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Abstract

Energy-based models are a simple yet powerful class of probabilistic models,1

but their widespread adoption has been limited by the computational burden of2

training them. We propose a novel loss function called Energy Discrepancy (ED)3

which does not rely on the computation of scores or expensive Markov chain4

Monte Carlo. We show that ED approaches the explicit score matching and neg-5

ative log-likelihood loss under different limits, effectively interpolating between6

both. Consequently, minimum ED estimation overcomes the problem of near-7

sightedness encountered in score-based estimation methods, while also enjoying8

theoretical guarantees. Through numerical experiments, we demonstrate that ED9

learns low-dimensional data distributions faster and more accurately than explicit10

score matching or contrastive divergence. For high-dimensional image data, we11

describe how the manifold hypothesis puts limitations on our approach and demon-12

strate the effectiveness of energy discrepancy by training the energy-based model13

as a prior of a variational decoder model.14

1 Introduction15

Energy-based models (EBMs) are a class of parametric unnormalised probabilistic models of the16

general form pebm ∝ exp(−U) originally inspired by statistical physics. EBMs can be flexibly17

modelled through a wide range of neural network functions which, in principle, permit the modelling18

of any positive probability density. Through sampling and inference on the learned energy function,19

the EBM can then be used as a generative model or in numerous other downstream tasks such as20

improving robustness in classification or anomaly detection (Grathwohl et al., 2019).21

Despite their flexibility, EBMs are limited in machine learning applications by the difficulty of22

their training. The normalisation of EBMs, also known as partition function, is typically intractable23

which makes standard techniques in estimation such as maximum likelihood estimation (MLE)24

infeasible. For this reason EBMs are commonly trained with an approximate maximum likelihood25

method called contrastive divergence (CD) (Hinton, 2002) which approximates the gradient of the log-26

likelihood using short runs of a Markov chain Monte Carlo (MCMC) method. However, contrastive27

divergence with short run MCMC leads to malformed estimators of the energy function (Nijkamp28

et al., 2020a), even for relatively simple restricted Boltzmann-machines (Carreira-Perpiñán & Hinton,29

2005). This can, in part, be attributed to the fact that contrastive divergence is not the gradient of30

any fixed objective function (Sutskever & Tieleman, 2010), which severely limited the theoretical31

understanding of CD and motivated various adjustments of the algorithm (Du et al., 2021; Yair &32

Michaeli, 2021).33

Score-based methods such as score matching (SM) (Hyvärinen & Dayan, 2005; Vincent, 2011;34

Song et al., 2020a) and Kernel Stein Discrepancy (KSD) estimation (Liu et al., 2016; Chwialkowski35

et al., 2016) are a family of competing approaches which offer tractable loss functions and are, by36
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construction, independent of the normalising constant of the distribution. However, such methods37

suffer from nearsightedness as they fail to resolve global features in the distribution without vast38

amounts of data. In particular, both SM and KSD estimators are unable to capture the mixture weights39

of two well-separated Gaussians (Song & Ermon, 2019; Zhang et al., 2022; Liu et al., 2023).40

We propose a new loss functional for energy-based models called energy discrepancy (ED) which41

compares the data distribution and the energy-based model via two contrasting energy contributions.42

By definition, energy discrepancy only depends on the energy function and is independent of the43

scores or MCMC samples from the energy-based model. In our theoretical section, we show that44

this leads to a loss functional that can be defined on general measure spaces without Euclidean45

structure and demonstrate its close connection to score matching and maximum likelihood estimation46

in the Euclidean case. In our practical section, we focus on a simple implementation of energy47

discrepancy on Euclidean space which requires less evaluations of the energy-based model than the48

parameter update of contrastive divergence or score-matching. We demonstrate that the Euclidean49

energy-discrepancy alleviates the problem of nearsightedness of score matching and approximates50

maximum-likelihood estimation with better theoretical guarantees than contrastive divergence.51

On high-dimensional image data, energy-based models face the additional challenge that under the52

manifold hypothesis (Bengio et al., 2013), the data distribution is not a positive probability density53

and does, strictly speaking, not permit a representation of the form of an energy-based model. Energy54

discrepancy is particularly sensitive to data that lives on a manifold and requires the transformation of55

the data distribution to a positive density. We approach this problem by training latent energy-based56

priors (Pang et al., 2020) which employ a lower-dimensional latent representation in which the data57

distribution is positive.58

Our contributions are the following: 1) We present energy discrepancy, a new estimation loss for59

the training of energy-based models that is independent of spatial gradients of the energy-function.60

2) We show that, as a loss function, ED interpolates between the losses of score matching and61

maximum-likelihood estimation and overcomes the nearsightedness of score-based methods. 3)62

We identify the manifold hypothesis as an important challenge in the adoption of likelihood-based63

training of EBMs and demonstrate the efficacy of ED on a latent variable energy-based model.64

2 Training of Energy-Based Models65

In the following, let pdata(x) be an unknown data distribution which we are trying to estimate66

from independently distributed data {xi} ∼ pdata. Energy-based models (EBMs) are parametric67

distributions of the form68

pθ(x) ∝ exp(−Eθ(x))

for which we want to find the scalar energy function Eθ such that pθ ≈ pdata. Typically, energy-based69

models are trained with contrastive divergence which estimates the gradient of the log-likelihood70

∇θ log pθ(x) = Epθ(y)[∇θEθ(y)]− Eθ(x) . (1)
using Markov chain Monte Carlo (MCMC) methods to approximate the expectation for pθ. For71

computational efficiency, the Markov chain is only run for a small number of steps. As a result,72

contrastive divergence does not learn the maximum-likelihood estimator and can produce malformed73

estimates of the energy function (Nijkamp et al., 2020a).74

Alternatively, the discrepancy between data distribution and energy-based model can be measured by75

comparing their score functions ∇x log pdata and ∇x log pθ which, by definition, are independent76

of the normalising constant. The comparison of the scores is achieved with the Fisher divergence.77

After applying an integration-by-parts and discarding constants with respect to θ, this leads to the78

score-matching loss (Hyvärinen & Dayan, 2005)79

SM(pdata, Eθ) := Epdata(x)

[
−∆xEθ(x) +

1

2
∥∇xEθ(x)∥2

]
. (2)

As this only requires expectations with respect to pdata, the requirement that the data distribution80

attains a density can be relaxed, yielding a loss function for pθ which can be readily approximated.81

Score-based methods are nearsighted as the score function only contributes local information to the82

loss. In a mixture of well-separated distributions, the score matching loss decomposes into a sum of83

objective functions that only see the local mode and are not capable of resolving the weights of the84

mixture components (Song & Ermon, 2019; Zhang et al., 2022).85
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Figure 1: Loss of energy discrepancy,
score matching, and maximum likeli-
hood estimation on the task of estimating
the weight in a mixture of two Gaussians.
For details, see Appendix D.1.

To illustrate the idea behind the proposed objective func-87

tion, we start by motivating energy discrepancy as an en-88

hancement of explicit score matching. In the following,89

we will denote the EBM as pebm ∝ exp(−U), where U is90

the energy function that is learned. The nearsightedness of91

score matching arises due to the presence of large regions92

of low probability which are separating the modes of the93

data distribution. To increase the probability mass in these94

regions, we perturb pdata and pebm through a convolution95

with a Gaussian kernel γs(y−x) ∝ exp(−∥y−x∥2/2s),96

i.e.97

ps(y) : =

∫
γs(y − x)pdata(x)dx,

exp(−Us(y)) : =

∫
γs(y − x) exp(−U(x))dx .

The resulting perturbed divergence S̃M(pdata, U) := SM(ps, Us) retains its unique optimum at98

exp(−U∗) ∝ pdata (Zhang et al., 2020) but alleviates the nearsightedness as the data distribution is99

more spread out. The perturbation with γs simultaneously makes the two distributions more similar100

which comes at a potential loss of discriminatory power. We mitigate this by integrating the score101

matching objectives over s over an interval of noise-scales [0, t]. It turns out that this integral can be102

evaluated as the difference of two contrasting energy-contributions:103 ∫ t

0

SM(ps, Us)ds = Epdata(x)[U(x)]− Epdata(x)Eγt(xt−x)[Ut(xt)] . (3)

The proof is given in Appendix A.3. The contrasting expression on the right-hand is now independent104

of the score and normalisation of the EBM. We argue that such constructed objective functions are105

useful losses for energy-based modelling.106

3.1 A contrastive approach to learning the energy107

We lift the idea of learning the energy-based distribution through the contrast of two energy-108

contributions to a general estimation loss called Energy Discrepancy. We will show that energy109

discrepancy can be defined independent of an underlying perturbative process and is well-posed even110

on non-Euclidean measure-spaces:111

Definition 1 (Energy Discrepancy). Let pdata be a positive density on a measure space (X , dx)1and112

let q(y|x) be a conditional probability density. Define the contrastive potential induced by q as113

Uq(y) := − log

∫
q(y|x) exp(−U(x))dx. (4)

We define the energy discrepancy between pdata and U induced by q as114

EDq(pdata, U) := Epdata(x)[U(x)]− Epdata(x)Eq(y|x)[Uq(y)]. (5)

In this paper, we shall largely focus on the case where the data is Euclidean, i.e. X = Rd, and the115

base-distribution dx is the standard Lebesgue measure. However, this framework also admits X116

being discrete spaces like spaces of graphs, or continuous spaces with non-trivial base measures117

dx such as the GAN-based prior suggested by Arbel et al. (2021). Specifically, the validity of our118

approach is characterised by the following non-parametric estimation result:119

Theorem 1. Let pdata be a positive probability density on (X , dx). Under mild technical assumptions,120

the energy discrepancy EDq is functionally convex in U and has a unique global minimiser U∗ =121

argminEDq(pdata, U) with pdata ∝ exp(−U∗).122

The omitted assumption describes that the perturbation y ∼ q(·|x) involves loss of information,123

i.e., x can not be fully recovered from y for all y ∼ q(y|x). The assumption that pdata has full124

support turns out to be crucial when scaling energy-discrepancy to high-dimensional data. The precise125

technical assumptions and the proof of Theorem 1 are given in Appendix A.1.126

1The integrals should be interpreted as measure integrals, i.e., if X is discrete, the integral will be a sum.
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3.2 Choices for the conditional distribution q127

Def. 1 offers a wide range of possible choices for the perturbation distribution q. In Appendix B.3128

we discuss a possible choice in the discrete space {0, 1}d. For the remainder of this paper, however,129

we will focus on Euclidean data x ∈ Rd and hope that the generality of our result inspires future130

work. Our requirements on q are that simulating from the conditional distribution y ∼ q(y|x) and131

computing the convolution that defines Uq are numerically tractable. On continuous spaces, a natural132

candidate for q is the transition density of a diffusion process which arises as solution to a stochastic133

differential equations of the form dxt = a(xt)dt+ dwt with drift a and standard Brownian motion134

wt (see Øksendal, 2003). The conditional density qt(·|x) represents the probability density of the135

perturbed particle xt that was initialised at x0 = x. The resulting transition density then satisfies136

both of our requirements by employing the Feynman-Kac formula as we line out in Appendix B.2.137

Although this approach makes the choice of q flexible, the following interpolation result stresses that138

not much is lost when choosing a Gaussian transition density γt ∝ exp(−∥x− y∥2/2t):139

Theorem 2. Let qt be the transition density of the diffusion process dxt = a(xt)dt + dwt, let140

pebm ∝ exp(−U) be the energy-based distribution and pt the data-distribution convolved with qt.141

1. The energy discrepancy is given by a multi-noise scale score matching loss142

EDqt(pdata, U) =

∫ t

0

Eps(xs)

[
−∆Uqs(xs) +

1

2
∥∇Uqs(xs)∥2

]
ds+ const

2. If a = 0, i.e. qt is the Gaussian transition density γt, the energy discrepancy converges to143

the loss of maximum likelihood estimation a linear rate in time144 ∣∣EDγt
(pdata, U) + Epdata(x) [log pebm(x)]− c(t)

∣∣ ≤ 1

2t
W2

2 (pdata, pebm)

where c(t) is independent of U and W2 denotes the Wasserstein distance.145

Theorem 2 has two main messages: All diffusion-based energy discrepancies behave like a muli-noise146

scale score matching loss independent of the drift a. In fact, we show in Appendix A.2 that for147

a linear drift αxt, the induced energy discrepancy is always equivalent to the energy discrepancy148

based on a Gaussian perturbation. Furthermore, estimation with a Gaussian-based energy discrepancy149

approximates maximum likelihood estimation for large t, thus enjoying its attractive asymptotic150

properties provided EDγt
(pdata, U) can be approximated with low variance. We demonstrate the151

result in a mixture model in Figure 1 and Appendix D.1 and give a proof of above theorem in152

Appendices A.3 and A.4.153

Connection to Contrastive Divergence. Due to the generality of our result we can also make a154

direct connection between energy discrepancy and contrastive divergence. To this end, suppose that155

for θ fixed, q satisfies the detailed balance relation q(y|x) exp(−Eθ(x)) = q(x|y) exp(−Eθ(y)). In156

this case, energy discrepancy becomes the loss function157

EDq(pdata, Eθ) = Epdata(x)Eθ(x)− Epdata(x)Eq(y|x)Eθ(y) (6)

which after taking gradients in θ yields the contrastive divergence update2. See Appendix A.5 for158

details. The non-parametric estimation result from Theorem 1 holds true for the contrastive objective159

in (6). This means that each step of contrastive divergence optimises an objective function with160

minimum at pdata ≈ pθ. However the objective function is adjusted in each step of the algorithm.161

4 Training EBMs with Energy Discrepancy162

In sight of Theorem 2, we will discuss how to approximate ED from samples for Euclidean data163

{xi} ⊂ Rd and a Gaussian conditional distribution γt(y − x) ∝ exp(−∥y − x∥2/2t). First, the164

outer expectations on the right-hand of (5) can be computed as plug-in estimators by simulating the165

Gaussian perturbation xi
t = xi +

√
tξ for ξ ∼ N (0, I) and averaging {U(xi)} and {Ut(x

i
t)}. The166

critical step is then finding a low-variance estimate of the contrasting potential Ut itself.167

2The implicit dependence of q on θ is ignored when taking the gradient. Notice that CD is not the gradient of
any fixed objective function (Sutskever & Tieleman, 2010).

4



3 2 1 0 1 2 3
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

es
tim

at
ed

 e
ne

rg
y

ground_truth
w = 0.0
w = 0.1
w = 1.0
w = 4.0

Figure 2: Estimated energy functions for
Gaussian data with various choices of
w. Increasing w leads to flatter energy-
landscapes, and training becomes unsta-
ble if w = 0. For details, see Appen-
dices B.1 and D.2.

Due to the symmetry of the Gaussian transition density, we168

can interpret γt as the law of a Gaussian random variable169

with mean xi
t and variance t, i.e. the conditioned random170

variable xi
t +

√
tξ′|xi

t for ξ′ ∼ N (0, I) has the density171

γt(x
i
t − x). Hence, we can write Ut as the expectation172

Ut(x
i
t) = − logEγ1(ξ′)[exp(−U(xi

t +
√
tξ′))|xi

t)]

for i = 1, 2, . . . , N . The conditioning expresses that we173

keep xi
t fixed when taking the expectation with respect174

to ξ′. It is then possible to calculate the expectation by175

sampling ξ′i,j ∼ N (0, I) and calculating the mean as176

for the outer expectations. However, we find that this177

approximation is not sufficient as it is biased due to the178

logarithm and prone to numerical instabilities because179

of missing bounds on the value of Ut(x
i
t). To stabilise180

training, we augment the Monte Carlo estimate of Ut(x
i
t)181

by an additional term w/M exp(−U(xi)) which we call w-stabilisation. This results in the following182

approximation of the contrastive potential:183

Ut(x
i
t)≈− log

 w

M
exp(−U(xi))+

1

M

M∑
j=1

exp(−U(xi
t+

√
tξ′i,j))

 ξ′i,j ∼ N (0, I)

The w-stabilisation provides a deterministic upper bound for the approximate contrastive potential in184

(4) and reduces the variance of the estimation. We illustrate the effect of the stabilisation in Figures 2185

and 21 and discuss our reasoning in more details in Appendix B.1. The full loss is now formed for186

U := Eθ with ξi ∼ N (0, I), ξ′i,j ∼ N (0, I) and tunable hyperparameters t,M,w as187

Lt,M,w(θ) :=
1

N

N∑
i=1

log

 w

M
+

1

M

M∑
j=1

exp(Eθ(x
i)− Eθ(x

i +
√
tξi +

√
tξ′i,j))

 .

The loss is evaluated using the numerically stabilised logsumexp function. The justification of the188

approximation is given by the following theorem:189

Theorem 3. Assume that x 7→ exp(−Eθ(x)) is uniformly bounded. Then, for every ε > 0 there190

exist N and M(N) such that
∣∣Lt,M(N),w(θ)− EDγt(pdata, Eθ)

∣∣ < ε almost surely.191

We give the proof in Appendix B.1. This result forms the basis for proofs of asymptotic consistency192

of our estimators. We leave this for future work.193

4.1 Training EBMs under the manifold hypothesis194

LeCun (2022) suggest that maximum-likelihood-based training of energy-based models leads to the195

formation of undesirable canyon shaped energy-functions. Indeed, energy discrepancy yields an196

energy with low values on the data-support and rapidly diverging values outside of it when being used197

on high-dimensional data, directly. Such learned energies fail to represent the distribution between198

data-points and are not suitable for inference or image generation. We attribute this phenomenon to199

the manifold hypothesis, which states that the data concentrates in the vicinity of a low-dimensional200

manifold (Bengio et al., 2013). In this case, the data distribution is not a positive density and can201

not be written as an energy-based model as log pdata is not well-defined. Additionally, Gaussian202

perturbations of a data point x̃ := x+ ξ are orthogonal to the data manifold with high-probability203

and the negative samples in the contrastive term are not informative.204

To resolve this problem, we will work with a lower-dimensional latent representation of the data205

distribution in which positivity can be ensured. We follow Pang et al. (2020) and define a variational206

decoder network pϕ(x|z) and an energy-based tilting of a Gaussian prior pθ(z) = exp(−Eθ(z))p0(z)207

on latent space, resulting in the so-called latent energy-based prior models (LEBMs) pϕ,θ(x) ∝208 ∫
pϕ(x|z)pθ(z)dz. To obtain the latent representation of the data we sample from the posterior209

pϕ,θ(z|x) ∝ pϕ(x|z) exp(−Eθ(z))p0(z) using a Langevin sampler. For the training, the contrastive210

divergence algorithm is replaced with energy discrepancy (for details see appendix C). LEBMs211

provide an interesting benchmark to compare energy discrepancy with contrastive divergence in high212

dimensions. However, other ways to tackle the manifold problem are elements of ongoing research.213
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Figure 3: Comparison of energy discrepancy, score matching and contrastive divergence on density
estimation. The 1st and 2nd rows are the estimated density and synthesised samples, respectively.

5 Empirical Studies214

To support our theoretical discussion, we evaluate the performance of energy discrepancy on low-215

dimensional datasets as well as for the training of latent EBMs on high-dimensional image datasets.216

In our discussion, we emphasise the comparison with contrastive divergence and score matching as217

the dominant methodologies in EBM training.218

5.1 Density Estimation219
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Figure 4: Density estimation accu-
racy in the 25-Gaussians dataset.

We first demonstrate the effectiveness of energy discrepancy220

(ED) on several 2-dimensional distributions. Figure 3 dis-221

plays the estimated unnormalised densities as well as sam-222

ples that were synthesised with Langevin dynamics for energy223

discrepancy, score matching (SM) and contrastive divergence224

(CD). More experimental results and details are given in Ap-225

pendix D.3. Our results confirm the aforementioned nearsight-226

edness of score matching which does not learn the uniform227

weight distribution of the Gaussian mixture. For CD, it can be228

seen that CD consistently produces flattened energy landscapes229

which can be attributed to the short-run MCMC (Nijkamp et al.,230

2020a, see) not having converged. Consequently, the synthe-231

sised samples of energies learned with CD can lie outside of the data-support. In contrast, ED is able232

to model multi-modal distributions faithfully and learns sharp edges in the data support as in the233

chessboard data set. We quantify our results in Figure 4 which shows the mean squared error of the234

estimated log-density of 25-Gaussians over the number of training iterations. The partition function235

is estimated using importance sampling logZ≈ logsumexp(−E(xi)−log pdata(xi))−logN , where236

xi is sampled from the data distribution pdata(x) and N=5, 000. It shows that ED outperforms SM237

and CD with faster convergence, lower mean square error, and better stability.238

5.2 Image Modelling239

Figure 5: Image re-
construction results
on CelebA 64× 64.

In this experiment, our methods are evaluated by training a latent EBM on three240

image datasets: SVHN (Netzer et al., 2011), CIFAR-10 (Krizhevsky et al.,241

2009), and CelebA (Liu et al., 2015). The effectiveness of energy discrepancy242

is diagnosed through image generation, image reconstruction from their latent243

respresentation, and the faithfulness of the learned latent representation. The244

model architectures, training details, and the choices of hyper-parameters can245

be found in Appendix C.3.246

Image Generation and Reconstruction. We benchmark latent EBM priors247

trained with energy discrepancy (ED-LEBM) and score matching (SM-LEBM)248

against various baselines for latent variable models which are included in249

Table 1. Note that the original work on latent EBMs (Pang et al., 2020) uses250

contrastive divergence (CD-LEBM) (see appendix C for details). If the model251

is well-trained, the EBM prior will match the posterior, resulting in realistic252

generated samples and faithful reconstructions. The reconstruction error is253

measured via the mean square error while the image generation is measured254

with the FID (Heusel et al., 2017) which are both reported in Table 1. We255

observe that ED can improve the contrastive divergence benchmark on SVHN256
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(a) SVHN (32× 32) (b) CIFAR-10 (32× 32) (c) CelebA (64× 64)

Figure 6: Generated examples by the ED-LEBM trained on SVHN, CIFAR-10, and CelebA.

Table 1: Comparison of MSE(↓) and FID(↓) on the SVHN, CIFAR-10, and CelebA datasets.

SVHN CIFAR-10 CelebA
MSE FID MSE FID MSE FID

VAE (Kingma & Welling, 2013) 0.019 46.78 0.057 106.37 0.021 65.75
2s-VAE (Dai & Wipf, 2019) 0.019 42.81 0.056 72.90 0.021 44.40

RAE (Ghosh et al., 2019) 0.014 40.02 0.027 74.16 0.018 40.95
SRI (Nijkamp et al., 2020b) 0.018 44.86 0.020 - - 61.03

SRI (L=5) (Nijkamp et al., 2020b) 0.011 35.32 - - 0.015 47.95
CD-LEBM (Pang et al., 2020) 0.008 29.44 0.020 70.15 0.013 37.87

SM-LEBM 0.010 34.44 0.026 77.82 0.014 41.21

ED-LEBM (ours) 0.006 28.10 0.023 73.58 0.009 36.73

and CelebA while the results on CIFAR-10 could not be improved. However, we emphasise that257

ED only requires M (here, M = 16) evaluations of the energy function per data point which is258

significantly less than CD and SM that both require the calculation of a high-dimensional spatial259

gradient. Besides the quantitative metrics, we present qualitative results of the generated samples in260

Figure 6. It can be seen that our model generates diverse high-quality images. The qualitative results261

of the reconstruction are shown in Figure 5, for which we use the test set of CelebA 64×64. The right262

column shows the original image x to be reconstructed. The left column shows the reconstruction263

based on the initialized latent variable z0 ∼ p0(z), and the middle column displays the reconstructed264

image of zk ∼ p(z|x) which is sampled via Langevin dynamics. One can see that our model can265

successfully reconstruct the test images, verifying the validity of the latent prior learned with energy266

discrepancy. In addition, we showcase the scalability of our approach by applying it successfully to267

high-resolution images (CelebA 128× 128). More results can be found in Appendix D.4.268

Image Interpolation and Manipulation. We use a latent-variable to model the effective low-269

dimensional structure in the data set. To probe how well the latent space describes the geometry and270

meaning of the data-manifold we analyse the structure of the latent space through interpolation and271

attribute manipulation. For the interpolation between two samples we linearly interpolate between272

their latent representations which were sampled from the posterior distribution. The results in Figure 7273

demonstrate that the latent space has learned the data-manifold well and almost all intermediate274

samples appear as realistic faces. Further results are given in Figures 16 and 17. In addition, we can275

utilize the labels in the CelebA dataset to modify the attributes of an image through the manipulation276

technique proposed in (Kingma & Dhariwal, 2018). Specifically, each image in the dataset is277

associated with a binary label that indicates the presence or absence of attributes such as smiling,278

male, eyeglasses. For each manipulated attribute, we compute the average latent vectors zpos of279

images with and zneg of images without the attribute in the training set. Then, we use the difference280

zpos − zneg as the direction for manipulating the attribute of an image. The results presented in281

Figures 8 and 19 confirm the meaningfulness of the latent space learned by energy discrepancy.282

5.3 Anomaly Detection283

In a well-learned energy-based model, the likelihood should be higher for in-distribution examples284

and lower for out-of-distribution examples (Grathwohl et al., 2019). Based on this principle, we285
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Figure 7: Image interpolation results on CelebA 64×64. The first and last columns show the observed
images, while the middle columns display the interpolation results using the inferred latent vectors.

(a) Smiling (b) Male

(c) Eyeglasses (d) Blond Hair

Figure 8: Attribute manipulation by interpolating the latent variable along an attribute vector. The
middle image corresponds to the original image, and each subfigure represents a different attribute.

Table 2: Comparison of AUPRC(↑) for unsupervised anomaly detection on MNIST dataset.
Heldout Digit 1 4 5 7 9

VAE (Kingma & Welling, 2013) 0.063 0.337 0.325 0.148 0.104
ABP (Han et al., 2017) 0.095± 0.03 0.138± 0.04 0.147± 0.03 0.138± 0.02 0.102± 0.03

MEG (Kumar et al., 2019) 0.281± 0.04 0.401± 0.06 0.402± 0.06 0.290± 0.04 0.342± 0.03
BiGAN-σ (Zenati et al., 2018) 0.287± 0.02 0.443± 0.03 0.514± 0.03 0.347± 0.02 0.307± 0.03
CD-LEBM (Pang et al., 2020) 0.336± 0.01 0.630± 0.02 0.619± 0.01 0.463± 0.01 0.413± 0.01

SM-LEBM 0.285± 0.01 0.663± 0.01 0.610± 0.01 0.471± 0.01 0.422± 0.01

ED-LEBM (ours) 0.342 ± 0.01 0.740 ± 0.01 0.708 ± 0.01 0.501 ± 0.02 0.444 ± 0.01

conduct anomaly detection experiments to compare our method with other baselines. Specifically,286

given a test sample x, we first sample z form the posterior pθ(z|x) by Langevin dynamics, and then287

compute the unnormalized log-density pθ(x, z) as the decision function. Following the protocol288

in (Zenati et al., 2018), we designate each digit class in the MNIST dataset as an anomaly and289

leave the rest as normal. The area under the precision-recall curve (AUPRC) is used to evaluate290

different methods. As shown in Table 2, our model consistently outperforms the baseline methods,291

demonstrating the advantages of training latent EBMs with energy discrepancy.292

6 Related Work293

Training Energy-based models. While energy-based models have been around for some time294

(Hinton, 2002), the training of energy-based models remains challenging. For a summary on existing295

methods for the training of energy-based models see Song & Kingma (2021) and LeCun et al.296

(2006). Contrastive divergence is still the most used option for training energy-based models. Recent297

extensions have improved the scalability of the basic algorithm, making it possible to train EBMs298

on high-dimensional data (Nijkamp et al., 2019; Du & Mordatch, 2019). Despite these advances, it299

has been noted that contrastive divergence is not the gradient of any fixed loss-function (Sutskever &300

Tieleman, 2010) and can yield energy functions whose associated distribution does not adequately301

reflect the data (Nijkamp et al., 2020a). This has motivated improvements to the standard methodology302

(Du et al., 2021) by approximating overlooked entropy terms or by improving the convergence of303

MCMC sampling with diffusion recovery likelihood (Gao et al., 2020).304

Score-based methods (Hyvärinen & Dayan, 2005; Vincent, 2011; Song et al., 2020a) are typically305

implemented by directly learning the score function instead of the energy function. Song & Ermon306

(2019); Song et al. (2020b) point out the importance to introduce multiple noise levels at which the307

score is learned. Li et al. (2019) adopt the strategy to learn an energy-based model using multi-scale308

denoising score matching.309
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We learn a latent EBM prior (Pang et al., 2020) on high-dimensional data to address situations where310

the data lives on a lower dimensional submanifold. This methodology has been improved with311

a multi-stage approach (Xiao & Han, 2022) with score-independent noise contrastive estimation312

(Gutmann & Hyvärinen, 2010).313

Related loss functions. Energy discrepancies can be derived from KL-contraction divergences314

(Lyu, 2011) which we also discuss briefly in Appendix A.6. To the best of our knowledge, no315

practical implementations that make training of energy-based models with KL-contractions a viable316

approach have been suggested prior to our work. Gao et al. (2020) technically optimise the same317

loss as us but train the EBM with contrastive divergence. Energy discrepancy also shares similarities318

with other contrastive loss functions in machine learning. The w-stabilised energy-discrepancy319

loss with w,M = 1 is equivalent to conditional noise contrastive estimation (Ceylan & Gutmann,320

2018) with Gaussian noise. For M > 1, the stabilised ED loss shares great structural similarity to321

certain contrastive learning losses such as InfoNCE (van den Oord et al., 2018). We hope that such322

observations can lead to interpretations of the w-stabilisation.323

Theoretical connections between likelihood and score-based functionals. The connection between324

likelihood methods and score-based methods is related to the de Burjin identity (Stam, 1959; Lyu,325

2009) which explains that score matching appears frequently as the limit of EBM training methods.326

We generalise the identity significantly. Similar connections have been mentioned and exploited by327

Song et al. (2021) to choose a weighting scheme for a combination of score matching losses.328

Generative modelling for manifold-valued data. The manifold hypothesis was, for example,329

described in Bengio et al. (2013). Prior work to us shows how score-based generative models detect330

this manifold (Pidstrigach, 2022) and give reasons why CD is more robust to this issue than contrastive331

methods (Yair & Michaeli, 2021). In part, this explains the success of diffusion models (Ho et al.,332

2020) which project a latent space of the same dimension as data on the data manifold. Arbel et al.333

(2021) learn an energy-based model as a tilt of a GAN-based prior that models the data-manifold. We334

believe that a combination of above results with energy discrepancy could enable training EBMs with335

energy discrepancy on data space.336

7 Discussion and Outlook337

We demonstrate that energy discrepancy provides a new tool for fast training of energy-based models338

without the need to compute scores. We show for Euclidean data that ED interpolates between score339

matching and maximum likelihood estimation, thus alleviating problems of nearsightedness of score340

matching without annealing strategies. Based on our theoretical analysis, we show that training341

EBMs using energy discrepancy yields more accurate energy functions for two-dimensional data than342

explicit score matching and contrastive divergence. In this task, it is robust to the hyperparameters343

used, making energy discrepancy a useful tool for energy-based modelling with little tuning required.344

We then establish that energy discrepancy achieves comparable results to contrastive divergence at a345

lower computational cost when learning a lower-dimensional energy-based prior for high-dimensional346

data. This shows that energy discrepancy is not limited to toy data sets.347

Limitations: Energy-based models make the assumption that the data-distribution has a positive348

density which is violated for most high-dimensional data sets due to the manifold hypothesis.349

Compared to contrastive divergence or diffusion-based strategies, energy discrepancy is especially350

sensitive to such singularities in the data set. Currently, this limits energy discrepancy to settings in351

which a low-dimensional representation can be learned efficiently and accurately.352

Outlook: This work can be extended in various ways. Firstly, we want to explore other choices for353

the conditional distribution q. In particular, the effect of different types of noise such as Laplace354

noise or anisotropic Gaussian noise are open questions. Furthermore, energy discrepancy can be355

a well-suited objective function for discrete data for appropriately chosen perturbations. Secondly,356

we believe that improvements to our methodology can be made by learning the energy function of357

image-data on pixel space directly, as in this case U-Net architectures (Ronneberger et al., 2015; Song358

& Ermon, 2019) can be used in the modelling. However, this requires further work in learning the359

data-manifold during training so that early saturation can be prevented. Finally, the partial differential360

equations arising in Euclidean energy discrepancies promise exciting insights into the connections361

between energy-based learning, stochastic differential equations, and optimal control which we want362

to investigate further.363
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A Abstract Proofs and Derivations550

A.1 Proof of the Non-Parametric Estimation Theorem 1551

In this subsection we give a formal proof for the uniqueness of minima of EDq(pdata, U) as a552

functional in the energy function U . We first reiterate the theorem as stated in the paper:553

Theorem 1. Let pdata be a positive probability density on (X , dx). Under mild technical assumptions,554

the energy discrepancy EDq is functionally convex in U and has a unique global minimiser U∗ =555

argminEDq(pdata, U) with pdata ∝ exp(−U∗).556

For this theorem we need to make mild additional assumptions on the conditional distribution q557

and on the optimisation domain to guarantee uniqueness. Firstly, we require the energy-based558

distribution to be normalisable which implies that exp(−U) ∈ L1(X ,dx). For the existence and559

uniqueness of minimisers we have to constrain the space of energy functions since EDq(pdata, U) =560

EDq(pdata, U + c) for any constant c ∈ R. Hence, we restrict the optimisation domain to functions561

U that satisfy minx∈X U(x) = 0. The sufficient condition for q is that x can not be fully recovered562

from y ∼ q(y|x) even if pdata(x) is known, i.e., for every x ∈ X and y ∼ q(y|x), Var(z|y) > 0.563

Such a perturbation may also be deterministic. For image data, for example, y can be defined as a564
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maxed-pooled version of the image which always takes information from the image. We summarise565

these assumptions as follows:566

Assumption 1. For every y ∈ X , we define the recovery probability density567

pdata(z|y) =
q(y|z)pdata(z)∫

q(y|z′)pdata(z′)dz′
.

Furthermore, we define the optimisation domain568

G :=

{
U : X 7→ R such that exp(−U) ∈ L1(X ,dx) , U ∈ L1(pdata) , and min

x∈X
U(x) = 0

}
We then make the following assumptions on q and U :569

1. For every x ∈ X and y ∼ q(·|x) it holds that Varpdata(z|y)(z) > 0.570

2. There exists a U∗ ∈ G such that exp(−U∗) ∝ pdata571

Under Assumption 1, EDq(pdata, U) has a unique global minimiser U∗ = − log pdata + c in G. We572

prove this by computing the first and second variation of EDq . Note that G may not be a vector space573

in general since in some cases 0 /∈ G. We will omit this technical issue in this discussion. We start574

from the following lemmata and then complete the proof of Theorem 1 in Corollary 1.575

Lemma 1. Let h ∈ G be arbitrary. The first variation of EDq is given by576

d

dϵ
EDq(pdata, U + ϵh)

∣∣∣∣
ϵ=0

= Epdata(x)[h(x)]− Epdata(x)Eq(y|x)EpU (z|y)[h(z)] (7)

where pU (z|y) = q(y|z) exp(−U(z))∫
q(y|z′) exp(−U(z′))dz′ .577

Proof. We define the short-hand notation Uϵ := U + ϵh. The energy discrepancy at Uε reads578

EDq(pdata, Uϵ) = Epdata(x)[Uϵ(x)] + Epdata(x)Eq(y|x)

[
log

∫
q(y|z) exp(−Uϵ(z))dz

]
.

For the first functional derivative, we only need to calculate579

d

dϵ
log

∫
q(y|z) exp(−Uϵ(z))dz =

∫
−q(y|z)h(z) exp(−Uϵ(z))∫
q(y|z′) exp(−Uϵ(z′))dz′

dz = −EpUϵ (z|y)[h(z)]. (8)

Plugging this expression into EDq(pdata, Uϵ) and setting ϵ = 0 yields the first variation of EDq .580

Lemma 2. The second variation of F is given by581

d2

dϵ2
EDq(pdata, U + ϵh)

∣∣∣∣
ϵ=0

= Epdata(x)Eq(y|x)VarpU (z|y)[h(z)].

Proof. For the second order term, we have based on equation 8 and the quotient rule for derivatives:582

d2

dϵ2
log

∫
q(y|z) exp(−Uϵ(z))dz

=

∫
q(y|z) exp(Uϵ(z))h

2(z) dz
∫
q(y|z′) exp(−Uϵ(z

′))dz′(∫
q(y|z′) exp(−Uϵ(z′))dz′

)2
−
∫
q(y|z) exp(Uϵ(z))h(z)dz

∫
q(y|z′) exp(−Uϵ(z

′))h(z′)dz′(∫
q(y|z′) exp(−Uϵ(z′))dz′

)2
= EpUϵ (z|y)[h

2(z)]− EpUϵ (z|y,U)[h(z)]
2 = VarpUϵ (z|y)[h(z)] .

We obtain the desired result by interchanging the outer expectations with the derivatives in ϵ.583
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Corollary 1. Let c = minx∈X (− log pdata(x)). For U∗ = − log(pdata)− c ∈ G it holds that584

d

dϵ
EDq(pdata, U

∗ + ϵh)

∣∣∣∣
ϵ=0

= 0

d2

dϵ2
EDq(pdata, U

∗ + ϵh)

∣∣∣∣
ϵ=0

> 0 for all h ,

Furthermore, U∗ is the unique global minimiser of EDq(pdata, ·) in G.585

Proof. By definition, the variance is non-negative, i.e. for every h ∈ G:586

d2

dϵ2
EDq(pdata, U + ϵh)

∣∣∣∣
ϵ=0

= VarpU (z|y)[h(z)] ≥ 0 .

Consequently, the energy discrepancy is convex and an extremal point of EDq(pdata, ·) is a global587

minimiser. We are left to show that the minimiser is obtained at U∗ and unique. First of all, we have588

for U∗:589

EpU∗ (z|y)[h(z)] =

∫
q(y|z) exp(−U∗(z))∫

q(y|z′) exp(−U∗(z′))dz′
h(z)dz

=

∫
q(y|z)pdata(z)∫

q(y|z′)pdata(z′)dz′
h(z)dz.

By applying the outer expectations we obtain590

Epdata(x)Eq(y|x)EpU∗ (z|y)[h(z)] =

∫ ∫
pdata(x)q(y|x)dx

∫
q(y|z)pdata(z)∫

q(y|z′)pdata(z′)dz′
h(z) dy dz

=

∫ ∫
q(y|x)pdata(z)h(z) dy dz

= Epdata(z)[h(z)],

where we used that the marginal distributions
∫
pdata(x)q(y|x)dx cancel out and the conditional591

probability density integrates to one. This implies592

d

dϵ
EDq(pdata, U

∗ + ϵh)

∣∣∣∣
ϵ=0

= Epdata(z)[h(z)]− Epdata(z)[h(z)] = 0.

for all h ∈ G. We now show that593

d2

dϵ2
EDq(pdata, U

∗ + ϵh)

∣∣∣∣
ϵ=0

= Epdata(x)Eq(y|x)Varpdata(z|y)[h(z)] > 0 .

Assume that the second variation was zero. Since the perturbed data distribution
∫
pdata(x)q(y|x)dx594

is positive, the second variation at U∗ is zero if and only if the conditional variance595

Varpdata(z|y)[h(z)] = 0. Since U∗ + εh ∈ G, the function h can not be constant. By definition of the596

conditional variance, h(z) must then be a deterministic function of y ∼
∫
q(y|x)pdata(x)dx. Since597

h was arbitrary, there exists a measurable map g such that z = g(y) and Varpdata(z|y)[z] = 0 which598

is a contradiction to Assumption 1. Consequently, U∗ is the unique global minimiser of EDq which599

completes the statement in Theorem 1.600

A.2 Equivalence of Energy Discrepancy for Brownian Motion and Ornstein-Uhlenbeck601

Processes602

In this subsection we show that an energy discrepancy based on an Ornstein-Uhlenbeck process is603

equivalent to the energy discrepancy based on a time-changed Brownian motion.604

Proposition 1. Let qt be the transition density for the Ornstein-Uhlenbeck process dxt = αxtdt+605 √
βdwt with standard Brownian motion wt, and let γt(y|x) ∝ exp(−∥y−x∥2/2t) be the Gaussian606

transition density of Brownian motion. Then,607

EDqt(pdata, U) = EDγ
σ2
−α

(t)
(pdata, U)− αt

where σα(t) =
√

β
2α (e

2αt − 1) and σ0(t) =
√
βt.608
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Proof. At time t, the Ornstein-Uhlenbeck process has distribution609

xt
d
= eαtx0 + σα(t)ξ , ξ ∼ N (0, I) (9)

with σα(t) =
√

β
2α (e

2αt − 1) and σ0(t) =
√
βt. The Ornstein-Uhlenbeck process is variance610

exploding for α ≥ 0 and variance preserving for α < 0. Based on (9). the transition density of xt is611

given as612

qt(y|x) =
1√

2πσα(t)
d
exp

(
−∥y − eαtx∥2

2σ2
α(t)

)
Hence, we obtain via the change of variables ξ′ := (y − eαtx)/σα(t) ∼ N (0, I) for the contrastive613

potential614

Ut(y) = − log

∫
qt(y|x) exp(−U(x))dx

= − log

∫
γ1(ξ

′) exp
(
−U

(
e−αt(y − σα(t)ξ

′)
))

dξ′ − αt .

We now evaluate the contrastive potential at the forward process y = xt which yields615

Ut(xt) = − log

∫
γ1(ξ

′) exp
(
−U

(
e−αt(eαtx0 + σα(t)ξ − σα(t)ξ

′)
))

dξ′ − αt

= − log

∫
γ1(ξ

′) exp (−U (x0 + σ−α(t)ξ − σ−α(t)ξ
′))) dξ′ − αt

= − log

∫
γσ2

−α(t)

(
wσ2

−α(t) − x
)
exp(−U(x)dx− αt

where we used that e−αtσα(t) = σ−α(t) in the second equality and the change of variables x =616

wσ2
−α(t) − ξ′ in the third equality. Hence, the energy discrepancy for the Ornstein-Uhlenbeck process617

is equivalent to the energy discrepancy for Brownian motion with time parameter618

σ−α(t) =

√
β

2α
(1− e−2αt)

619

Notice that for the variance-exploding process with α > 0 the contrasting particles have a finite620

horizon since σ−α(t)
t→∞−−−→

√
β
2α < ∞. Hence, the maximum-likelihood limit in Theorem 2 is only621

achieved for the variance preserving process with α < 0 and for the critical case of Brownian motion622

with α = 0.623

A.3 Interpolation between Score-Matching and Maximum-Likelihood Estimation624

We first prove the result as stated in the Gaussian case. We then show how the result can be generalised625

to arbitrary diffusions by using Ito calculus.626

Gaussian case Denote the Gaussian density as627

γt(y − x) :=
1

√
2πt

d
exp

(
−∥y − x∥2

2t

)
.

and define the convolved distributions pt := γt ∗ pdata and exp(−Ut) := γt ∗ exp(−U).628

Proposition 2. The energy discrepancy is the multi noise-scale score-matching loss629

ED(pdata, U) =

∫ t

0

Eps(xs)

[
−∆Us(xs) +

1

2
∥∇Us(xs)∥2

]
ds
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Proof. It is known that γt is the solution of the heat equation:630

∂tγt(y − x) =
1

2
∆yγt(y − x) .

Consequently, both, pt and exp(−Ut) satisfy the heat-equation because the integral commutes with631

the differential operators. Based on the heat-equation we can derive the following non-linear partial632

differential equation for the contrastive potential Ut:633

∂te
−Ut(y) =

∫
∂tγt(y − x)e−U(x)dx

=
1

2

∫
∆yγt(y − x)e−U(x)dx

=
1

2
∆ye

−Ut(y)

= −1

2
∇y ·

(
(∇yUt(y)) e

−Ut(y)
)

=

(
1

2
∥∇yUt(y)∥2 −

1

2
∆yUt(y)

)
e−Ut(y)

Since ∂te
−Ut = −e−Ut∂tUt, we get after cancellation of the exponentials:634

∂tUt(y) =
1

2
∆yUt(y)−

1

2
∥∇yUt(y)∥2

The integral notation of the contrastive term in energy discrepancy takes the form635

Epdata(x)Eγt(y−x)[Ut(y)] =

∫
Ut(y)pt(y)dy .

We now take a derivative of the energy discrepancy and find636

∂tEDγt(pdata, U) = −∂t

∫
Ut(y)pt(y)dy

= −
∫

(∂tUt(y)) pt(y)dy −
∫

Ut(y)∂tpt(y)dy

= −
∫

(∂tUt(y)) pt(y)dy −
∫

Ut(y)
1

2
∆ypt(y)dy

= −
∫

(∂tUt(y)) pt(y)dy −
∫

1

2
(∆yUt(y)) pt(y)dy

where we used integration by parts twice in the final equation to shift the differential operator from pt637

to Ut. Now, plugging in the differential equation for Ut we find638

∂tEDγt
(pdata, U) =

∫ (
−1

2
∆yUt(y) +

1

2
∥∇yUt(y)∥2 −

1

2
∆yUt(y)

)
pt(y)dy

= Epdata(x)Eγt(y−x)

[
−∆yUt(y) +

1

2
∥∇yUt(y)∥2

]
Finally, we obtain energy discrepancy by integrating above expression:639

EDγt
(pdata, U) =

∫ t

0

∂sEDγs
(pdata, U)ds

=

∫ t

0

Epdata(x)Eγs(y−x)

[
−∆yUs(y) +

1

2
∥∇yUs(y)∥2

]
ds

This gives the desired integral representation in Proposition 2.640

Proposition 3. Let γt be the Gaussian transition density and pebm ∝ exp(−U) the energy-based641

distribution. The energy discrepancy converges to a cross entropy loss at a linear rate in time642 ∣∣EDγt
(pdata, U) + Epdata(x) [log pebm(x)]− c(t)

∣∣ ≤ 1

2t
W2

2 (pdata, pebm)
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where c(t) is a renormalising constant independent of U .643

For the proof we employ the following lemma of Yihong Wu which was given in Raginsky & Sason644

(2013).645

Lemma 3. Let γt be the Gaussian transition density of a standard Brownian motion. Let µ, ν be646

probability distributions and denote µt := γt∗µ and νt := γt∗ν. The following information-transport647

inequality holds:648

KL(µt ∥ νt) ≤
1

2t
W2

2(µ, ν)

Proof. Let π be a probability density of (x,x′) with marginal distributions µ(x) and ν(x′) (also649

called a coupling in optimal transport). We have650 ∫
KL(γt(· − x) ∥ γt(· − x′))π(x,x′)dxdx′ −KL(µt ∥ νt)

=

∫
KL(

γt(y − x)π(x,x′)

µt(y)
∥ γt(y − x)π(x,x′)

νt(y)
)µt(y)dy ≥ 0

Hence, we find by rearranging the inequality651

KL(µt ∥ νt) ≤
∫

KL(γt(· − x) ∥ γt(· − x′))π(x,x′)dxdx′

The right hand side is the Kullback-Leibler divergence between Gaussians, so652

KL(γt(· − x) ∥ γt(· − x′)) =
1

2t
∥x− x′∥2

Since the coupling was arbitrary, we can minimise over all couplings π of µ and ν which results in653

the Wasserstein-distance654

KL(µt ∥ νt) ≤ min
π∈Π(µ,ν)

∫
KL(γt(· − x) ∥ γt(· − x′))π(x,x′)dxdx′ =

1

2t
W2

2(µ, ν)

where Π(µ, ν) denotes the set of all joint distributions with marginals µ and ν.655

The proof of Proposition 3 then follows:656

Proof. Let µ = pdata and ν = pebm, denote the convolved distributions as pt,data and pt,ebm. Notice657

that for any x,y ∈ Rd658

log
pt,ebm(y)

pebm(x)
= U(x)− Ut(y)

since both models have the same normalising constant. We then have for arbitrary x659

KL(pt,data ∥ pt,ebm) =

∫
(log pt,data(y)− log pt,ebm(y)) pt,data(y)dy

=

∫ (
log pt,data(y)− log

pt,ebm(y)

pebm(x)
− log pebm(x)

)
pt,data(y)dy

=

∫
(log pt,data(y) + Ut(y)− U(x)) pt,data(y)dy − log pebm(x)

= c(t) +

∫
Ut(y)pt,data(y)dy − U(x)− log pebm(x)

with U independent entropy term c(t) := Ept,data(y)[log pt,data(y)]. Since x was chosen arbitrarily,660

we can integrate with respect to pdata(x) and find661

0 ≤ KL(pt,data ∥ pt,ebm)

= c(t) +

∫
Ut(y)pt,data(y)dy −

∫
U(x)pdata(x)−

∫
log pebm(x)pdata(x)

= c(t)− EDγt
(pdata, U)− Epdata(x)[log pebm(x)] ≤

1

2t
W2

2(pdata, pebm)

662
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A.4 Representing ED as multi-scale SM for general Diffusion Processes663

We now prove the connection between energy discrepancy and multi-noise scale score matching in a664

general context. For all following results we will assume that xt is some stochastic diffusion process665

which satisfies the SDE dxt = a(xt)dt+ b(xt)dwt and assume that x0 ∼ pdata. Let qt denote the666

associated transition probability density. To make the exposition cleaner we write Ut := Uqt .667

The main idea will be the following observation:668

Proposition 4. The diffusion-based energy discrepancy is given by the expectation of the Ito integral669

EDqt(pdata, U) = −E
[∫ t

0

dUs(xs)

]

Proof. The stochastic integral with respect to the differential dUs(xs) is defined to satisfy the670

following generalisation of the fundamental theorem of calculus:671

Ut(xt) = U0(x0) +

∫ t

0

dUs(xs)

We obtain the desired result by taking expectations on both sides.672

Notice that the law of the random variable xs is fixed by the initial distribution of the diffusion673

x0 ∼ pdata. These distributions are implied when taking the expectation. We will now explore this674

connection further. For this we make some basic assumptions which allow us to connect stochastic675

differential equations with partial differential equations.676

Assumption 2. Consider the stochastic differential equation dxt = a(xt)dt+ b(xt)dwt for drift677

a : Rd → Rd and b : Rd → Rk. Further, define the diffusion matrix Σ(x) = b(x)b(x)T ∈ Rd×d. We678

make the following assumptions:679

1. There exists a µ > 0 such that for all ξ,x ∈ Rd ⟨ξ,Σ(x)ξ⟩ ≥ µ∥ξ∥2680

2. Σ and a are bounded and uniformly Lipschitz-continuous in x on every compact subset of681

Rd682

3. Σ is uniformly Hölder-continuous in x683

Theorem 4 (Fokker-Planck equation). Under Assumption 2, xt has a transition density function684

given by685

P(xt ∈ A|x0 = x) =

∫
A

qt(y|x)dy .

Furthermore, qt satisfies the Fokker-Planck partial differential equation686

∂tqt(y|x) =
d∑

i=1

∂yi

−ai(y)qt(y|x) +
1

2

d∑
j=1

∂yj
(Σij(y)qt(y|x))

 (10)

q0(y|x) = δ(y − x)

For a reference, see (Friedman, 2012, Theorem 5.4)687

The Fokker-Planck equation yields the following important differential equation for the contrastive688

potential Ut:689

Proposition 5. Consider the stochastic differential equation dxt = a(xt)dt + b(xt)dwt for drift690

a : Rd → Rd and b : Rd → Rk, and diffusion matrix Σ(x) = b(x)b(x)T ∈ Rd×d that satisfies691

assumptions 2. Let qt be the associated transition density and define the contrastive potential692

Ut(y) := − log
∫
qt(y|x) exp(−U(x))dx. Furthermore, we define the scalar field693

c(a,Σ)(y) :=

d∑
i=1

∂yi
ai(y)−

1

2

d∑
j=1

∂yi
∂yj

Σij


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and the linear operator694

L(a,Σ) :=
d∑

i=1

−ai
∂

∂yi
+

1

2

d∑
i,j=1

(
2∂yj

Σij
∂

∂yi
+Σij

∂2

∂yi∂yj

)
.

Then, the contrastive potential satisfies the non-linear partial differential equation695

∂tUt(y) = L(a,Σ)Ut(y) +
1

2
∥bT (y)∇Ut(y)∥2 + c(a,Σ)(y)

Proof. We commute the linear operator of the Fokker-Planck equation to see that e−Ut satisfies the696

Fokker-Planck equation in Theorem 4, too, i.e.697

∂te
−Ut(y) =

d∑
i=1

∂yi

−ai(y)e
−Ut(y) +

1

2

d∑
j=1

∂yj

(
Σij(y)e

−Ut(y)
)

e−U0(y) = e−U(x) .

We now expand the term corresponding to the drift term:698

d∑
i=1

∂yi

(
−ai(y)e

−Ut(y)
)
=

d∑
i=1

(−∂yi
ai(y) + ai(y)∂yi

Ut(y)) e
−Ut(y)

Similarly, we treat the diffusion term:699

1

2

d∑
i,j=1

∂yi
∂yj

(
Σij(y)e

−Ut(y)
)
=

1

2

d∑
i,j=1

(
∂yi

∂yj
Σij(y) + Σij(y)∂yj

Ut(y)∂yi
Ut(y)

− 2∂yj
Σij(y)∂yi

Ut(y)− Σij(y)∂yj
∂yi

Ut(y)
)
e−Ut(y)

Finally, the time derivative simply becomes ∂te−Ut(y) = −∂tUt(y)e
−Ut(y). We can now collect all700

terms independent of U and identify701

c(a,Σ)(y) =

d∑
i=1

∂yi
ai(y)−

1

2

d∑
j=1

∂yi
∂yj

Σij(y)


as well as the linear operator term702

L(a,Σ) :=
d∑

i=1

−ai
∂

∂yi
+

1

2

d∑
i,j=1

(
2∂yj

Σij
∂

∂yi
+Σij

∂2

∂yi∂yj

)
Finally, we have703

d∑
i,j=1

Σij(y)∂yj
Ut(y)∂yi

Ut(y) =

d∑
i,j=1

k∑
l=1

bil(y)bjl(y)∂yj
Ut(y)∂yi

=

k∑
l=1

d∑
i=1

(bTl,i(y)∂yiUt(y))
2 = ∥bT (y)∇Ut(y)∥2

This gives us the partial differential equation704

−∂tUt(y)e
−Ut(y) =

(
−L(a,Σ)Ut(y) +

1

2
∥bT (y)∇Ut(y)∥2 − c(a,Σ)(y)

)
e−Ut(y)

Cancelling all exponentials from both sides of the equation yields the desired result.705

Theorem 5. The energy discrepancy takes the form of a generalised multi-noise scale score matching706

loss:707

EDqt(pdata, U) = E

∫ t

0

−
d∑

i,j=1

∂xj
(Σij(xs)∂xi

U(xs)) +
1

2
∥bT (xs)∇Us(xs)∥2ds

+ const.
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Proof. For this proof we return to the stochastic process Us(xs) from Proposition 4. By Ito’s formula,708

Us(xs) satisfies the stochastic differential equation709

dUs(xs) =

∂sUs(xs) +

d∑
i=1

ai(xs)∂xi
Us(xs) +

1

2

d∑
i,j=1

Σij(y)∂xi∂xjU(xs)

 ds

+

d∑
i=1

k∑
l=1

∂xiUs(xs)bi,l(xs)dw
l
s

Under the additional integrability condition that E
∫ t

0
∥bT (xs)∇Us(xs)∥2ds < ∞, the stochastic710

integral with respect to Brownian motion dws has expectation zero. Furthermore, we can replace711

∂sUs(xs) with our previously obtained non-linear partial differential equation712

∂sUs(xs) = L(a,Σ)Us(xs) +
1

2
∥bT (xs)∇Us(xs)∥2 + c(a,Σ)(xs) .

Due to opposing signs, the drift a cancels, i.e.713

L(a,Σ)Us(xs) +

d∑
i=1

ai(xs)∂xi
Us(xs) +

1

2

d∑
i,j=1

Σij(y)∂xi
∂xj

U(xs)

=

d∑
i,j=1

(
∂yjΣij(y)

∂

∂yi
+Σij(y)

∂2

∂xi∂xj

)
Us(xs)

=

d∑
i,j=1

∂xj
(Σij∂xi

U(xs))

Consequently, we obtain the final energy discrepancy expression using Proposition 4714

EDqt(pdata, U) = −E
[∫ t

0

dUs(xs)

]

= −E

∫ t

0

d∑
i,j=1

∂xj
(Σij(xs)∂xi

U(xs))−
1

2
∥bT (xs)∇Us(xs)∥2ds

+ const.

with U -independent constant
∫ t

0
c(a,Σ)(xs)ds. This completes the proof.715

As a corollary we obtain the proof of the first statement in Theorem 2: Assume that qt is de-716

fined through the stochastic differential equation dxt = a(xt)dt + dwt. In this case, Σ = I and717 ∑d
i,j=1 ∂xj

(Σij(xs)∂xi
U(xs)) = ∆U(xs). Consequently, we obtain from Theorem 5 the score718

matching representation of EDqt in Theorem 2. In the special case that Σ = bbT is independent of x719

we obtain an integrated sliced score-matching loss.720

A.5 Connections of Energy Discrepancy with Contrastive Divergence721

The contrastive divergence update can be derived from an energy discrepancy when, for Eθ fixed, q722

satisfies the detailed balance relation723

q(y|x) exp(−Eθ(x)) = q(x|y) exp(−Eθ(y)) .

To see this, we calculate the contrastive potential induced by q: We have724

− log

∫
q(y|x) exp(−Eθ(x))dx = − log

∫
q(x|y) exp(−Eθ(y))dx = Eθ(y) .

Consequently, the energy discrepancy induced by q is given by725

EDq(pdata, Eθ) = Epdata(x)[Eθ(x)]− Epdata(x)Eq(y|x)[Eθ(y)] .

Updating θ based on a sample approximation of this loss leads to the contrastive divergence update726

∆θ ∝ 1

N

N∑
i=1

∇θEθ(x
i)− 1

N

N∑
i=1

∇θEθ(y
i) yi ∼ q(·|xi)

Three things are important to notice:727
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1. Implicitly, the distribution q depends on Eθ and needs to adjusted in each step of the728

algorithm729

2. For fixed q, EDq(pdata, Eθ) satisfies Theorem 1. This means that each step of contrastive730

divergence optimises a loss with minimiser E∗
θ = − log pdata + c. However, q needs to731

be adjusted in each step as otherwise the contrastive potential is not given by the energy732

function Eθ itself.733

3. This result highlights the importance to use Metropolis-Hastings adjusted Langevin-samplers734

to implement CD to ensure that the implied q distribution satisfies the detailed balance735

relation. This matches the observations found by Yair & Michaeli (2021).736

A.6 Derivation of Energy Discrepancy from KL Contractions737

A Kullback-Leibler contraction is the divergence function KL(pdata ∥ pebm)−KL(Qpdata ∥ Qpebm)738

(Lyu, 2011) for the convolution operator Qp(y) =
∫
q(y|x)p(x)dx. The linearity of the convolution739

operator retains the normalisation of the measure, i.e. for the energy-based distribution pebm we have740

Qpebm =
1

ZU

∫
q(y|x) exp(−U(x) with ZU =

∫
exp(−U(x))dx .

The KL divergences then become with Uq := − logQ exp(−U(x))741

KL(pdata ∥ pebm) = Epdata(x)[log pdata(x)] + Epdata(x)[U(x)] + logZU

KL(Qpdata ∥ Qpebm) = EQpdata(y)[logQpdata(y)] + EQpdata(y) [Uq(y)] + logZU

Since the normalisation cancels when subtracting the two terms we find742

KL(pdata ∥ pebm)−KL(Qpdata ∥ Qpebm) = EDq(pdata, U) + c

where c is a constant that contains the U -independent entropies of pdata and Qpdata.743

B Aspects of Training EBMs with Energy Discrepancy744

B.1 Conceptual Understanding of the w-Stabilisation745

The critical step for using energy discrepancy in practice is a stable approximation of the contrastive746

potential. For the Gaussian-based energy discrepancy, we can write the contrastive potential as747

Ut(y) = − logE[exp(−U(y +
√
tξ′))] with ξ′ ∼ N (0, I) and y ∈ Rd. A naive approximation of748

the expectation with a Monte-Carlo estimator, however, is biased because of Jensen’s inequality, i.e.749

for ξ′, ξ′j ∼ N (0, I) we have750

Ut(y) = − logE [exp(−U(y +
√
tξ′))] < −E

log 1

M

M∑
j=1

exp(−U(y +
√
tξ′j))

 .

Our first observation is that the appearing bias can be quantified to leading order. For this, define751

vt(y) := E [exp(−U(y +
√
tξ′))] and v̂t(y) := 1

M

∑M
j=1 exp(−U(y +

√
tξ′j)). We use the752

Taylor-expansion of log(1 + u) ≈ u− 1/2u2 + h.o.t. which gives753

E log v̂t(y)− log vt(y) = E
[
log

(
1 +

v̂t(y)− vt(y)

vt(y)

)]
(11)

≈ −1

2
E

[
(v̂t(y)− vt(y))

2

vt(y)2

]
+ h.o.t.

= − 1

2Mvt(y)2
Var

[
exp(−U(y +

√
tξ′))

]
+ h.o.t .

The linear term in the Taylor-expansion does not contribute because E[v̂t(y)] = vt(y). In the final754

equation we used that Var(v̂t(y)) = Var[exp(−U(y +
√
tξ′))]/M because all ξ′j are independent.755

The Taylor expansion shows that the dominating contribution to the bias is the variance of the756

approximated convolution integral.757
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Our second observation is that this occurring bias can become infinite for malformed energy functions.758

For this reason, the optimiser may start to increase the bias instead of minimising our target loss. To759

illustrate how a high-variance estimator of the contrastive potential can be divergent, consider the760

energy function761

U(x) =

{
0 for x ≤ 0
bx for x > 0

.

The energy function does not strictly adhere to our conditions that the energy based model should be762

normalisable. Our argument still holds when exp(−U) is changed to be normalisable. In theory, the763

contrastive potential at 0 is upper bounded because764

Ut(0) ≤ − lim
b→∞

logE
[
exp(−U(

√
tξ′))

]
= − logP(ξ′ ≤ 0) = − log(1/2)

because exp(−U(x)) converges to an indicator function on {x ≤ 0} as b → ∞. The Monte Carlo765

estimator of the contrastive potential, on the other hand, has upper bound766

Ût(0) = − log
1

M

M∑
j=1

exp(−U(
√
tξ′j)) ≤ min[U(

√
tξ′1), . . . , U(

√
tξ′M )] + log(M)

which can be seen by applying standard inequalities for the logsumexp function3. Hence, as long as767

there exists a j such that ξj ≤ 0, the estimated contrastive potential does not diverge. If, however,768

ξ′j > 0 for every j = 1, . . . ,M , then769

Ût(0) ≥ min[U(
√
tξ′1), . . . , (

√
tξ′M )] = b

√
tmin[ξ′1, . . . , ξ′M ]

b→∞−−−→ ∞ .

Consequently, the approximate contrastive potential may attain diverging values at discontinuities in770

the energy function. Indeed, this phenomenon is observed for w = 0 in Figure 2. Here, the learned771

energy becomes discontinuous at the edge of the support and the energy discrepancy loss diverges772

during training. In low dimensions, this problem can be alleviated by using variance reduction773

techniques such as antithetic variables or by using large enough values of M during the training. The774

stabilising effect of M is observed in our ablation studies in Figure 21. In high-dimensional settings,775

however, such variance reduction techniques are infeasible.776

The idea of the w-stabilisation is that the value of the energy at non-perturbed data points U(x0) is777

guaranteed to stay controlled since it is minimised in the optimisation of ED. Hence, the diverging778

contrasting potential can be controlled by including U(x0) in the summation in the logsumexp779

operation which acts as a soft-min over all contrasting energy contributions. Indeed, this augmentation780

provides a deterministic upper bound to the approximated contrastive potential:781

Ût,w(xt) = − log

 w

M
exp(−U(x0)) +

1

M

M∑
j=1

exp(−U(xt +
√
tξ′j))


≤ min[U(xt +

√
tξ′1), . . . , U(xt +

√
tξ′M ), U(x)− log(w)] + log(M)

Additionally, the w-stabilisation introduces a negative bias to the approximated contrastive potential.782

Hence, if tuned correctly, it counteracts the bias introduced by the Jensen-gap of the logarithm.783

To gain additional intuition on the effect of w, notice that by the same bounds as before,784

U(x0)− Ût,w(xt) ≤ min
[
U(x0)− U(xt +

√
tξ′1), . . . , U(x0)− U(xt +

√
tξ′M ), log(w)

]
for every data point x. This tells us that, roughly speaking, a perturbed data point with U(x0) −785

U(xt +
√
tξ′) > log(w) should have a small contribution to the loss and the optimisation converges786

if the data distribution is learned or when the bound is violated at all perturbed data points. Thus,787

log(w) describes a weak notion of a margin between positive and negative energy contributions.788

Consequently, large values for w ∈ (0, 1) tend to lead to flatter learned energies, while smaller values789

lead to steeper learned energies. This intuition is confirmed by Figures 2 and 21.790

3It holds that min(u1, u2, . . . , uM )− log(M) ≤ −LSE(−u1,−u2, . . . ,−uM ) ≤ min(u1, u2, . . . , uM )
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Asymptotic consistency of sample approximation of ED We give a proof for Theorem 3 which791

states that our approximation of energy discrepancy is justified. To make the exposition easier to792

understand, we first show how the energy discrepancy is transformed into a conditional expectation.793

Recall the probabilistic representation of the contrastive potential Section 4. Using Eθ(x) =794

log(exp(Eθ(x))) we obtain the following rewritten form of energy discrepancy:795

EDγt(pdata, Eθ) = Epdata(x)[Eθ(x)] + Epdata(x)Eγt(y−x)

[
logEγ1(ξ′)

[
exp(−Eθ(y +

√
tξ′)|y

]]
= Epdata(x)[Eθ(x)] + Epdata(x)Eγ1(ξ)

[
logEγ1(ξ′)

[
exp(−Eθ(x+

√
tξ +

√
tξ′)|x, ξ

]]
= Epdata(x)Eγ1(ξ)

[
log(exp(Eθ(x))) + logEγ1(ξ′)

[
exp(−Eθ(x+

√
tξ +

√
tξ′)|x, ξ

]]
= Epdata(x)Eγ1(ξ)

[
log
(
Eγ1(ξ′)

[
exp(Eθ(x)− Eθ(x+

√
tξ +

√
tξ′)|x, ξ

])]
The conditioning means that the expectation is not taken with respect to y or x and ξ in the inner796

expectation. The conditioning is important to understand how the law of large numbers is to be797

applied. We now come to the proof that our approximation is consistent with the definition of energy798

discrepancy:799

Theorem 3. Assume that x 7→ exp(−Eθ(x)) is uniformly bounded. Then, for every ε > 0 there800

exist N and M(N) such that
∣∣Lt,M(N),w(θ)− EDγt

(pdata, Eθ)
∣∣ < ε almost surely.801

Proof. First, consider independent random variables x ∼ pdata, ξ ∼ N (0, I), and ξ′j
i.i.d∼ N (0, I).802

Using the triangle inequality, we can upper bound the difference |EDγt(pdata, Eθ)− Lt,M,w(θ)| by803

upper bounding the following two terms, individually:804 ∣∣∣∣∣EDγt
(pdata, Eθ)−

1

N

N∑
i=1

logE
[
exp(Eθ(x

i)− Eθ(x
i +

√
tξi +

√
tξ′j)

∣∣∣xi, ξi
] ∣∣∣∣∣

+

∣∣∣∣∣ 1N
N∑
i=1

logE
[
exp(Eθ(x

i)− Eθ(x
i +

√
tξi +

√
tξ′j)

∣∣∣xi, ξi
]
− Lt,M,w(θ)

∣∣∣∣∣
The first term can be bounded by a sequence εN

a.s.−−→ 0 due to the normal strong law of large numbers.805

The second term can be estimated by applying the following conditional version of the strong law of806

large numbers (Majerek et al., 2005, Theorem 4.2):807

1

M

M∑
j=1

exp
(
Eθ(x)− Eθ(x+

√
tξ +

√
tξ′j)

)
a.s.−−→ E

[
exp(Eθ(x)− Eθ(x+

√
tξ +

√
tξ′)

∣∣∣x, ξ]
Next, we have that the deterministic sequence w/M → 0. Thus, adding the regularistion w/M808

does not change the limit in M . Furthermore, since the logarithm is continuous, the limit also holds809

after applying the logarithm. Finally, the estimate translates to the sum by another application of the810

triangle inequality. We define811

∆eθ(x, ξ, ξ
′) := exp(Eθ(x)− Eθ(x+

√
tξ +

√
tξ′))

For each i = 1, 2, . . . , N there exists a sequence εi,M
a.s.−−→ 0 such that812 ∣∣∣∣∣ 1N

N∑
i=1

logE
[
∆eθ(x

i, ξi, ξ′)
∣∣∣xi, ξi

]
− Lt,M,w(θ)

∣∣∣∣∣
≤ 1

N

N∑
i=1

∣∣∣∣∣∣logE
[
∆eθ(x

i, ξi, ξ′)
∣∣∣xi, ξi

]
− log

1

M

M∑
j=1

∆eθ(x
i, ξi, ξ′j)

∣∣∣∣∣∣
<

1

N

N∑
i=1

εi,M ≤ max(ε1,M , . . . , εN,M ) .

Hence, for each ε > 0 there exists an N ∈ N and an M(N) ∈ N such that |EDγt
(pdata, Eθ) −813

Lt,M(N),w(θ)| < ε almost surely.814
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B.2 Approximation of Energy Discrepancy based on general Ito Diffusions815

Energy discrepancies are useful objectives for energy-based modelling when the contrastive potential816

can be approximated easily and stabily. In most cases this requires us to write the contrastive817

potential as an expectation which can be computed using Monte Carlo methods. We show how such818

a probabilistic representation can be achieved for a much larger class of stochastic processes via819

application of the Feynman-Kac formula. We first highlight the difficulty. Consider the integral820 ∫
f(y)qt(y|x)pdata(x)dxdy. Since the expectation is taken in y, the integral can be represented as821

an expectation of the forward process associated with qt, i.e.822 ∫
f(y)qt(y|x)pdata(x)dxdy = Epdata(x0)[f(xt)] ≈

1

N

N∑
i=1

f(xi
t)

where xi
t are simulated processes initialised at xi

0 = xi ∼ pdata. Next, consider the integral823

v(t,y) :=

∫
qt(y|x)g(x)dx .

This integral is more difficult to approximate because the function g is evaluated at the starting point824

of the diffusion xt but weighted by it’s transition probability density. To compute such integrals825

without sampling from g we use the Feynman-Kac formula, see e.g. Øksendal (2003):826

Theorem 6 (Feynman-Kac). Let g ∈ C2
0(Rd) and c ∈ C(Rd). Assume that v ∈ C1,2(R≥0,Rd) is827

bounded on K × Rd with K compact and satisfies828 {
∂tv(t,y) = Av(t,y) + c(y)v(t,y) for all t > 0, y ∈ Rd

v(0,y) = g(y) for all y ∈ Rd
. (12)

Then, v has the probabilistic representation829

v(t,y) = Ey

[
exp

(∫ t

0

c(ys)ds

)
g(yt)

]
where (yt)t≥0 is a diffusion process with infinitesimal generator A.830

We will establish that v(t,y) satisfies a partial differential equation of the above form which yields a831

probabilistic representation of the contrastive potential. We know that v(t,y) satisfies the Fokker-832

Planck equation (10). By applying the product rule to each term in the Fokker-Planck equation we833

find834

∂tv(t,y) =


α(y)︷ ︸︸ ︷

d∑
i=1

−ai(y) +

d∑
j=1

∂yj
Σij(y)

 ∂yi
+

1

2

d∑
i,j

Σij(y)∂yi
∂yj

 v(t,y)

+

1

2

d∑
i,j=1

∂yi
∂yj

Σij(y)−
d∑

i=1

∂yi
ai(y)


︸ ︷︷ ︸

c(y)

v(t,y)

v(0,y) =g(y) .

By comparing with Theorem 6, we identify the infinitesimal generator835

A =

d∑
i=1

αi(y)
∂

∂yi

+
1

2

d∑
i=1

d∑
j=1

Σij(y)
∂2

∂yi∂yj

Hence we associate the forward diffusion process dxt = a(xt)dt+ b(xt)dwt with it’s backwards836

process with infinitesimal generator A837

dyt = α(yt)dt+ b(yt)dw
′
t
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with Σ(y) = b(y)bT (y). This yields the probabilistic representation of v(t,y) in terms of the838

backward process yt:839

v(t,y) =

∫
qt(y|x)g(x)dx = Ey

[
exp

(∫ t

0

c(ys)ds

)
g(yt)

]
Hence, we also obtain a probabilistic representation for the contrastive potential by choosing g(x) :=840

exp(−U(x)). This finally gives841

Ut(y) = − logEy

[
exp

(∫ t

0

c(ys)ds− U(yt)

)]
.

Unlike the contrasting term in contrastive divergence, this expression can indeed be calculated by842

simulating stochastic processes that are entirely independent of U . For this we simulate from the843

forward process starting at x which yields x̃t, where the tilde denotes that this simulation may not be844

exact. We then simulate M copies of the reverse process and keep all values at intermediate steps, i.e.845

(ỹj
t0 = x̃t, ỹ

j
t1 , . . . , ỹ

j
tK=t) for j = 1, . . . ,M . Finally we evaluate the contrastive potential as846

Ut(xt) ≈ − log
1

M

M∑
j=1

exp

((
K∑

k=1

c(ỹj
tk
)(tk − tk−1)

)
− U(ỹj

t )

)

The simulation method for the stochastic process and for the integration
∫ t

0
c(ys)ds may be altered847

in this approximation. At this stage, it is unclear what practical implications the weighting term848 ∫ t

0
c(ys)ds has. Notice that the process yt is initialised at the final simulated position of the forward849

process x̃t. Furthermore, the bias correction with the w-stabilisation or an alternative method should850

still be relevant for stable training of energy-based models.851

B.3 Energy Discrepancy on the Discrete Space {0, 1}d852

Energy discrepancies are, in principle, well-defined on discrete spaces. To illustrate this point, we853

describe the energy-discrepancy loss for {0, 1}d valued data such as images with binary pixel values,854

in which case the discrete energy-discrepancy is straight forward to implement. We will replace the855

Gaussian transition density with a Bernoulli distribution. For ε ∈ (0, 1), let ξ ∼ Bernoulli(ε)d. Then856

the transition y = x+ ξmod(2) is symmetric and induces a symmetric transition density q(y − x).857

Because of the symmetry, the energy discrepancy can be implemented in the same way as in the858

continuous case, i.e.859

L(θ) := 1

N

N∑
i=1

 w

M
+ log

1

M

M∑
j=1

exp
(
Eθ(xi)− Eθ(x

i + ξi + ξ′ij mod(2))
)

Since the manifold hypothesis is true in a similar way for discrete image data, we conclude that860

additional tools need to be used in the optimisation and leave numerical experiments for the discrete861

case for future work.862

C Latent Space Energy-Based Prior Models863

In this section, we first briefly review the latent space energy-based prior models (LEBMs) and its864

variants: CD-LEBM, SM-LEBM, and ED-LEBM. We then proceed to the experimental details.865

C.1 A Brief Review of LEBMs866

Latent space energy-based prior models (Pang et al., 2020) seek to model latent variable models867

pϕ,θ(x) =
∫
pϕ(x|z)pθ(z)dz with an EBM prior pθ(z) =

exp(−Eθ(z))p0(z)
Zθ

, where p0(z) is a base868

distribution which we choose as standard Gaussian (Pang et al., 2020). LEBMs often perform better869

than latent variable models with a fixed Gaussian prior like VAEs since the EBM prior is more870

informative and expressive (Pang et al., 2020, Appendix C). However, training LEBMs is more871

expensive compared to latent variable models with fixed Gaussian prior because of the cost of training872

for energy-based models. This motivates to explore various training strategies for EBMs such as873
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contrastive divergence, score matching, and the proposed energy discrepancy, where we find that874

energy discrepancy is the most efficient in terms of computational complexity.875

The parameter update for the LEBM can be derived from maximum-likelihood estimation of pϕ,θ(x).876

Using the identity Epϕ,θ(z|x)[∇ϕ,θlog pϕ,θ(z|x)]=0, the gradient of the log-likelihood of a data point877

x is given by878

∇ϕ,θ log pϕ,θ(x)=Epϕ,θ(z|x)[∇ϕ,θ log pϕ,θ(z,x)]=Epϕ,θ(z|x)[∇ϕ log pϕ(x|z)+∇θ log pθ(z)].

The posterior pϕ,θ(z|x) prescribes the latent representation of the data point x. Consequently, in879

each parameter update, samples are generated from the posterior distribution pϕ,θ(z|x) via running880

Langevin dynamics and are treated as data on latent space. The generator is then updated via881

∇ϕ log pϕ,θ(x) = Epϕ,θ(z|x)[∇ϕ log pϕ(x|z)], .

Similarly, the maximum-likelihood update for the EBM parameters θ is given by ∇θ log pϕ,θ(x) =882

Epϕ,θ(z|x)[∇θ log pθ(z)]. As with any EBM, this gradient can not be used, directly, since this would883

require a tractable normalisation constant Zθ. To make this update tractable, we replace the gradient884

of the log-likelihood with contrastive divergence, score matching, and energy discrepancy as lined885

out below.886

CD-LEBM (Pang et al., 2020). The contrastive divergence update is obtained as per usual by887

expressing the gradient of the log likelihood in terms of the energy function888

∇θ log pϕ,θ(x) = Epϕ,θ(z|x)[∇θ log pθ(z)] = Epθ(z)[∇θEθ(z)]− Epϕ,θ(z|x)[∇θEθ(z)].

Therefore, the EBM prior can be learned by minimizing889

LCD(θ) :=
1

N

N∑
i=1

Eθ(z
i
+)− Eθ(z

i
−), zi+ ∼ pϕ,θ(z|xi), zi− ∼ pθ(z). (13)

Note that optimizing CD-LEBM is computationally expensive, as training the EBM prior requires890

simulating Langevin dynamics to sample z from pϕ,θ(z|x) to generate positive samples and pθ(z) to891

generate negative samples.892

SM-LEBM. The second solution is to minimize the Fisher divergence between the posterior and893

prior, which has the following form894

1

2
Epϕ,θ(z|x)[∥∇z log pθ(z)−∇z log pϕ,θ(z|x)∥22].

This is equivalent to score matching (Hyvärinen & Dayan, 2005) when pϕ,θ(z|x) is treated as895

parameter independent data distribution. We refer to this approach as score-matching LEBM, in896

which the EBM prior is learned by minimising897

LSM(θ) :=
1

N

N∑
i=1

1

2
∥∇z log pθ(z

i)−∇z log p(z
i|x)∥22, zi ∼ pϕ,θ(z|xi). (14)

where the parameters of pϕ,θ(z|x) are suppressed in the update. Note that score matching generally898

requires computing the Hessian of the log density as in but in score-matching LEBM, we have899

∇z log p(z|x) = ∇z log p(x|z) +∇z log p(z).900

ED-LEBM. Finally, the EBM prior can be learned by minimising the energy discrepancy between901

the posterior and the EBM prior with Ẽθ(z) :=Eθ(z)− log p0(z), which can be estimated as follows902

LED(θ) :=
1

N

N∑
i=1

log

w

M
+

1

M

M∑
j=1

exp(Ẽθ(z
i)−Ẽθ(z

i+
√
tξi+

√
tξ′i,j))

 (15)

with zi∼pϕ,θ(z|xi). Note that energy discrepancy does not require simulating MCMC sampling on903

the EBM prior and calculating the score of the log density, which is computationally friendly for904

large-scale training. It is critical to include the base distribution p0(z) in the energy function Ẽθ. We905

summarize the training process of the EBM prior using CD-, SM-, and ED-LEBM in Algorithms 1,906

2, and 3, with the training procedure of LEBM given in Algorithm 4.907
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Algorithm 1 CD-LEBM

1: sample from posterior and prior
z+∼ p(z|x); z−∼ pθ(z)

2: evaluate the energy difference
dθ ← Eθ(z+)− Eθ(z−)

3: Update parameter θ using (13)
θ ← θ − ηθ∇θdθ

Algorithm 2 SM-LEBM

1: sample from posterior
z ∼ p(z|x)

2: evaluate the score difference
dθ←∇zlog pθ(z)−∇zlog p(z|x)

3: Update parameter θ using (14)
θ ← θ − ηθ∇θ

1
2
∥dθ∥22

Algorithm 3 ED-LEBM

1: sample from posterior
z ∼ p(z|x)

2: evaluate the energy difference
dθ← 1

M

∑M
j=1e

Ẽθ(z)−Ẽθ(z+
√
tξ+

√
tξ′j)

3: Update parameter θ using (15)
θ ← θ−ηθ∇θ log(w/M+dθ)

Figure 9: The training procedure for the EBM prior. We use one training sample only to illustrate.

Algorithm 4 Learning latent space energy-based prior models
1: repeat
2: Sample training data points {xi}Ni=1 ∼ pdata(x)
3: For each xi, sample the corresponding latent variable zi ∼ pϕ,θ(z|xi) via

zik+1 = zik + ϵ
2
∇z log pϕ,θ(z|xi) +

√
ϵωk, ωk ∼ N (0, I), zi0 ∼ p0(z)

4: Update parameter ϕ by maximizing log-likelihood
ϕ← ϕ+ ηϕ∇ϕ

1
N

∑N
i=1 log pϕ(z

i|xi)
5: Update parameter α by running Algorithms 1, 2, or 3

θ ← θ − ηθ∇θLCD, SM, or ED(θ)
6: until convergence of parameters (ϕ, θ)

C.2 Langevin Sampling, Reconstruction, and Generation908

To sample from the EBM prior pθ(z) and posterior pϕ,θ(z|x) we employ a standard unadjusted909

Langevin sampling routine, i.e. we repeat for k = 0, 1, . . . ,K910

zik+1 = zik +
ϵ

2
∇z log p(z) +

√
ϵωk, ωk ∼ N (0, I)

where z0 ∼ p0(z) and the distribution p(z) is replaced by the prior or posterior densities, respectively.911

The generator is modelled as the Gaussian pϕ(x|z) = N (µϕ(z), σ
2I). In reconstruction of x, we912

sample from the posterior zx ∼ pϕ,θ(z|x) and compute the reconstruction as x̂ = µϕ(zx). In data913

generation, we sample from the EBM prior zgen ∼ pθ(z) and compute the generated synthetic data914

point as xgen = µϕ(zgen).915

C.3 Experimental Details of LEBMs916

Datasets. We use the following datasets in image modelling: SVHN (Netzer et al., 2011), CIFAR-917

10 (Krizhevsky et al., 2009), and CelebA (Liu et al., 2015). SVHN is of resolution 32 × 32, and918

containts 73, 257 training images and 26, 032 test images. CIFAR-10 consists of 50, 000 training919

images and 10, 000 test images with a resolution of 32× 32. For CelebA, which contains 162, 770920

training images and 19, 962 test images, we follow the pre-processing step in (Pang et al., 2020),921

taking 40, 000 examples of CelebA as training data and resizing it to 64× 64. In anomaly detection,922

we follow the setting in (Zenati et al., 2018) and the dataset can be found in their published code4.923

Model Architectures. We adopt the same network architecture used in CD-LEBM (Pang et al.,924

2020), with the details depicted in Table 3, where convT(n) indicates a transposed convolutional925

operation with n output channels. We use Leaky ReLU as activation functions and the slope is set to926

be 0.2 and 0.1 in the generator and EBM prior, respectively.927

Details of Training and Inference. Here, we provide a detailed description of the hyperparameters928

setup for ED-LEBM. Following (Pang et al., 2020), we utilise Xavier normal (Glorot & Bengio, 2010)929

to initialise the parameters. For the posterior sampling during training, we use the Langevin sampler930

with step size of 0.1 and run it for 20 steps for SVHN and CelebA, and 40 steps on CIFAR-10. We931

set t = 0.25,M = 16, w = 1 throughout the experiments. The proposed models are trained for 200932

epochs using the Adam optimizer (Kingma & Ba, 2014) with a fixed learning 0.0001 for the generator933

4https://github.com/houssamzenati/Efficient-GAN-Anomaly-Detection
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Table 3: Model architectures of LEBMs on various datasets.

(a) Generator for SVHN 32× 32, ngf = 64

Layers In-Out Size Stride

Input: x 1x1x100 -
4x4 convT(ngf x 8), LReLU 4x4x(ngf x 8) 1
4x4 convT(ngf x 4), LReLU 8x8x(ngf x 4) 2
4x4 convT(ngf x 2), LReLU 16x16x(ngf x 2) 2

4x4 convT(3), Tanh 32x32x3 2

(b) Generator for CIFAR-10 32× 32, ngf = 128

Layers In-Out Size Stride

Input: x 1x1x128 -
8x8 convT(ngf x 8), LReLU 8x8x(ngf x 8) 1
4x4 convT(ngf x 4), LReLU 16x16x(ngf x 4) 2
4x4 convT(ngf x 2), LReLU 32x32x(ngf x 2) 2

3x3 convT(3), Tanh 32x32x3 1

(c) Generator for CelebA 64× 64, ngf = 128

Layers In-Out Size Stride

Input: x 1x1x100 -
4x4 convT(ngf x 8), LReLU 4x4x(ngf x 8) 1
4x4 convT(ngf x 4), LReLU 8x8x(ngf x 4) 2
4x4 convT(ngf x 2), LReLU 16x16x(ngf x 2) 2
4x4 convT(ngf x 1), LReLU 32x32x(ngf x 1) 2

4x4 convT(3), Tanh 64x64x3 2

(d) Generator for MNIST 28× 28, ngf = 16

Layers In-Out Size Stride

Input: x 16 -
4x4 convT(ngf x 8), LReLU 4x4x(ngf x 8) 1
3x3 convT(ngf x 4), LReLU 7x7x(ngf x 4) 2
4x4 convT(ngf x 2), LReLU 14x14x(ngf x 2) 2

4x4 convT(1), Tanh 28x28x1 2

(d) EBM prior

Layers In-Out Size

Input: z 16/100/128
Linear, LReLU 200
Linear, LReLU 200

Linear 1

and 0.00005 for the EBM prior. We choose the largest batch size from {128, 256, 512} such that934

it can be trained on a single NVIDIA-GeForce-RTX-2080-Ti GPU. In test time, we observed that935

slightly increasing the number of Langevin sampler steps can improve reconstruction performance.936

Therefore, we choose 100 steps with a step size of 0.1 for posterior sampling. Based on the insights937

gained from the MCMC diagnostic presented in Figure 18, we choose 500 steps with a step size of938

0.2 to ensure convergence of the Langevin dynamics when sampling from the EBM prior.939

Evaluation Metrics. In image modelling, we use FID and MSE to quantitatively evaluate the940

quality of the generated samples and reconstructed images. On all datasets the FID is computed based941

on 50, 000 samples and the MSE is computed on the test set. Following (Zenati et al., 2018; Pang942

et al., 2020), we report the performance using AUPRC in anomaly detection and results are averaged943

over last 10 epochs to account for variance.944

D Additional Experimental Results945

D.1 Experimental Setup for Figure 1 (Healing the nearsightedness of score-matching)946

Figure 10: Study of the influence of t
and M on estimating mixing weights.

A major problem of score-based methods is their nearsight-947

edness, which refers to their inability to capture global948

properties of a distribution with disjoint supports such as949

the mixture weights of two well-separated modes (Zhang950

et al., 2022). In sight of Theorem 2, energy discrepancy951

should alleviate this problem as it implicitly compares the952

scores of both distributions at multiple noise-scales. Fol-953

lowing Zhang et al. (2022), we investigate this by comput-954

ing energy discrepancy as a function of the mixture weight955

ρ for the mixture of two Gaussians g1 := N (−5, 1) and956

g2 := N (5, 1), i.e.,957

pρ(x) = ρg1(x) + (1− ρ)g2(x).

where the true data has the mixture weight ρ = 0.2. We compare energy discrepancy958

Lt,M=32,w=1(ρ) ≈ ED(pρ=0.2, log pρ) with the objective of maximum likelihood estimation959
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MLE(ρ) := Epρ=0.2(x)[− log pρ(x)] and the score matching objective which here is given by the960

Fisher divergence SM(ρ) := 1
2Epρ=0.2(x)[∥∇x log pρ=0.2(x)−∇xpρ(x)∥22]. The losses as functions961

of ρ are shown in Figure 1. We find that energy discrepancy is convex as a function of the mixture962

weight and approximates the negative log-likelihood as t increases. Consequently, energy discrepancy963

can capture the mixture weight well for sufficiently large values of t. SM, on the other hand, is a964

constant function and is blind to the value of the mixture weight.965

To further investigate the impact of t and M on the efficiency of energy discrepancy, we minimise966

the energy discrepancy loss Lt,M=32,w=1(ρ) as a function of the scalar parameter ρ for various967

choices of M and t. We compute the mean-square error of 50 independent estimated mixture weights968

for choice of t and M . As shown in Figure 10, the estimation performance approaches that of the969

maximum likelihood estimator as t increases, which verifies the statement in Theorem 2. Moreover,970

if the number of samples M used to estimate the contrastive potential is increased, the estimation971

performance can be further increased towards the mean-square error of the maximum-likelihood972

estimator.973

D.2 Experimental Setup for Figure 2 (Understanding the w-stablisation)974

To probe our interpretation of the w-stablisation, we train a neural-network to learn the energy975

function using 4, 096 data points of a one-dimensional standard Gaussian pdata(x) ∝ exp(−x2/2).976

The neural network uses an input layer, a hidden linear layer of width two R2 → R2, and a scalar977

output layer R2 → R with a Sigmoid Linear Unit activation between the layers. This neural network978

has sufficient capacity to model the Gaussian data as well as degenerate energy functions that979

illustrate potential pitfalls of energy discrepancy for w = 0. The energy discrepancy is set up with980

hyperparameters M = 4, t = 1, and w ∈ {0, 0.05, 0.25, 2.} and is trained for 50 epochs with Adam.981

Our results are shown in Figure 2 which confirms the relevance of the w-stablisation to obtain a stable982

optimisation of energy discrepancy. We remark here that the degenerate case w = 0 is not strictly983

reproducible. Different types of lacking smoothness of the energy-function at the edge of the support984

lead to diverging loss values. We chose a result that illustrates the best the theoretical exposition985

of the w-stablisation in Appendix B.1 and refer to Figure 11 to reflect other malformed estimated986

energies as well as an example of a diverging loss history.
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Figure 11: Potential outcomes for the estimated energy and loss history when ED does not converge
with w = 0

987

D.3 Additional Density Estimation Results988

Here, we provide additional details and results on the density estimation experiments.989

Details of Training and Inference. Our choice for the energy-net for density estimation is a 4-layer990

feed-forward neural network with 128 hidden units and softplus activation function. In the context991

of energy discrepancy, we select t = 1, M = 4, and w = 1 as hyperparameters. For the contrastive992

divergence approach, we utilise CD-1, in which the gradient of the log-likelihood in Equation (1)993

is estimated by employing a Langevin sampler with a single step and a step size of 0.1. For score994

matching, we train EBMs using the explicit score matching in (2), where the Laplacian of the score is995

explicitly computed. We train the model using the Adam optimizer with a learning rate of 0.001 and996

iterations of 50, 000. After training, synthesised samples are drawn by simulating Langevin dynamics997

with 100 steps and a step size of 0.1.998

Additional Experimental Results. The additional results depicted in Figure 12 demonstrate the999

strong performance of energy discrepancy on various toy datasets, consistently yielding accurate1000
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Figure 12: Additional results on density estimation.

Figure 14: Generated images on CelebA 128× 128.

energy landscapes. In contrast, contrastive divergence consistently produces flattened energy land-1001

scapes. Despite the success of score matching in these toy examples, score matching struggles to1002

effectively learn distributions with disjoint support which can be seen in the results in Figure 3.1003

Figure 13: Comparing energy discrepancy (ED) with denois-
ing score matching (DSM) with different noise scales.

Comparison with Denoising Score1004

Matching We further compare en-1005

ergy discrepancy with denoising score1006

matching (DSM) (Vincent, 2011).1007

Specifically, we set w = 1,M = 41008

and experiment with various t. As1009

shown in Figure 13, DSM fails to1010

work when the noise scale is too large1011

or too small. This is because DSM is1012

a biased estimator which is optimised1013

for pθ∗(y) =
∫
γt(y−x)pdata(x)dx.1014

In contrast, energy discrepancy is1015

more robust to the choice of t since1016

energy discrepancy considers all noise1017

scales up to t simultaneously and has an unique optimum pθ∗(x) = pdata(x). However, in the case1018

that t is large and M is small, estimation with energy discrepancy deteriorates due to high variance1019

of the estimated loss function. This provides an explanation for the superior performance of energy1020

discrepancy at
√
t = 1 compared to

√
t = 10. Further ablation studies are presented in Figure 20.1021
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D.4 Additional Image Modelling Results1022

Additional Image Generation and Reconstruction Results. Figures 14 and 15 show additional1023

examples of image generation on CelebA 128× 128 and image reconstruction on CelebA 64× 64.1024

The images are computed through the sampling process outlined in Appendix C.2.1025

Additional Image Interpolation and Manipulation Results. Figures 16, 17 and 19 show additional1026

results of image interpolation and manipulation on CelebA 64× 64. Note that there are two types1027

of interpolations: posterior interpolation and prior interpolation. For posterior interpolation, we1028

consider two real images x1 and x2 from the dataset and perform linear interpolation among their1029

corresponding latent variables z1 ∼ pϕ,θ(z|x1) and z2 ∼ pϕ,θ(z|x2). For prior interpolation, we1030

apply linear interpolation between z1 ∼ pθ(z) and z2 ∼ pθ(z).1031

Long-run MCMC Diagnostics. Figure 18 depicts several convergence diagnostics for long-run1032

MCMC on the EBM prior, where we simulate Langevin dynamics with a large number of steps1033

(2, 000). Firstly, the energy profiles converge at approximately 250 steps, as demonstrated in Fig-1034

ure 18a, and the quality of the synthesized samples improves as the number of steps increases.1035

Secondly, we compute the Gelman-Rubin statistic R̂ (Gelman & Rubin, 1992) using 64 chains. The1036

histograms of R̂ over 5, 000×64 chains are shown in Figure 18b, with a mean of 1.08 < 1.20, indicat-1037

ing that the Langevin dynamics have approximately converged. Thirdly, we present auto-correlation1038

results in Figure 18c using 5, 000 chains, where the mean is depicted as a line and the standard1039

deviation as bands. The auto-correlation decreases to zero within 200 steps, which is consistent with1040

the Gelman-Rubin statistic that assesses convergence across multiple chains.1041

D.5 Qualitative Results on the Effect of t, M , and w1042

The hyperparameters t,M,w play important roles in energy discrepancy. Here, we provide some1043

qualitative results to understand their effects. According to Theorem 2, t controls the nearsight-1044

edness of energy discrepancy. For small t, energy discrepancy behaves like score matching1045
1
tEDγt

(pdata, U) = 1
t

∫ t

0
SM(ps, Us)ds ≈ SM(pdata, U) and is expected to be unable to resolve1046

local mixture weights. This assertion can be confirmed by qualitative results depicted in Figure 20,1047

which show that when t = 0.0025, energy discrepancy fails to identify the weights of components in1048

the 25-Gaussians and pinwheel datasets. For large t, energy discrepancy inherits favourable properties1049

of the maximum likelihood estimator. While large values of t consequently mitigate problems of1050

nearsightedness, it is worth noting that energy discrepancy may encounter issues with high variance1051

when t become excessively large. In such situations, it is necessary to consider increasing the value1052

of M to reduce the variance.1053

We also investigate the effect of w in Figure 21. As pointed out by the analysis in Appendix B.1,1054

w serves as a stabilises training of energy based models with energy discrepancy. Based on our1055

experimental observations, when w = 0 and M is small (e.g., M ≤ 128 in the 25-Gaussians dataset1056

and M ≤ 32 in the pinwheel dataset), energy discrepancy exhibits rapid divergence within 1001057

optimisation steps and fails to converge in the end. If, however, w is increased, e.g. to 1, energy1058

discrepancy shows stable convergence even with M = 1. This property is highly appealing as it1059

significantly reduces the computational complexity. Additionally, we find in Figure 2 that larger1060

w tends to result in a flatter estimated energy landscapes which aligns with our intuition gained in1061

Appendix B.1.1062
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Figure 15: Qualitative results of reconstruction on test images. Left: real image from the dataset.
Right: reconstructed images by sampling from the posterior.
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Figure 16: Linear interpolation results in posterior latent space between real images.

Figure 17: Linear interpolation results in prior latent space between generated images.
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Figure 18: Diagnostics for the mixing of MCMC chains with 2, 000 steps on CelebA 64× 64. Top:
Trajectory in the data space. Bottom: (a) Energy profile over time; (b) Histograms of Gelman-Rubin
statistic of multiple chains; (c) Auto-correlation of a single chain over time lags.
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(a) Smiling

(b) Male

(c) Eyeglasses

(d) Blond Hair
Figure 19: Attribute manipulation results on CelebA 64× 64. Each row is made by interpolating the
latent variable along an attribute vector, with the middle image being the original image.
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Figure 20: Density estimation on 25-Gausssians and pinwheel with different t,M and w = 1.

Figure 21: Density estimation 25-Gausssians and pinwheel with different w,M and t = 1.
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