small contribution to the loss and the optimisation converges786

if the data distribution is learned or when the bound is violated at all perturbed data points. Thus,787

log(w) describes a weak notion of a margin between positive and negative energy contributions.788

Consequently, large values for w 2 (0, 1) tend to lead to flatter learned energies, while smaller values789

lead to steeper learned energies. This intuition is confirmed by Figures 2 and 21.790

3It holds that min(u1, u2, . . . , uM )� log(M)  �LSE(�u1,�u2, . . . ,�uM )  min(u1, u2, . . . , uM )
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Asymptotic consistency of sample approximation of ED We give a proof for Theorem 3 which791

states that our approximation of energy discrepancy is justified. To make the exposition easier to792

understand, we first show how the energy discrepancy is transformed into a conditional expectation.793

Recall the probabilistic representation of the contrastive potential Section 4. Using E✓(x) =794

log(exp(E✓(x))) we obtain the following rewritten form of energy discrepancy:795

ED�t(pdata, E✓) = Epdata(x)[E✓(x)] + Epdata(x)E�t(y�x)

h
logE�1(⇠0)

h
exp(�E✓(y +

p
t⇠0)|y

ii

= Epdata(x)[E✓(x)] + Epdata(x)E�1(⇠)

h
logE�1(⇠0)

h
exp(�E✓(x+

p
t⇠ +

p
t⇠0)|x, ⇠

ii

= Epdata(x)E�1(⇠)

h
log(exp(E✓(x))) + logE�1(⇠0)

h
exp(�E✓(x+

p
t⇠ +

p
t⇠0)|x, ⇠

ii

= Epdata(x)E�1(⇠)

h
log
⇣
E�1(⇠0)

h
exp(E✓(x)� E✓(x+

p
t⇠ +

p
t⇠0)|x, ⇠

i⌘i

The conditioning means that the expectation is not taken with respect to y or x and ⇠ in the inner796

expectation. The conditioning is important to understand how the law of large numbers is to be797

applied. We now come to the proof that our approximation is consistent with the definition of energy798

discrepancy:799

Theorem 3. Assume that x 7! exp(�E✓(x)) is uniformly bounded. Then, for every " > 0 there800

exist N and M(N) such that
��Lt,M(N),w(✓)� ED�t(pdata, E✓)

�� < " almost surely.801

Proof. First, consider independent random variables x ⇠ pdata, ⇠ ⇠ N (0, I), and ⇠0j
i.i.d⇠ N (0, I).802

Using the triangle inequality, we can upper bound the difference |ED�t(pdata, E✓)� Lt,M,w(✓)| by803

upper bounding the following two terms, individually:804
�����ED�t(pdata, E✓)�

1

N

NX

i=1

logE
h
exp(E✓(x

i)� E✓(x
i +

p
t⇠i +

p
t⇠0j)

���xi, ⇠i
i �����

+

�����
1

N

NX

i=1

logE
h
exp(E✓(x

i)� E✓(x
i +

p
t⇠i +

p
t⇠0j)

���xi, ⇠i
i
� Lt,M,w(✓)

�����

The first term can be bounded by a sequence "N
a.s.��! 0 due to the normal strong law of large numbers.805

The second term can be estimated by applying the following conditional version of the strong law of806

large numbers (Majerek et al., 2005, Theorem 4.2):807

1

M

MX

j=1

exp
⇣
E✓(x)� E✓(x+

p
t⇠ +

p
t⇠0j)

⌘
a.s.��! E

h
exp(E✓(x)� E✓(x+

p
t⇠ +

p
t⇠0)

���x, ⇠
i

Next, we have that the deterministic sequence w/M ! 0. Thus, adding the regularistion w/M808

does not change the limit in M . Furthermore, since the logarithm is continuous, the limit also holds809

after applying the logarithm. Finally, the estimate translates to the sum by another application of the810

triangle inequality. We define811

�e✓(x, ⇠, ⇠
0) := exp(E✓(x)� E✓(x+

p
t⇠ +

p
t⇠0))

For each i = 1, 2, . . . , N there exists a sequence "i,M
a.s.��! 0 such that812

�����
1

N

NX

i=1

logE
h
�e✓(x

i, ⇠i, ⇠0)
���xi, ⇠i

i
� Lt,M,w(✓)

�����

 1

N

NX

i=1

������
logE

h
�e✓(x

i, ⇠i, ⇠0)
���xi, ⇠i

i
� log

1

M

MX

j=1

�e✓(x
i, ⇠i, ⇠0j)

������

<
1

N

NX

i=1

"i,M  max("1,M , . . . , "N,M ) .

Hence, for each " > 0 there exists an N 2 N and an M(N) 2 N such that |ED�t(pdata, E✓) �813

Lt,M(N),w(✓)| < " almost surely.814
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B.2 Approximation of Energy Discrepancy based on general Ito Diffusions815

Energy discrepancies are useful objectives for energy-based modelling when the contrastive potential816

can be approximated easily and stabily. In most cases this requires us to write the contrastive817

potential as an expectation which can be computed using Monte Carlo methods. We show how such818

a probabilistic representation can be achieved for a much larger class of stochastic processes via819

application of the Feynman-Kac formula. We first highlight the difficulty. Consider the integral820 R
f(y)qt(y|x)pdata(x)dxdy. Since the expectation is taken in y, the integral can be represented as821

an expectation of the forward process associated with qt, i.e.822

Z
f(y)qt(y|x)pdata(x)dxdy = Epdata(x0)[f(xt)] ⇡

1

N

NX

i=1

f(xi
t)

where xi
t are simulated processes initialised at xi

0 = xi ⇠ pdata. Next, consider the integral823

v(t,y) :=

Z
qt(y|x)g(x)dx .

This integral is more difficult to approximate because the function g is evaluated at the starting point824

of the diffusion xt but weighted by it’s transition probability density. To compute such integrals825

without sampling from g we use the Feynman-Kac formula, see e.g. Øksendal (2003):826

Theorem 6 (Feynman-Kac). Let g 2 C2
0(Rd) and c 2 C(Rd). Assume that v 2 C1,2(R�0,Rd) is827

bounded on K ⇥ Rd with K compact and satisfies828

(
@tv(t,y) = Av(t,y) + c(y)v(t,y) for all t > 0, y 2 Rd

v(0,y) = g(y) for all y 2 Rd
. (12)

Then, v has the probabilistic representation829

v(t,y) = Ey


exp

✓Z t

0
c(ys)ds

◆
g(yt)

�

where (yt)t�0 is a diffusion process with infinitesimal generator A.830

We will establish that v(t,y) satisfies a partial differential equation of the above form which yields a831

probabilistic representation of the contrastive potential. We know that v(t,y) satisfies the Fokker-832

Planck equation (10). By applying the product rule to each term in the Fokker-Planck equation we833

find834

@tv(t,y) =

0

BBBBB@

↵(y)z }| {
dX

i=1

0

@�ai(y) +
dX

j=1

@yj⌃ij(y)

1

A @yi +
1

2

dX

i,j

⌃ij(y)@yi@yj

1

CCCCCA
v(t,y)

+

0

@1

2

dX

i,j=1

@yi@yj⌃ij(y)�
dX

i=1

@yiai(y)

1

A

| {z }
c(y)

v(t,y)

v(0,y) =g(y) .

By comparing with Theorem 6, we identify the infinitesimal generator835

A =
dX

i=1

↵i(y)
@

@yi

+
1

2

dX

i=1

dX

j=1

⌃ij(y)
@2

@yi@yj

Hence we associate the forward diffusion process dxt = a(xt)dt+ b(xt)dwt with it’s backwards836

process with infinitesimal generator A837

dyt = ↵(yt)dt+ b(yt)dw
0
t
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with ⌃(y) = b(y)bT (y). This yields the probabilistic representation of v(t,y) in terms of the838

backward process yt:839

v(t,y) =

Z
qt(y|x)g(x)dx = Ey


exp

✓Z t

0
c(ys)ds

◆
g(yt)

�

Hence, we also obtain a probabilistic representation for the contrastive potential by choosing g(x) :=840

exp(�U(x)). This finally gives841

Ut(y) = � logEy


exp

✓Z t

0
c(ys)ds� U(yt)

◆�
.

Unlike the contrasting term in contrastive divergence, this expression can indeed be calculated by842

simulating stochastic processes that are entirely independent of U . For this we simulate from the843

forward process starting at x which yields x̃t, where the tilde denotes that this simulation may not be844

exact. We then simulate M copies of the reverse process and keep all values at intermediate steps, i.e.845

(ỹj
t0 = x̃t, ỹ

j
t1 , . . . , ỹ

j
tK=t) for j = 1, . . . ,M . Finally we evaluate the contrastive potential as846

Ut(xt) ⇡ � log
1

M

MX

j=1

exp

  
KX

k=1

c(ỹj
tk)(tk � tk�1)

!
� U(ỹj

t )

!

The simulation method for the stochastic process and for the integration
R t
0 c(ys)ds may be altered847

in this approximation. At this stage, it is unclear what practical implications the weighting term848 R t
0 c(ys)ds has. Notice that the process yt is initialised at the final simulated position of the forward849

process x̃t. Furthermore, the bias correction with the w-stabilisation or an alternative method should850

still be relevant for stable training of energy-based models.851

B.3 Energy Discrepancy on the Discrete Space {0, 1}d852

Energy discrepancies are, in principle, well-defined on discrete spaces. To illustrate this point, we853

describe the energy-discrepancy loss for {0, 1}d valued data such as images with binary pixel values,854

in which case the discrete energy-discrepancy is straight forward to implement. We will replace the855

Gaussian transition density with a Bernoulli distribution. For " 2 (0, 1), let ⇠ ⇠ Bernoulli(")d. Then856

the transition y = x+ ⇠mod(2) is symmetric and induces a symmetric transition density q(y � x).857

Because of the symmetry, the energy discrepancy can be implemented in the same way as in the858

continuous case, i.e.859

L(✓) := 1

N

NX

i=1

0

@ w

M
+ log

1

M

MX

j=1

exp
�
E✓(xi)� E✓(x

i + ⇠i + ⇠0ij mod(2))
�
1

A

Since the manifold hypothesis is true in a similar way for discrete image data, we conclude that860

additional tools need to be used in the optimisation and leave numerical experiments for the discrete861

case for future work.862

C Latent Space Energy-Based Prior Models863

In this section, we first briefly review the latent space energy-based prior models (LEBMs) and its864

variants: CD-LEBM, SM-LEBM, and ED-LEBM. We then proceed to the experimental details.865

C.1 A Brief Review of LEBMs866

Latent space energy-based prior models (Pang et al., 2020) seek to model latent variable models867

p�,✓(x) =
R
p�(x|z)p✓(z)dz with an EBM prior p✓(z) =

exp(�E✓(z))p0(z)
Z✓

, where p0(z) is a base868

distribution which we choose as standard Gaussian (Pang et al., 2020). LEBMs often perform better869

than latent variable models with a fixed Gaussian prior like VAEs since the EBM prior is more870

informative and expressive (Pang et al., 2020, Appendix C). However, training LEBMs is more871

expensive compared to latent variable models with fixed Gaussian prior because of the cost of training872

for energy-based models. This motivates to explore various training strategies for EBMs such as873
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contrastive divergence, score matching, and the proposed energy discrepancy, where we find that874

energy discrepancy is the most efficient in terms of computational complexity.875

The parameter update for the LEBM can be derived from maximum-likelihood estimation of p�,✓(x).876

Using the identity Ep�,✓(z|x)[r�,✓log p�,✓(z|x)]=0, the gradient of the log-likelihood of a data point877

x is given by878

r�,✓ log p�,✓(x)=Ep�,✓(z|x)[r�,✓ log p�,✓(z,x)]=Ep�,✓(z|x)[r� log p�(x|z)+r✓ log p✓(z)].

The posterior p�,✓(z|x) prescribes the latent representation of the data point x. Consequently, in879

each parameter update, samples are generated from the posterior distribution p�,✓(z|x) via running880

Langevin dynamics and are treated as data on latent space. The generator is then updated via881

r� log p�,✓(x) = Ep�,✓(z|x)[r� log p�(x|z)], .

Similarly, the maximum-likelihood update for the EBM parameters ✓ is given by r✓ log p�,✓(x) =882

Ep�,✓(z|x)[r✓ log p✓(z)]. As with any EBM, this gradient can not be used, directly, since this would883

require a tractable normalisation constant Z✓. To make this update tractable, we replace the gradient884

of the log-likelihood with contrastive divergence, score matching, and energy discrepancy as lined885

out below.886

CD-LEBM (Pang et al., 2020). The contrastive divergence update is obtained as per usual by887

expressing the gradient of the log likelihood in terms of the energy function888

r✓ log p�,✓(x) = Ep�,✓(z|x)[r✓ log p✓(z)] = Ep✓(z)[r✓E✓(z)]� Ep�,✓(z|x)[r✓E✓(z)].

Therefore, the EBM prior can be learned by minimizing889

LCD(✓) :=
1

N

NX

i=1

E✓(z
i
+)� E✓(z

i
�), zi+ ⇠ p�,✓(z|xi), zi� ⇠ p✓(z). (13)

Note that optimizing CD-LEBM is computationally expensive, as training the EBM prior requires890

simulating Langevin dynamics to sample z from p�,✓(z|x) to generate positive samples and p✓(z) to891

generate negative samples.892

SM-LEBM. The second solution is to minimize the Fisher divergence between the posterior and893

prior, which has the following form894

1

2
Ep�,✓(z|x)[krz log p✓(z)�rz log p�,✓(z|x)k22].

This is equivalent to score matching (Hyvärinen & Dayan, 2005) when p�,✓(z|x) is treated as895

parameter independent data distribution. We refer to this approach as score-matching LEBM, in896

which the EBM prior is learned by minimising897

LSM(✓) :=
1

N

NX

i=1

1

2
krz log p✓(z

i)�rz log p(z
i|x)k22, zi ⇠ p�,✓(z|xi). (14)

where the parameters of p�,✓(z|x) are suppressed in the update. Note that score matching generally898

requires computing the Hessian of the log density as in but in score-matching LEBM, we have899

rz log p(z|x) = rz log p(x|z) +rz log p(z).900

ED-LEBM. Finally, the EBM prior can be learned by minimising the energy discrepancy between901

the posterior and the EBM prior with Ẽ✓(z) :=E✓(z)� log p0(z), which can be estimated as follows902

LED(✓) :=
1

N

NX

i=1

log

0

@w

M
+

1

M

MX

j=1

exp(Ẽ✓(z
i)�Ẽ✓(z

i+
p
t⇠i+

p
t⇠0i,j))

1

A (15)

with zi⇠p�,✓(z|xi). Note that energy discrepancy does not require simulating MCMC sampling on903

the EBM prior and calculating the score of the log density, which is computationally friendly for904

large-scale training. It is critical to include the base distribution p0(z) in the energy function Ẽ✓. We905

summarize the training process of the EBM prior using CD-, SM-, and ED-LEBM in Algorithms 1,906

2, and 3, with the training procedure of LEBM given in Algorithm 4.907
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Algorithm 1 CD-LEBM

1: sample from posterior and prior
z+⇠ p(z|x); z�⇠ p✓(z)

2: evaluate the energy difference
d✓  E✓(z+)� E✓(z�)

3: Update parameter ✓ using (13)
✓  ✓ � ⌘✓r✓d✓

Algorithm 2 SM-LEBM

1: sample from posterior
z ⇠ p(z|x)

2: evaluate the score difference
d✓ rzlog p✓(z)�rzlog p(z|x)

3: Update parameter ✓ using (14)
✓  ✓ � ⌘✓r✓

1
2kd✓k22

Algorithm 3 ED-LEBM

1: sample from posterior
z ⇠ p(z|x)

2: evaluate the energy difference
d✓ 1

M

PM
j=1e

Ẽ✓(z)�Ẽ✓(z+
p
t⇠+

p
t⇠0j)

3: Update parameter ✓ using (15)
✓  ✓�⌘✓r✓ log(w/M+d✓)

Figure 9: The training procedure for the EBM prior. We use one training sample only to illustrate.

Algorithm 4 Learning latent space energy-based prior models
1: repeat
2: Sample training data points {xi}Ni=1 ⇠ pdata(x)
3: For each xi, sample the corresponding latent variable zi ⇠ p�,✓(z|xi) via

zik+1 = zik + ✏
2rz log p�,✓(z|xi) +

p
✏!k, !k ⇠ N (0, I), zi0 ⇠ p0(z)

4: Update parameter � by maximizing log-likelihood
� �+ ⌘�r�

1
N

PN
i=1 log p�(z

i|xi)
5: Update parameter ↵ by running Algorithms 1, 2, or 3

✓  ✓ � ⌘✓r✓LCD, SM, or ED(✓)
6: until convergence of parameters (�, ✓)

C.2 Langevin Sampling, Reconstruction, and Generation908

To sample from the EBM prior p✓(z) and posterior p�,✓(z|x) we employ a standard unadjusted909

Langevin sampling routine, i.e. we repeat for k = 0, 1, . . . ,K910

zik+1 = zik +
✏

2
rz log p(z) +

p
✏!k, !k ⇠ N (0, I)

where z0 ⇠ p0(z) and the distribution p(z) is replaced by the prior or posterior densities, respectively.911

The generator is modelled as the Gaussian p�(x|z) = N (µ�(z),�2I). In reconstruction of x, we912

sample from the posterior zx ⇠ p�,✓(z|x) and compute the reconstruction as x̂ = µ�(zx). In data913

generation, we sample from the EBM prior zgen ⇠ p✓(z) and compute the generated synthetic data914

point as xgen = µ�(zgen).915

C.3 Experimental Details of LEBMs916

Datasets. We use the following datasets in image modelling: SVHN (Netzer et al., 2011), CIFAR-917

10 (Krizhevsky et al., 2009), and CelebA (Liu et al., 2015). SVHN is of resolution 32 ⇥ 32, and918

containts 73, 257 training images and 26, 032 test images. CIFAR-10 consists of 50, 000 training919

images and 10, 000 test images with a resolution of 32⇥ 32. For CelebA, which contains 162, 770920

training images and 19, 962 test images, we follow the pre-processing step in (Pang et al., 2020),921

taking 40, 000 examples of CelebA as training data and resizing it to 64⇥ 64. In anomaly detection,922

we follow the setting in (Zenati et al., 2018) and the dataset can be found in their published code4.923

Model Architectures. We adopt the same network architecture used in CD-LEBM (Pang et al.,924

2020), with the details depicted in Table 3, where convT(n) indicates a transposed convolutional925

operation with n output channels. We use Leaky ReLU as activation functions and the slope is set to926

be 0.2 and 0.1 in the generator and EBM prior, respectively.927

Details of Training and Inference. Here, we provide a detailed description of the hyperparameters928

setup for ED-LEBM. Following (Pang et al., 2020), we utilise Xavier normal (Glorot & Bengio, 2010)929

to initialise the parameters. For the posterior sampling during training, we use the Langevin sampler930

with step size of 0.1 and run it for 20 steps for SVHN and CelebA, and 40 steps on CIFAR-10. We931

set t = 0.25,M = 16, w = 1 throughout the experiments. The proposed models are trained for 200932

epochs using the Adam optimizer (Kingma & Ba, 2014) with a fixed learning 0.0001 for the generator933

4https://github.com/houssamzenati/Efficient-GAN-Anomaly-Detection
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Table 3: Model architectures of LEBMs on various datasets.
(a) Generator for SVHN 32⇥ 32, ngf = 64

Layers In-Out Size Stride

Input: x 1x1x100 -
4x4 convT(ngf x 8), LReLU 4x4x(ngf x 8) 1
4x4 convT(ngf x 4), LReLU 8x8x(ngf x 4) 2
4x4 convT(ngf x 2), LReLU 16x16x(ngf x 2) 2

4x4 convT(3), Tanh 32x32x3 2

(b) Generator for CIFAR-10 32⇥ 32, ngf = 128

Layers In-Out Size Stride

Input: x 1x1x128 -
8x8 convT(ngf x 8), LReLU 8x8x(ngf x 8) 1
4x4 convT(ngf x 4), LReLU 16x16x(ngf x 4) 2
4x4 convT(ngf x 2), LReLU 32x32x(ngf x 2) 2

3x3 convT(3), Tanh 32x32x3 1

(c) Generator for CelebA 64⇥ 64, ngf = 128

Layers In-Out Size Stride

Input: x 1x1x100 -
4x4 convT(ngf x 8), LReLU 4x4x(ngf x 8) 1
4x4 convT(ngf x 4), LReLU 8x8x(ngf x 4) 2
4x4 convT(ngf x 2), LReLU 16x16x(ngf x 2) 2
4x4 convT(ngf x 1), LReLU 32x32x(ngf x 1) 2

4x4 convT(3), Tanh 64x64x3 2

(d) Generator for MNIST 28⇥ 28, ngf = 16

Layers In-Out Size Stride

Input: x 16 -
4x4 convT(ngf x 8), LReLU 4x4x(ngf x 8) 1
3x3 convT(ngf x 4), LReLU 7x7x(ngf x 4) 2
4x4 convT(ngf x 2), LReLU 14x14x(ngf x 2) 2

4x4 convT(1), Tanh 28x28x1 2

(d) EBM prior
Layers In-Out Size

Input: z 16/100/128
Linear, LReLU 200
Linear, LReLU 200

Linear 1

and 0.00005 for the EBM prior. We choose the largest batch size from {128, 256, 512} such that934

it can be trained on a single NVIDIA-GeForce-RTX-2080-Ti GPU. In test time, we observed that935

slightly increasing the number of Langevin sampler steps can improve reconstruction performance.936

Therefore, we choose 100 steps with a step size of 0.1 for posterior sampling. Based on the insights937

gained from the MCMC diagnostic presented in Figure 18, we choose 500 steps with a step size of938

0.2 to ensure convergence of the Langevin dynamics when sampling from the EBM prior.939

Evaluation Metrics. In image modelling, we use FID and MSE to quantitatively evaluate the940

quality of the generated samples and reconstructed images. On all datasets the FID is computed based941

on 50, 000 samples and the MSE is computed on the test set. Following (Zenati et al., 2018; Pang942

et al., 2020), we report the performance using AUPRC in anomaly detection and results are averaged943

over last 10 epochs to account for variance.944

D Additional Experimental Results945

D.1 Experimental Setup for Figure 1 (Healing the nearsightedness of score-matching)946

Figure 10: Study of the influence of t
and M on estimating mixing weights.

A major problem of score-based methods is their nearsight-947

edness, which refers to their inability to capture global948

properties of a distribution with disjoint supports such as949

the mixture weights of two well-separated modes (Zhang950

et al., 2022). In sight of Theorem 2, energy discrepancy951

should alleviate this problem as it implicitly compares the952

scores of both distributions at multiple noise-scales. Fol-953

lowing Zhang et al. (2022), we investigate this by comput-954

ing energy discrepancy as a function of the mixture weight955

⇢ for the mixture of two Gaussians g1 := N (�5, 1) and956

g2 := N (5, 1), i.e.,957

p⇢(x) = ⇢g1(x) + (1� ⇢)g2(x).

where the true data has the mixture weight ⇢ = 0.2. We compare energy discrepancy958

Lt,M=32,w=1(⇢) ⇡ ED(p⇢=0.2, log p⇢) with the objective of maximum likelihood estimation959

30



MLE(⇢) := Ep⇢=0.2(x)[� log p⇢(x)] and the score matching objective which here is given by the960

Fisher divergence SM(⇢) := 1
2Ep⇢=0.2(x)[krx log p⇢=0.2(x)�rxp⇢(x)k22]. The losses as functions961

of ⇢ are shown in Figure 1. We find that energy discrepancy is convex as a function of the mixture962

weight and approximates the negative log-likelihood as t increases. Consequently, energy discrepancy963

can capture the mixture weight well for sufficiently large values of t. SM, on the other hand, is a964

constant function and is blind to the value of the mixture weight.965

To further investigate the impact of t and M on the efficiency of energy discrepancy, we minimise966

the energy discrepancy loss Lt,M=32,w=1(⇢) as a function of the scalar parameter ⇢ for various967

choices of M and t. We compute the mean-square error of 50 independent estimated mixture weights968

for choice of t and M . As shown in Figure 10, the estimation performance approaches that of the969

maximum likelihood estimator as t increases, which verifies the statement in Theorem 2. Moreover,970

if the number of samples M used to estimate the contrastive potential is increased, the estimation971

performance can be further increased towards the mean-square error of the maximum-likelihood972

estimator.973

D.2 Experimental Setup for Figure 2 (Understanding the w-stablisation)974

To probe our interpretation of the w-stablisation, we train a neural-network to learn the energy975

function using 4, 096 data points of a one-dimensional standard Gaussian pdata(x) / exp(�x2/2).976

The neural network uses an input layer, a hidden linear layer of width two R2 ! R2, and a scalar977

output layer R2 ! R with a Sigmoid Linear Unit activation between the layers. This neural network978

has sufficient capacity to model the Gaussian data as well as degenerate energy functions that979

illustrate potential pitfalls of energy discrepancy for w = 0. The energy discrepancy is set up with980

hyperparameters M = 4, t = 1, and w 2 {0, 0.05, 0.25, 2.} and is trained for 50 epochs with Adam.981

Our results are shown in Figure 2 which confirms the relevance of the w-stablisation to obtain a stable982

optimisation of energy discrepancy. We remark here that the degenerate case w = 0 is not strictly983

reproducible. Different types of lacking smoothness of the energy-function at the edge of the support984

lead to diverging loss values. We chose a result that illustrates the best the theoretical exposition985

of the w-stablisation in Appendix B.1 and refer to Figure 11 to reflect other malformed estimated986

energies as well as an example of a diverging loss history.

Figure 11: Potential outcomes for the estimated energy and loss history when ED does not converge
with w = 0

987

D.3 Additional Density Estimation Results988

Here, we provide additional details and results on the density estimation experiments.989

Details of Training and Inference. Our choice for the energy-net for density estimation is a 4-layer990

feed-forward neural network with 128 hidden units and softplus activation function. In the context991

of energy discrepancy, we select t = 1, M = 4, and w = 1 as hyperparameters. For the contrastive992

divergence approach, we utilise CD-1, in which the gradient of the log-likelihood in Equation (1)993

is estimated by employing a Langevin sampler with a single step and a step size of 0.1. For score994

matching, we train EBMs using the explicit score matching in (2), where the Laplacian of the score is995

explicitly computed. We train the model using the Adam optimizer with a learning rate of 0.001 and996

iterations of 50, 000. After training, synthesised samples are drawn by simulating Langevin dynamics997

with 100 steps and a step size of 0.1.998

Additional Experimental Results. The additional results depicted in Figure 12 demonstrate the999

strong performance of energy discrepancy on various toy datasets, consistently yielding accurate1000
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Figure 12: Additional results on density estimation.

Figure 14: Generated images on CelebA 128⇥ 128.

energy landscapes. In contrast, contrastive divergence consistently produces flattened energy land-1001

scapes. Despite the success of score matching in these toy examples, score matching struggles to1002

effectively learn distributions with disjoint support which can be seen in the results in Figure 3.1003

Figure 13: Comparing energy discrepancy (ED) with denois-
ing score matching (DSM) with different noise scales.

Comparison with Denoising Score1004

Matching We further compare en-1005

ergy discrepancy with denoising score1006

matching (DSM) (Vincent, 2011).1007

Specifically, we set w = 1,M = 41008

and experiment with various t. As1009

shown in Figure 13, DSM fails to1010

work when the noise scale is too large1011

or too small. This is because DSM is1012

a biased estimator which is optimised1013

for p✓⇤(y) =
R
�t(y�x)pdata(x)dx.1014

In contrast, energy discrepancy is1015

more robust to the choice of t since1016

energy discrepancy considers all noise1017

scales up to t simultaneously and has an unique optimum p✓⇤(x) = pdata(x). However, in the case1018

that t is large and M is small, estimation with energy discrepancy deteriorates due to high variance1019

of the estimated loss function. This provides an explanation for the superior performance of energy1020

discrepancy at
p
t = 1 compared to

p
t = 10. Further ablation studies are presented in Figure 20.1021
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D.4 Additional Image Modelling Results1022

Additional Image Generation and Reconstruction Results. Figures 14 and 15 show additional1023

examples of image generation on CelebA 128⇥ 128 and image reconstruction on CelebA 64⇥ 64.1024

The images are computed through the sampling process outlined in Appendix C.2.1025

Additional Image Interpolation and Manipulation Results. Figures 16, 17 and 19 show additional1026

results of image interpolation and manipulation on CelebA 64⇥ 64. Note that there are two types1027

of interpolations: posterior interpolation and prior interpolation. For posterior interpolation, we1028

consider two real images x1 and x2 from the dataset and perform linear interpolation among their1029

corresponding latent variables z1 ⇠ p�,✓(z|x1) and z2 ⇠ p�,✓(z|x2). For prior interpolation, we1030

apply linear interpolation between z1 ⇠ p✓(z) and z2 ⇠ p✓(z).1031

Long-run MCMC Diagnostics. Figure 18 depicts several convergence diagnostics for long-run1032

MCMC on the EBM prior, where we simulate Langevin dynamics with a large number of steps1033

(2, 000). Firstly, the energy profiles converge at approximately 250 steps, as demonstrated in Fig-1034

ure 18a, and the quality of the synthesized samples improves as the number of steps increases.1035

Secondly, we compute the Gelman-Rubin statistic R̂ (Gelman & Rubin, 1992) using 64 chains. The1036

histograms of R̂ over 5, 000⇥64 chains are shown in Figure 18b, with a mean of 1.08 < 1.20, indicat-1037

ing that the Langevin dynamics have approximately converged. Thirdly, we present auto-correlation1038

results in Figure 18c using 5, 000 chains, where the mean is depicted as a line and the standard1039

deviation as bands. The auto-correlation decreases to zero within 200 steps, which is consistent with1040

the Gelman-Rubin statistic that assesses convergence across multiple chains.1041

D.5 Qualitative Results on the Effect of t, M , and w1042

The hyperparameters t,M,w play important roles in energy discrepancy. Here, we provide some1043

qualitative results to understand their effects. According to Theorem 2, t controls the nearsight-1044

edness of energy discrepancy. For small t, energy discrepancy behaves like score matching1045
1
tED�t(pdata, U) = 1

t

R t
0 SM(ps, Us)ds ⇡ SM(pdata, U) and is expected to be unable to resolve1046

local mixture weights. This assertion can be confirmed by qualitative results depicted in Figure 20,1047

which show that when t = 0.0025, energy discrepancy fails to identify the weights of components in1048

the 25-Gaussians and pinwheel datasets. For large t, energy discrepancy inherits favourable properties1049

of the maximum likelihood estimator. While large values of t consequently mitigate problems of1050

nearsightedness, it is worth noting that energy discrepancy may encounter issues with high variance1051

when t become excessively large. In such situations, it is necessary to consider increasing the value1052

of M to reduce the variance.1053

We also investigate the effect of w in Figure 21. As pointed out by the analysis in Appendix B.1,1054

w serves as a stabilises training of energy based models with energy discrepancy. Based on our1055

experimental observations, when w = 0 and M is small (e.g., M  128 in the 25-Gaussians dataset1056

and M  32 in the pinwheel dataset), energy discrepancy exhibits rapid divergence within 1001057

optimisation steps and fails to converge in the end. If, however, w is increased, e.g. to 1, energy1058

discrepancy shows stable convergence even with M = 1. This property is highly appealing as it1059

significantly reduces the computational complexity. Additionally, we find in Figure 2 that larger1060

w tends to result in a flatter estimated energy landscapes which aligns with our intuition gained in1061

Appendix B.1.1062
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Figure 15: Qualitative results of reconstruction on test images. Left: real image from the dataset.
Right: reconstructed images by sampling from the posterior.
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Figure 16: Linear interpolation results in posterior latent space between real images.

Figure 17: Linear interpolation results in prior latent space between generated images.

(a) Energy Profile (b) Gelman-Rubin (c) Auto-correlation

Figure 18: Diagnostics for the mixing of MCMC chains with 2, 000 steps on CelebA 64⇥ 64. Top:
Trajectory in the data space. Bottom: (a) Energy profile over time; (b) Histograms of Gelman-Rubin
statistic of multiple chains; (c) Auto-correlation of a single chain over time lags.

35



(a) Smiling

(b) Male

(c) Eyeglasses

(d) Blond Hair
Figure 19: Attribute manipulation results on CelebA 64⇥ 64. Each row is made by interpolating the
latent variable along an attribute vector, with the middle image being the original image.
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Figure 20: Density estimation on 25-Gausssians and pinwheel with different t,M and w = 1.

Figure 21: Density estimation 25-Gausssians and pinwheel with different w,M and t = 1.
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