
Towards a Comprehensive Benchmark for High-Level
Synthesis Targeted to FPGAs

Yunsheng Bai, Atefeh Sohrabizadeh, Zongyue Qin, Ziniu Hu, Yizhou Sun, Jason Cong
Department of Computer Science

University of California, Los Angeles
{yba,atefehsz,qinzongyue,bull,yzsun,cong}@cs.ucla.edu

Abstract

High-level synthesis (HLS) aims to raise the abstraction layer in hardware design,
enabling the design of domain-specific accelerators (DSAs) targeted for field-
programmable gate arrays (FPGAs) using C/C++ instead of hardware description
languages (HDLs). Compiler directives in the form of pragmas play a crucial
role in modifying the microarchitecture within the HLS framework. However,
the number of possible microarchitectures grows exponentially with the number
of pragmas. Moreover, the evaluation of each candidate design using the HLS
tool consumes significant time, ranging from minutes to hours, leading to a slow
optimization process. To accelerate this process, machine learning models have
been used to predict design quality in milliseconds. However, existing open-source
datasets for training such models are limited in terms of design complexity and
available optimizations. In this paper, we present HLSYN, a new benchmark
that addresses these limitations. It contains more complex programs with a wider
range of optimization pragmas, making it a comprehensive dataset for training and
evaluating design quality prediction models. The HLSYN benchmark consists of 42
unique programs/kernels, each of which has many different pragma configurations,
resulting in over 42,000 labeled designs. We conduct an extensive comparison of
state-of-the-art baselines to assess their effectiveness in predicting design quality.
As an ongoing project, we anticipate expanding the HLSYN benchmark in terms
of both quantity and variety of programs to further support the development of this
field.

1 Introduction

In recent decades, the demand for specialized computing systems tailored to specific applications
has significantly increased. This has led to the emergence of domain-specific accelerators (DSAs)
being implemented in either application-specific integrated circuits (ASICs) or field-programmable
gate arrays (FPGAs). By leveraging the unique characteristics of specific workloads, the designer
can design DSAs to enhance performance and energy efficiency. This becomes particularly valuable
when general-purpose processors like CPUs and GPUs cannot meet the performance or efficiency
requirements of certain applications due to the end of Dennard scaling [8, 14]. For instance, Google
has developed its custom-designed DSA in the form of an ASIC named the Tensor Processing Unit
(TPU) [21], which is highly optimized for machine learning workloads, offering remarkably faster
performance and improved energy efficiency compared to CPUs and GPUs. In addition, FPGAs
offer a cost-effective alternative with reconfigurability, making them increasingly appealing for
accelerating applications across various domains, including search engines and numerous datacenter
applications [25, 9, 19], machine learning inference acceleration [15, 17, 32, 1, 27], and autonomous
vehicles [7], among others.

37th Conference on Neural Information Processing Systems (NeurIPS 2023) Track on Datasets and Benchmarks.

Source Code with Pragmas

FPGA Implementation for the Source Code

HLS followed by RTL and
Physical Synthesis

Pragmas

Figure 1: High-level synthesis (HLS) trans-
forms the source code of the kernel 2MM writ-
ten in C into a lower-level programming lan-
guage and eventually implements the design
on the target FPGA as shown with the chip
die photo.

Nevertheless, the design of DSAs poses distinct
difficulties in contrast to general-purpose hardware
like CPUs and GPUs [34, 8]. DSAs are com-
monly developed using hardware description lan-
guages (HDLs) at the register-transfer level (RTL),
specifically Verilog and VHDL, which are primar-
ily known to circuit designers. To address this
challenge, high-level synthesis (HLS) [11, 10] was
introduced and is now supported by most EDA
(Electronic Design Automation) and FPGA compa-
nies [4, 6, 20, 24, 29]. HLS raises the level of design
abstraction to C/C++/OpenCL/SystemC, enabling de-
signers to describe the high-level behavioral repre-
sentation of their designs rather than the low-level
data transition in RTL. This abstraction eliminates
the need for explicit clock scheduling specifications
in the HLS code. Instead, HLS tools analyze the
behavior description to schedule operations across
different clock cycles, assign operations to available
resources, and establish the required control struc-
ture. Finally, the HLS tool automatically generates
RTL code based on these analyses. It can take several
minutes to hours for the HLS tool to generate this
RTL code [34]. The RTL can then be passed through
logic synthesis and physical design steps, which can
consume several hours, to be implemented on the
target FPGA. This HLS tool enhances design produc-
tivity, shortens design cycles, and allows designers
to rapidly explore various design options without the
need for manual RTL code writing.

Despite the increased level of design abstraction of-
fered by high-level synthesis (HLS) tools, they still
require a considerable amount of hardware design
expertise to utilize synthesis directives in the form of
pragmas. These pragmas play a crucial role in spec-
ifying various aspects of the design, such as memory
organization, caching strategies, memory buffer par-
titioning, parallelization and pipelining of computa-
tions, etc. As demonstrated by Chi et al. [8], although
the performance of a DSA with no performance-
optimizing pragmas can be 108× slower than a CPU,
through proper optimization, it can achieve a re-
markable performance improvement, surpassing a
CPU by 89×. However, the optimization process for
architecture-specific enhancements is typically limited to hardware programmers and falls beyond
the capabilities of the average software programmers. Consequently, there has been a growing focus
on automating this optimization process. While some approaches treat the HLS tool as a black
box and develop custom-designed heuristics to search through design candidates, a more recent
research paradigm leverages machine learning and deep learning techniques. These approaches
either learn the behavior of the HLS tool and construct predictive models or employ data-driven
exploration methods to search through the solution space. The goal of automating the optimization
process is to democratize customized computing and make it more accessible for the average software
programmers, allowing them to utilize the tailored hardware acceleration.

To address the need for automating pragma insertion and parameter tuning in high-level synthesis
(HLS), machine learning techniques can be used. This approach aims to achieve optimal quality in
terms of latency and resource utilization. However, the lack of open-source datasets in this domain and
the limitations of existing datasets, which are constrained in terms of design complexity and available
optimizations, restrict their practicality. To bridge this gap, this paper introduces HLSYN, the first

2

comprehensive benchmark for HLS designs targeted to FPGAs for performance optimization. This
benchmark provides more complex programs and a wider range of optimization pragmas, facilitating
advanced research and facilitating in-depth exploration of machine learning techniques in the context
of HLS. In our study, we define a design as a piece of C/C++ source code (referred to as a kernel)
with associated pragmas. Our primary focus is on predicting the quality of a design using supervised
learning by running a model trained on a collection of labeled designs with corresponding quality
metrics. However, our dataset can be utilized in various training scenarios, including training agents
to efficiently explore the solution space.

2 Background

'perf': 1.1971,
'util-DSP': 0.1000,
'util-BRAM': 0.0400,
'util-LUT': 0.0600,
'util-FF': 0.0600

'perf': 4.7760,
'util-DSP': 0.2500,
'util-BRAM': 0.1300,
'util-LUT': 0.1100,
'util-FF': 0.1000

'__PARA__L0': 1,
'__PARA__L1': 1,
'__PARA__L2': 1,
'__PARA__L3': 1,
'__PARA__L4': 1,
'__PARA__L5’: 1
'__PIPE__L0': 'off',
'__PIPE__L1': '',
'__PIPE__L2': 'flatten',
'__PIPE__L3': 'flatten',
'__TILE__L0': 1,
'__TILE__L1': 1,
'__TILE__L2': 1,
'__TILE__L3': 80

'__PARA__L0': 1,
'__PARA__L1': 1,
'__PARA__L2': 1,
'__PARA__L3': 1,
'__PARA__L4': 1,
'__PARA__L5’: 1
'__PIPE__L0': 'off',
'__PIPE__L1': '’,
'__PIPE__L2': 'off',
'__PIPE__L3': 'flatten',
'__TILE__L0': 1,
'__TILE__L1': 1,
'__TILE__L2': 1,
'__TILE__L3': 80

Design 1

Design 2

Figure 2: Two example designs selected
from the 2MM kernel. In Figure 1, the
kernel contains 14 pragmas, and each
row has the format “’<pragma name>’:
<pragma setting>”. A small change in
one of the pragma parameters leads to
changes in the FPGA HLS results, i.e.,
the five prediction targets for the regres-
sion task.

The task of HLSYN is to predict the quality of the HLS
design specified by a program (kernel) with a specific
optimization pragma design. Our target implementation
platform is FPGA, although similar techniques can be ap-
plied to ASIC accelerator designs as well. The quality of
a design is defined as a function of its performance, which
is measured by its latency in cycle counts, and its area/re-
source utilization, such as the usage of digital signal pro-
cessing blocks (DSP), blocks’ RAMs (BRAM), flip-flops
(FF), and lookup-tables (LUT), which are the fundamental
building blocks for implementing digital logic circuits in
FPGA designs.

In this work, we specifically consider the optimization
pragmas of the Merlin Compiler, an open-source source-
to-source optimization tool used for efficient AMD/Xilinx
HLS designs. The Merlin Compiler provides three types
of optimization pragmas, namely PIPELINE, PARALLEL,
and TILE to define the desired microarchitecture [34].

As illustrated in Figure 1, these pragmas can be applied at
the loop level and offer control over the type of pipelining,
the parallelization factor, and the amount of data caching.
If setting the pragmas properly to non-default parameters
for proper parallelizing and pipelining the computation,
the resulting accelerator can be 10× or even 100× faster
than a single-core CPU. However, without any pragma
insertion, the resulting hardware can be 10× slower than
a CPU. Figure 2 demonstrates an example where the pre-
diction targets are sensitive to the pragma settings. It is
noteworthy that in some other examples, a change in the
pragma settings does not lead to any change in the output
targets. The machine learning model must learn from ex-
isting labeled designs and understand the source code as
well as the pragmas in order to accurately forecast the outcome of each design when eventually being
executed on an FPGA.

Table 1 summarizes the parameter space of these pragmas. For a given program/kernel, any change
in the option of any of the pragmas results in a different design with a unique microarchitecture.
The “fg” option in pipelining refers to the case where all the inner loops are unrolled (parallelized
with separate logic) and each parallel unit is pipelined. The “cg” option, on the other hand, results
in coarse-grained processing elements (PEs) that are pipelined together. For example, it can create
pipelined load-compute-store units. The PARALLEL and TILE pragma take numeric values that
determine the degree of parallelization and loop tiling, respectively.

3

Table 1: Target pragmas with their options.
Pragma Name Parameter Name Parameter Space Examples of Pragma Settings
PARALLEL factor integer 4, 8
PIPELINE mode “cg”, “fg”, off ‘flatten’ resulting in the "fg” mode

TILE factor integer 2, 4

3 Related Work

In previous research, optimizing HLS designs has been approached in different ways. One category
of methods treats the HLS tool as a black box and utilizes problem-independent heuristics or develops
dedicated heuristics to explore the solution space and evaluate the quality of results (QoR) directly
using the tool [34, 43, 35]. However, this approach is time-consuming as each evaluation takes
several minutes to hours. To mitigate this issue, another category of methods aims to create surrogate
models for the HLS tool. Some of these methods construct dependency graphs of the program
and employ traditional graph analysis techniques to schedule operations and estimate the QoR
accordingly [46, 38], while others develop analytical performance and area models to estimate
the QoR [45, 47]. Nevertheless, due to the different heuristics employed by HLS tools in the
design process, these models may not accurately predict the QoR [34]. Some methods address
this limitation by focusing on designs that can exploit pre-defined microarchitecture templates or
follow specific computation patterns [33, 37, 12], but this can limit their generality. Alternatively,
a data-driven approach utilizing machine learning and deep learning models has been proposed to
enhance prediction accuracy [23, 22]. Graph neural networks (GNNs) have gained attention in this
context and demonstrated promising results in enhancing prediction accuracy [30, 5, 40, 36].

A fundamental aspect of these approaches is the availability of a large-scale database to effectively
train the models. Recent works have focused on gathering such databases [16, 41, 30]. Unfortunately,
existing datasets have limitations. The dataset in [41] predominantly consists of synthetic programs
that do not utilize any pragmas. DB4HLS [16] targets programs from the MachSuite benchmark[26]
but overlooks the inclusion of a key optimization pragma, pipelining. Additionally, DB4HLS views
each function in the program as an individual kernel. GNN-DSE [30] targets programs from the
Polyhedral benchmark [44], which features more complex kernels for FPGA mapping, in addition to
the MachSuite benchmark. This dataset considers a program with all its sub-functions as a kernel,
further increasing design complexity. Despite covering a wide range of optimization pragmas for each
kernel, the generated dataset is small, with only 9 target kernels and a total of 4,752 data points. To
address these limitations, we propose HLSYN, which includes kernels from both the Polyhedral and
MachSuite benchmarks. It encompasses a diverse range of optimization pragmas that can pipeline
and/or parallelize computation, as well as adjust data caching. Our benchmark is comprised of 42
unique kernels from various domains summarized in Table 2, totaling over 42,000 design points,
providing a comprehensive resource for advancing research and facilitating an in-depth exploration
of machine learning techniques for HLS.

4 The HLSYN Benchmark

In this section, we introduce the datasets in HLSYN1. The input data source comes from 42 selected
kernels in the MACHSUITE benchmark [26] and the POLYBENCH benchmark suite [44]. Our selected
42 kernels cover a wide range of applications whose descriptions are shown in Table 2.

The benchmark consists of 2 datasets accumulated in the past three years, corresponding to two
versions of AMD/Xilinx HLS tools: (1) SDX (V1) [3] and VITIS (V2) [4], with the AMD/Xilinx
Alveo U200 as the target FPGA and a working frequency of 250MHz. For each dataset, we select 6
kernels as the held-out testing kernels. They will test the ability of a model to generalize to kernels
that it did not see during the training. For the rest of the kernels, we perform a random split with
the training, validation, and testing ratio being 70:15:15. Summary statistics of datasets are given in
Table 3.

For each dataset kernel in each dataset, we run the two versions of the tools described above to obtain
a set of labeled designs. Since the design space size is exponential to the number of pragmas, we rely

1https://github.com/UCLA-DM/HLSyn

4

https://github.com/UCLA-DM/HLSyn

Table 2: There are 42 kernels in total across SDX (V1) and VITIS (V2) spanning multiple domains
such as linear algebra on vectors and matrices, data mining, stencil operations, encryption, dynamic
programming, etc. #p denotes the number of pragmas in the kernel. # in v1 and # in v2 denote the
number of labeled designs in SDX (V1) and VITIS (V2) respectively.

Kernel Source Description # pragmas # in v1 # in v2
2MM POLYBENCH 2 Matrix Multiplications 14 812 861
3MM POLYBENCH 3 Matrix Multiplications 21 848 -
ADI POLYBENCH Alternating Direction Implicit solver 13 551 -
AES MACHSUITE Advanced Encryption Standard 3 45 43
ATAX POLYBENCH Matrix Transpose and Vector Multiplication 5 884 902
ATAX-MEDIUM POLYBENCH Matrix Transpose and Vector Multiplication 5 362 544
BICG POLYBENCH BiCG Sub Kernel of BiCGStab Linear Solver 5 512 498
BICG-LARGE POLYBENCH BiCG Sub Kernel of BiCGStab Linear Solver 4 - 456
BICG-MEDIUM POLYBENCH BiCG Sub Kernel of BiCGStab Linear Solver 5 316 -
CORRELATION POLYBENCH Correlation Computation 17 1522 699
COVARIANCE POLYBENCH Covariance Computation 13 - 356
DOITGEN POLYBENCH Multiresolution Analysis 6 179 172
DOITGEN-R POLYBENCH Multiresolution Analysis 7 595 230
FDTD-2D POLYBENCH 2-D Finite Different Time Domain Kernel 16 660 -
FDTD-2D-L POLYBENCH 2-D Finite Different Time Domain Kernel 16 - 240
GEMM-B MACHSUITE Blocked Version of Matrix Multiplication 9 775 440
GEMM-N MACHSUITE Matrix Transpose and Vector Multiplication 7 749 540
GEMM-P POLYBENCH Matrix Multiplication 8 1160 714
GEMM-P-L POLYBENCH Matrix Transpose and Vector Multiplication 8 - 199
GEMVER POLYBENCH Vector Multiplication and Matrix Addition 13 924 712
GEMVER-M POLYBENCH Vector Multiplication and Matrix Addition 13 3365 -
GESUMMV POLYBENCH Scalar, Vector and Matrix Multiplication 4 442 371
GESUMMV-M POLYBENCH Scalar, Vector and Matrix Multiplication 4 304 -
HEAT-3D POLYBENCH Heat Equation over 3D Data Domain 11 1664 -
JACOBI-1D POLYBENCH 1-D Jacobi Stencil Computation 5 595 -
JACOBI-2D POLYBENCH 2-D Jacobi Stencil Computation 11 1862 -
MD MACHSUITE n-body Molecular Dynamics 3 12 -
MVT POLYBENCH Matrix-Vector Product and Transpose 8 1175 1452
MVT-M MACHSUITE Matrix-Vector Product and Transpose 8 416 -
NW MACHSUITE Dynamic Programming for Sequence Alignment 6 1347 615
SEIDEL-2D POLYBENCH 2-D Seidel Stencil Computation 7 1314 -
SPMV-CRS MACHSUITE Sparse Mat-Vec Mult. w/ Variable-Len. Neighbor 3 114 114
SPMV-ELLPACK MACHSUITE Sparse Mat-Vec Mult. w/ Fixed-size Neighbor 3 114 102
STENCIL MACHSUITE A Two-Dimensional Stencil Computation 7 1404 1016
STENCIL-3D MACHSUITE A Three-Dimensional Stencil Computation 5 239 239
SYMM POLYBENCH Symmetric Matrix Multiplication 7 153 158
SYMM-OPT POLYBENCH Symmetric Matrix Multiplication 8 - 281
SYMM-OPT-M POLYBENCH Symmetric Matrix Multiplication 8 315 -
SYR2K POLYBENCH Symmetric Rank-2k Operations 8 433 793
SYRK POLYBENCH Symmetric Rank-k Operations 8 660 234
TRMM POLYBENCH Triangular Matrix Multiplication 7 231 968
TRMM-OPT POLYBENCH Triangular Matrix Multiplication 7 964 281

Table 3: Dataset statistics for the input. The meanings of columns are: #K: # kernels, A#K: average
pragmas per kernel’, A#T: average # source code tokens per kernel, A#N: average # nodes per
kernel’s graph, A#E: average # edges per kernel’s graph, #nt: # node types, #pt: # pragma node
types, nr: numeric attribute range, #it: # instruction type, #ft: # flow types, #bt: # block types, #ept:
edge position types, #eft: # edge position type.

Dataset #K A#K A#T A#N A#E #nt #pt nr #it #ft #bt #ept #eft
SDX (V1) 37 8.0 629.9 366.7 589.6 4 7 [0, 494] 82 8 56 3 4
VITIS (V2) 29 7.6 629.9 334.0 534.7 4 7 [0, 494] 74 8 56 3 4

on heuristics provided by AutoDSE [34] to generate the labels for a subset of all possible designs.
The labels come in the form of 5 target values: PERF, DSP, BRAM, LUT, and FF. In addition, according
to whether the PERF is greater than a threshold value, we classify a design into two categories: valid
and invalid. For the valid designs, we perform the regression task of predicting each one of the 5
target values. Table 4 shows the statistics of the prediction targets, i.e., output of a machine learning
model.

Table 4: Dataset statistics for the output. The meanings of columns are #D for r: # designs for the
regression task, PERF: range of the PERF target, DSP: range of the DSP target, BRAM: range of the
BRAM target, LUT: range of the LUT target, FF: range of the FF target, #D for c: # designs for the
classification task, T:F: True class (Valid) vs False class (Invalid) design ratio.

Dataset #D for r PERF DSP BRAM LUT FF #D for c T:F
SDX (V1) 9439 [-6.5, 1.5] [0.0, 8.4] [0.0, 3.0] [0.0, 6.5] [0.0, 3.2] 28017 9439:18578
VITIS (V2) 5027 [-3.6, 6.6] [0.0, 6.6] [0.0, 0.7] [0.0, 5.6] [0.0, 1.9] 14273 5027:9246

5

(a) Graph of 2MM consist-
ing of 354 nodes and 566
edges.

(b) Graph of CORRELA-
TION consisting of 662
nodes and 1071 edges.

(c) Graph of MVT consist-
ing of 206 nodes and 328
edges.

(d) Graph of NW consist-
ing of 439 nodes and 704
edges.

Figure 3: Visualization of the pragma-augmented PROGRAML graphs of four selected kernels. Node
colors indicate the block attribute derived from the assembly code. Edge colors indicate the edge
flow.

Since our task aims to predict the validity (classification) and quality (5-target regression) of the
designs, we provide both the source code and the graph representation derived from PROGRAML [13].
Specifically, we follow [13] to compile a kernel’s source code into assembly code, and then trans-
form the assembly codes into a control data flow graph (CDFG) with call relation, and eventually
add pragma nodes to the PROGRAML graph following [30]. The resulting pragma-augmented
PROGRAML graphs for four selected kernels are depicted in Figure 3.

It is noteworthy that there are multiple ways to represent the input source programs. As an illustration,
we include in this dataset the graph representation used in [30]. Other representations are possible, as
such abstract syntax trees. Since we release the source code, it is possible to derive and generate such
other representations.

5 Experiments on HLSYN

This section provides several baseline experiments with their results to investigate the performance of
various methods on the task of design quality prediction.

5.1 Baseline Methods

All the baseline methods share the same encoder-decoder architecture and differ only in the encoder.
Specifically, each method encodes a design into a D-dimensional vector where D = 512 by default
and uses a MLP-based decoder to transform the design embedding into the targets.

CODE2VEC [2] CODE2VEC is a path-based attention model. It first decomposes the code to a
collection of paths in its abstract syntax tree and represent them as a bag of distributed vector
representations. Then it uses an attention mechanism to compute a learned weighted average of the
path vectors as the overall representation of the code.

CODET5-RAND, CODET5-FROZEN, and CODET5 [39] These three methods are based on the
CODE2VEC method which performs pre-training on a large amount of source code. We utilize the
small version released by the authors to encode the design. CODET5 fine-tunes both the encoder and
the decoder, CODET5-FROZEN freezes the encoder and only fine-tunes the decoder, while CODET5-
RAND fine-tunes both but replaces the encoder parameters/weights with a random initialization to
study the effect of pre-training on our tasks.

In order to handle the long source code as a sequence of code tokens, we set the maximum sub-
sequence length (i.e., the maximum number of tokens allowed in a sub-sequence) to be 64, and
apply a sliding window of size 64 over the source code to obtain multiple sub-sequences as input to
the transformer-based encoder. At the beginning of each sub-sequence, a special starting token is
inserted and its embedding is taken as the sub-sequence level embedding, and all the sub-sequence
embeddings are aggregated into the final D-dimensional embedding for the design.

G-CODEBERT [18] and G-CODEBERT-L Similar to CODET5, G-CODEBERT is another pre-trained
source code encoder, yet with a larger embedding dimension (768 instead of 512), and is thus

6

Table 5: Regression error (RMSE) on SDX (V1) and VITIS (V2).

Method

SDX (V1) VITIS (V2)

Trans Ind Ind Adapt Trans Ind Ind Adapt
CODE2VEC [2] 3.2877 4.2186 3.4156 2.9685 3.9076 2.9957
CODET5-RAND 1.7100 3.2206 2.2295 1.4939 2.9592 1.9573
CODET5-FROZEN 2.6808 2.9447 2.2317 2.1822 2.9452 1.8447
CODET5 [39] 0.5515 2.8301 1.8203 0.5270 3.4191 1.7552
G-CODEBERT [18] 0.5541 2.6639 1.5552 0.6637 3.1158 1.5175
G-CODEBERT-L [18] 0.5651 2.7668 1.4656 0.4910 3.2129 1.5561
GNN-DSE [30] 0.8641 3.1366 1.5180 0.5816 3.6764 1.5546
GNN-DSE-2L 0.8020 2.6587 1.6231 0.7644 3.2825 1.5688
[CODET5,GNN-GSE] 0.4648 2.6620 1.6327 0.4785 3.2893 1.5274
[G-CODEBERT,GNN-GSE] 0.5502 2.8521 1.5525 0.3940 3.6146 1.6017

presumably more expressive. G-CODEBERT-L uses a larger maximum sub-sequence length, 128
instead of 64, which would capture a longer dependency between source code tokens, and may yield
better results.

GNN-DSE [30] and GNN-DSE-2L In contrast to the previous methods which only receive the source
code as input, these methods receive the assembly-level graph (with examples in Figure 3) as input
and use TRANSFORMERCONV [28] with a jumping knowledge network [42] to produce the design
embeddings. GNN-DSE employs 8 layers whereas GNN-DSE-2L only utilizes 2.

[CODET5,GNN-GSE] and [G-CODEBERT,GNN-GSE] These two methods concatenate the design
embeddings produced by a source code transformer and a graph neural network-based encoder, i.e.,
the input embedding into the decoder is 2×D instead of D.

5.2 Evaluation Protocol

Metrics There are two tasks for our dataset: regression and classification. The goal of the regression
task is to predict the five targets: PERF, DSP, BRAM, LUT, and FF. We use rooted mean square error
(RMSE) to evaluate each method. And the goal of the classification task is to predict whether a design
is valid or not, i.e. whether the downstream RTL and physical synthesis are likely to complete or not.
We use the classification accuracy as the evaluation metric.

In addition, recall that we have two versions of the dataset (SDX (V1) and VITIS (V2)). Each (ver-
sion,task) combination receives a separate evaluation. For each evaluation, there are two evaluating
settings: transductive and inductive testing. Specifically, for each (version, task) combination: (1) We
select six kernels as the held-out testing kernels. These kernels are never seen during training and
are used for the inductive testing; (2) For the rest of the kernels, we merge all the labeled designs,
and randomly split them into training, validation, and transductive testing designs with the 70:15:15
ratio; (3) Using the training designs for 1000 epochs for the regression task, and 200 epochs for
the classification task, we train each baseline method. We employ the validation set to determine
the best epoch to use for testing; (4) We test the trained model on the transductive testing set. It
is called transductive (“Trans”) since this testing set contains designs from kernels that are seen
during training; (5) We test the trained model on the held-out six kernels. Specifically, we (5.1) select
the 30% designs from each held-out kernel as the testing designs, (5.2) then repeat the following
procedure 5 times. For each kernel, from the rest of the 70% remaining designs, 10 designs are
sampled and are utilized to adapt the trained model for 10 epochs. Then, the adapted model is tested
on the 30% designs for that held-out kernel. We call such a setting inductive because the model
is tested on six kernels that are not visible in the training stage in a zero-shot (“Ind”) or few-shot
learning setting (“Ind Adapt”).

5.3 Results and Analysis

The overall regression and classification results are exhibited in Tables 5 and 6. Tables 7, 8, 9, and 10
reveal the breakdown results over individual held-out kernels.

Observation 1: There is no consistent winner among the baselines. For the regression task,
G-CODEBERT and G-CODEBERT-L achieve the lowest error when adapted to the held-out kernels,
whereas, for the classification task, GNN-based methods perform better. Such a phenomenon calls for
a hybrid model utilizing both the source code and the assembly code graph, e.g., the concatenation
models [CODET5,GNN-GSE] and [G-CODEBERT,GNN-GSE]. However, a simple concatenation of the

7

Table 6: Classification accuracy on SDX (V1) and VITIS (V2).

Method

SDX (V1) VITIS (V2)

Trans Ind Ind Adapt Trans Ind Ind Adapt
CODE2VEC [2] 0.7576 0.5662 0.6617 0.7060 0.5444 0.6337
CODET5-RAND 0.8524 0.5257 0.7015 0.7924 0.4851 0.6291
CODET5-FROZEN 0.7515 0.6098 0.7486 0.7334 0.4161 0.6061
CODET5 [39] 0.9501 0.6394 0.7447 0.9045 0.4781 0.6734
G-CODEBERT [18] 0.9536 0.6478 0.7610 0.9233 0.5415 0.7024
G-CODEBERT-L [18] 0.9204 0.5730 0.7701 0.8970 0.5342 0.7180
GNN-DSE [30] 0.9422 0.6529 0.7623 0.9045 0.4781 0.6734
GNN-DSE-2L 0.8912 0.6085 0.7421 0.9126 0.5303 0.7632
[CODET5,GNN-GSE] 0.9434 0.6141 0.7385 0.9195 0.5053 0.7002
[G-CODEBERT,GNN-GSE] 0.9212 0.6174 0.7446 0.9126 0.5001 0.7160

Table 7: Regression result breakdown on SDX (V1) on individual test kernels.

Method DOITGEN-R FDTD-2D GEMM-N JACOBI-2D STENCIL-3D TRMM-OPT
CODE2VEC [2] 2.5711±0.08 3.9973±0.19 5.6191±0.08 2.5710±0.11 2.9029±0.04 2.8322±0.30
CODET5-RAND 1.2123±0.02 3.3038±0.10 3.8933±0.11 1.8584±0.12 0.9961±0.14 2.1133±0.09
CODET5-FROZEN 1.3197±0.00 3.2819±0.06 4.3073±0.03 1.7756±0.04 0.6807±0.03 2.0248±0.09
CODET5 [39] 0.9990±0.27 2.9818±0.05 3.6910±0.41 1.3470±0.12 0.3695±0.06 1.5336±0.14
G-CODEBERT [18] 0.8301±0.17 2.5938±0.15 3.3672±0.45 1.1581±0.06 0.4830±0.16 0.8990±0.19
G-CODEBERT-L [18] 0.5376±0.08 2.8015±0.18 3.1310±0.52 1.0214±0.12 0.3636±0.07 0.9384±0.10
GNN-DSE [30] 0.5278±0.03 2.6449±0.10 2.8907±0.51 1.3855±0.10 0.6918±0.23 0.9673±0.05
GNN-DSE-2L 0.9113±0.16 2.6677±0.11 2.7881±0.28 1.5230±0.07 0.6984±0.09 1.1499±0.05
[CODET5,GNN-GSE] 0.9637±0.20 2.7998±0.30 2.9908±0.16 1.2991±0.14 0.7373±0.14 1.0056±0.04
[G-CODEBERT,GNN-GSE] 1.0409±0.21 2.7988±0.17 3.2942±0.23 1.0845±0.12 0.3072±0.06 0.7891±0.24

Table 8: Regression result breakdown on VITIS (V2) on individual test kernels.

Method COVARIANCE FDTD-2D-L GEMM-N GEMM-P-L SYMM TRMM-OPT
CODE2VEC [2] 2.4977±0.09 3.1259±0.18 4.5526±0.19 3.7389±0.03 1.4209±0.11 2.6379±0.21
CODET5-RAND 1.6388±0.13 2.4587±0.22 2.8477±0.15 3.0722±0.04 0.4969±0.03 1.2295±0.09
CODET5-FROZEN 1.2137±0.02 2.4494±0.22 2.6576±0.10 3.1420±0.02 0.3854±0.02 1.2199±0.02
CODET5 [39] 1.3594±0.15 2.2958±0.07 2.8436±0.37 2.7803±0.07 0.4092±0.09 0.8427±0.14
G-CODEBERT [18] 1.0652±0.06 1.9245±0.09 2.3772±0.31 2.3913±0.04 0.4019±0.08 0.9452±0.09
G-CODEBERT-L [18] 0.9107±0.08 1.7740±0.11 2.6635±0.33 2.5029±0.09 0.3384±0.03 1.1469±0.11
GNN-DSE [30] 1.1496±0.04 1.8897±0.04 2.3157±0.23 2.7828±0.18 0.4110±0.02 0.7790±0.06
GNN-DSE-2L 1.1457±0.02 1.9521±0.09 2.0248±0.26 2.9691±0.10 0.4067±0.04 0.9146±0.03
[CODET5,GNN-GSE] 1.0988±0.07 1.8532±0.10 2.2430±0.23 2.5489±0.04 0.3766±0.06 1.0440±0.09
[G-CODEBERT,GNN-GSE] 1.1182±0.07 1.9088±0.10 2.5352±0.25 2.7655±0.08 0.3842±0.05 0.8986±0.13

Table 9: Classification result breakdown on SDX (V1) on individual test kernels.

Method DOITGEN-R FDTD-2D GEMM-N JACOBI-2D STENCIL-3D TRMM-OPT
CODE2VEC [2] 0.6449±0.07 0.6192±0.01 0.4598±0.03 0.8122±0.05 0.6085±0.03 0.8256±0.04
CODET5-RAND 0.6663±0.05 0.5283±0.08 0.6366±0.08 0.8384±0.03 0.5887±0.11 0.9509±0.00
CODET5-FROZEN 0.7472±0.00 0.6414±0.00 0.6286±0.17 0.8889±0.00 0.6338±0.00 0.9516±0.00
CODET5 [39] 0.7236±0.04 0.6455±0.02 0.5804±0.04 0.8681±0.01 0.7042±0.05 0.9467±0.01
G-CODEBERT [18] 0.6607±0.06 0.6455±0.03 0.6714±0.03 0.8509±0.02 0.8000±0.04 0.9377±0.02
G-CODEBERT-L [18] 0.7236±0.08 0.6556±0.03 0.5741±0.07 0.8792±0.01 0.8394±0.05 0.9488±0.01
GNN-DSE [30] 0.6506±0.06 0.6889±0.02 0.6402±0.03 0.8652±0.03 0.7803±0.03 0.9488±0.00
GNN-DSE-2L 0.6674±0.05 0.6778±0.03 0.6545±0.02 0.8534±0.03 0.6648±0.04 0.9349±0.03
[CODET5,GNN-GSE] 0.7022±0.07 0.6364±0.02 0.6438±0.03 0.8419±0.03 0.6620±0.04 0.9446±0.01
[G-CODEBERT,GNN-GSE] 0.7124±0.06 0.7091±0.04 0.6393±0.04 0.8616±0.04 0.6028±0.09 0.9426±0.02

Table 10: Classification result breakdown on VITIS (V2) on individual test kernels.

Method COVARIANCE FDTD-2D-L GEMM-N GEMM-P-L SYMM TRMM-OPT
CODE2VEC [2] 0.5830±0.05 0.5750±0.02 0.5099±0.02 0.6678±0.05 0.7191±0.05 0.7476±0.03
CODET5-RAND 0.6453±0.03 0.6444±0.04 0.6185±0.03 0.6678±0.04 0.6936±0.05 0.5048±0.25
CODET5-FROZEN 0.6698±0.00 0.4778±0.11 0.4951±0.04 0.6610±0.00 0.5234±0.11 0.8095±0.00
CODET5 [39] 0.6698±0.04 0.5750±0.06 0.5728±0.03 0.6983±0.05 0.6766±0.04 0.8476±0.03
G-CODEBERT [18] 0.5585±0.07 0.6111±0.07 0.5840±0.03 0.8373±0.04 0.9021±0.05 0.7214±0.07
G-CODEBERT-L [18] 0.5887±0.05 0.6583±0.08 0.6778±0.03 0.8203±0.07 0.7702±0.07 0.7929±0.02
GNN-DSE [30] 0.6509±0.01 0.7000±0.07 0.6840±0.06 0.7559±0.05 0.8170±0.08 0.8381±0.03
GNN-DSE-2L 0.6396±0.07 0.7639±0.10 0.7222±0.02 0.7763±0.06 0.8340±0.06 0.8429±0.02
[CODET5,GNN-GSE] 0.6491±0.06 0.6361±0.02 0.6494±0.03 0.7017±0.04 0.8128±0.04 0.7524±0.09
[G-CODEBERT,GNN-GSE] 0.6396±0.03 0.6083±0.05 0.6691±0.05 0.7695±0.03 0.8213±0.07 0.7881±0.03

8

design embeddings does not consistently yield better performance. Particularly, [CODET5,GNN-GSE]
and [G-CODEBERT,GNN-GSE] achieve the lowest regression error under the transductive setting but
fall short when adapted to new kernels. Such results imply that future efforts can be made on studying
the generalization abilities of machine learning models on our HLSYN benchmark.

Observation 2: In general, pre-training helps with the performance of source code transformer
models. This can be seen by comparing CODET5-RAND and CODET5, where the former starts
training from scratch while the latter loads a pre-trained model released by [39]. This should
not come as a surprise, because pre-training has been shown to demonstrate success in natural
language processing. Our experimental results verify the effectiveness of pre-training on the HLSYN
benchmark. One implication is that one can design better pre-training methods on source code related
to electronic design automation, or even design pre-training for GNNs operating on assembly-level
graphs.

Observation 3: More GNN message passing layers does not necessarily improve the performance
of GNN models. In many cases, the 2-layer version, GNN-DSE-2L, performs even better than the
8-layer version, GNN-DSE. This may be attributed to the fact that an attention-based global readout
function is used to aggregate node embeddings into a graph-level embedding representing the entire
design, and thus each node does not necessarily need to reach far-away nodes in the local message
passing stage.

Observation 4: Generalization to new kernels is difficult, and the performance after adaptation
differs across kernels. For example, G-CODEBERT-L achieves the overall lowest error (“Ind Adapt”)
on SDX (V1) on the regression task, but Table 7 demonstrates that G-CODEBERT-L does not always
yield the lowest error on each of the six held-out kernels. For example, [G-CODEBERT,GNN-GSE]
performs the best on STENCIL-3D and TRMM-OPT, but poorly on DOITGEN-R, and thus the average
regression error over the six held-out kernels is higher than G-CODEBERT-L. This calls for a more
in-depth study of the discrepancy between kernels and a model that is capable of generalizing to a
diverse set of kernels. In general, adaptation is necessary, since across all the experiments, without
any adaptation (“Ind”), directly applying the trained model to new unseen kernels leads to poor
regression error and classification accuracy.

6 Conclusion and Future Work

This work introduces the task of design quality prediction in the forms of regression and classification
tasks and presents the HLSYN benchmark to evaluate state-of-the-art program representation learning
methods. Although there is no method that consistently outperforms all the other methods, we notice
several trends and identify promising directions toward a more accurate prediction model design. As
program representation learning is a continuously growing research domain, we plan to maintain
the benchmark to test new methods. For example, our recent work [31] uses hierarchical graphs for
program representations to predict design performance. Our HLSYN benchmark is a growing project.
We expect to include more kernels and labeled designs running newer versions of HLS tools and
establish a leaderboard 2 to encourage participation. In addition, the current benchmark does not
consider the design space exploration (DSE) stage, which will be added as the project develops. In
fact, the regression task aims to be eventually integrated into the DSE process, which traverses the
design space in order to find the optimal pragma setting.

7 Acknowledgement

This work was partially supported by NSF 2211557, NSF 1937599, NSF 2119643, NSF 2303037,
NASA, SRC JUMP 2.0 Center, Okawa Foundation, Amazon Research, Cisco, Picsart, Snapchat, and
CDSC industrial partners (https://cdsc.ucla.edu/partners/). We would also like to thank AMD/Xilinx
for HACC equipment donation and Marci Baun for editing the paper.

References
[1] Sergi Abadal, Akshay Jain, Robert Guirado, Jorge López-Alonso, and Eduard Alarcón. Computing

graph neural networks: A survey from algorithms to accelerators . ACM Computing Surveys (CSUR),

2https://github.com/UCLA-DM/HLSyn#leaderboard

9

https://github.com/UCLA-DM/HLSyn#leaderboard

54(9):1–38, 2021.

[2] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. code2vec: Learning distributed representations
of code . Proceedings of the ACM on Programming Languages, 3(POPL):1–29, 2019.

[3] AMD/Xilinx Vivado HLS. https://docs.xilinx.com/v/u/2018.3-English/
ug902-vivado-high-level-synthesis.

[4] AMD/Xilinx Vivado HLS. https://docs.xilinx.com/v/u/2020.2-English/
ug1416-vitis-documentation.

[5] Yunsheng Bai, Atefeh Sohrabizadeh, Yizhou Sun, and Jason Cong. Improving GNN-based accelerator
design automation with meta learning . In Proceedings of the 59th ACM/IEEE Design Automation
Conference, pages 1347–1350, 2022.

[6] Cadence Stratus High-Level Synthesis. https://www.cadence.com/en_US/home/tools/
digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html.

[7] David Castells-Rufas, Vinh Ngo, Juan Borrego-Carazo, Marc Codina, Carles Sanchez, Debora Gil, and
Jordi Carrabina. A survey of FPGA-based vision systems for autonomous cars. IEEE Access, 10:132525–
132563, 2022.

[8] Yuze Chi, Weikang Qiao, Atefeh Sohrabizadeh, Jie Wang, and Jason Cong. Democratizing domain-specific
computing. Communications of the ACM, 66(1):74–85, 2022.

[9] Eric Chung, Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Adrian Caulfield, Todd Massengill,
Ming Liu, Daniel Lo, Shlomi Alkalay, Michael Haselman, et al. Serving DNNs in real time at datacenter
scale with project brainwave . iEEE Micro, 38(2):8–20, 2018.

[10] Jason Cong, Jason Lau, Gai Liu, Stephen Neuendorffer, Peichen Pan, Kees Vissers, and Zhiru Zhang.
FPGA HLS today: successes, challenges, and opportunities . ACM Transactions on Reconfigurable
Technology and Systems (TRETS), 15(4):1–42, 2022.

[11] Jason Cong, Bin Liu, Stephen Neuendorffer, Juanjo Noguera, Kees Vissers, and Zhiru Zhang. High-level
synthesis for FPGAs: From prototyping to deployment . IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 30(4):473–491, 2011.

[12] Jason Cong, Peng Wei, Cody Hao Yu, and Peng Zhang. Automated accelerator generation and optimization
with composable, parallel and pipeline architecture . In DAC, 2018.

[13] Chris Cummins, Zacharias V Fisches, Tal Ben-Nun, Torsten Hoefler, Michael FP O’Boyle, and Hugh
Leather. Programl: A graph-based program representation for data flow analysis and compiler optimiza-
tions . In International Conference on Machine Learning, pages 2244–2253. PMLR, 2021.

[14] William J Dally, Yatish Turakhia, and Song Han. Domain-specific hardware accelerators . Communications
of the ACM, 63(7):48–57, 2020.

[15] Javier Duarte, Philip Harris, Scott Hauck, Burt Holzman, Shih-Chieh Hsu, Sergo Jindariani, Suffian Khan,
Benjamin Kreis, Brian Lee, Mia Liu, et al. FPGA-accelerated machine learning inference as a service for
particle physics computing . Computing and Software for Big Science, 3:1–15, 2019.

[16] Lorenzo Ferretti, Jihye Kwon, Giovanni Ansaloni, Giuseppe Di Guglielmo, Luca Carloni, and Laura Pozzi.
DB4HLS: a database of high-level synthesis design space explorations . IEEE Embedded Systems Letters,
13(4):194–197, 2021.

[17] Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Todd Massengill, Ming Liu, Daniel Lo, Shlomi
Alkalay, Michael Haselman, Logan Adams, Mahdi Ghandi, et al. A configurable cloud-scale DNN
processor for real-time AI . In 2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA), pages 1–14. IEEE, 2018.

[18] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey
Svyatkovskiy, Shengyu Fu, et al. Graphcodebert: Pre-training code representations with data flow . arXiv
preprint arXiv:2009.08366, 2020.

[19] Muhuan Huang, Di Wu, Cody Hao Yu, Zhenman Fang, Matteo Interlandi, Tyson Condie, and Jason
Cong. Programming and runtime support to blaze FPGA accelerator deployment at datacenter scale . In
Proceedings of the Seventh ACM Symposium on Cloud Computing, pages 456–469, 2016.

10

https://docs.xilinx.com/v/u/2018.3-English/ug902-vivado-high-level-synthesis
https://docs.xilinx.com/v/u/2018.3-English/ug902-vivado-high-level-synthesis
https://docs.xilinx.com/v/u/2020.2-English/ug1416-vitis-documentation
https://docs.xilinx.com/v/u/2020.2-English/ug1416-vitis-documentation
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html

[20] Intel High Level Synthesis Compiler. https://www.intel.com/content/www/us/en/software/
programmable/quartus-prime/hls-compiler.html.

[21] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa, Sarah
Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. In-datacenter performance analysis of a tensor
processing unit . In Proceedings of the 44th annual international symposium on computer architecture,
pages 1–12, 2017.

[22] David Koeplinger, Raghu Prabhakar, Yaqi Zhang, Christina Delimitrou, Christos Kozyrakis, and Kunle
Olukotun. Automatic generation of efficient accelerators for reconfigurable hardware . In ISCA, pages
115–127, 2016.

[23] Hung-Yi Liu and Luca P Carloni. On learning-based methods for design-space exploration with high-level
synthesis . In DAC, pages 1–7, 2013.

[24] NEC CyberWorkBench. https://www.nec.com/en/global/prod/cwb/index.html.

[25] Andrew Putnam, Adrian Caulfield, Eric Chung, Derek Chiou, Kypros Constantinides, John Demme,
Hadi Esmaeilzadeh, Jeremy Fowers, Jan Gray, Michael Haselman, Scott Hauck, Stephen Heil, Amir
Hormati, Joo-Young Kim, Sitaram Lanka, Eric Peterson, Aaron Smith, Jason Thong, Phillip Yi Xiao,
Doug Burger, Jim Larus, Gopi Prashanth Gopal, and Simon Pope. A reconfigurable fabric for accelerating
large-scale datacenter services. In Proceeding of the 41st Annual International Symposium on Computer
Architecuture (ISCA), pages 13–24. IEEE Press, June 2014. Selected as an IEEE Micro TopPick.

[26] Brandon Reagen, Robert Adolf, Yakun Sophia Shao, Gu-Yeon Wei, and David Brooks. Machsuite:
Benchmarks for accelerator design and customized architectures . In IISWC, 2014.

[27] Ahmad Shawahna, Sadiq M Sait, and Aiman El-Maleh. FPGA-based accelerators of deep learning
networks for learning and classification: A review . ieee Access, 7:7823–7859, 2018.

[28] Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjin Wang, and Yu Sun. Masked label
prediction: Unified message passing model for semi-supervised classification . IJCAI, 2021.

[29] Siemens Catapult High-Level Synthesis. https://eda.sw.siemens.com/en-US/ic/ic-design/
high-level-synthesis-and-verification-platform/.

[30] Atefeh Sohrabizadeh, Yunsheng Bai, Yizhou Sun, and Jason Cong. Automated accelerator optimization
aided by graph neural networks . In Proceedings of the 59th ACM/IEEE Design Automation Conference,
pages 55–60, 2022.

[31] Atefeh Sohrabizadeh, Yunsheng Bai, Yizhou Sun, and Jason Cong. Robust GNN-based representation
learning for HLS. In The International Conference on Computer-Aided Design, 2023.

[32] Atefeh Sohrabizadeh, Yuze Chi, and Jason Cong. StreamGCN: Accelerating graph convolutional networks
with streaming processing. In 2022 IEEE Custom Integrated Circuits Conference (CICC), pages 1–8.
IEEE, 2022.

[33] Atefeh Sohrabizadeh, Jie Wang, and Jason Cong. End-to-end optimization of deep learning applications .
In Proceedings of the 2020 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
pages 133–139, 2020.

[34] Atefeh Sohrabizadeh, Cody Hao Yu, Min Gao, and Jason Cong. AutoDSE: Enabling software programmers
to design efficient FPGA accelerators. ACM Transactions on Design Automation of Electronic Systems
(TODAES), 27(4):1–27, 2022.

[35] Qi Sun, Tinghuan Chen, Siting Liu, Jin Miao, Jianli Chen, Hao Yu, and Bei Yu. Correlated multi-objective
multi-fidelity optimization for HLS directives design. In IEEE/ACM Proceedings Design, Automation
and Test in Europe (DATE), pages 01–05, 2021.

[36] Ecenur Ustun, Chenhui Deng, Debjit Pal, Zhijing Li, and Zhiru Zhang. Accurate operation delay prediction
for FPGA HLS using graph neural networks . In Proceedings of the 39th International Conference on
Computer-Aided Design, pages 1–9, 2020.

[37] Jie Wang, Licheng Guo, and Jason Cong. AutoSA: A polyhedral compiler for high-performance
systolic arrays on FPGA . In Proceedings of the 2021 ACM/SIGDA international symposium on
Field-programmable gate arrays, 2021.

[38] Shuo Wang, Yun Liang, and Wei Zhang. Flexcl: An analytical performance model for OpenCL workloads
on flexible FPGAs . In DAC, pages 1–6, 2017.

11

https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.nec.com/en/global/prod/cwb/index.html
https://eda.sw.siemens.com/en-US/ic/ic-design/high-level-synthesis-and-verification-platform/
https://eda.sw.siemens.com/en-US/ic/ic-design/high-level-synthesis-and-verification-platform/

[39] Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. Codet5: Identifier-aware unified pre-trained
encoder-decoder models for code understanding and generation . EMNLP, 2021.

[40] Nan Wu, Yuan Xie, and Cong Hao. Ironman-pro: Multi-objective design space exploration in HLS via
reinforcement learning and graph neural network based modeling. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 2022.

[41] Nan Wu, Hang Yang, Yuan Xie, Pan Li, and Cong Hao. High-level synthesis performance prediction
using GNNs: Benchmarking, modeling, and advancing . In Proceedings of the 59th ACM/IEEE Design
Automation Conference, pages 49–54, 2022.

[42] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie Jegelka.
Representation learning on graphs with jumping knowledge networks . ICML, 2018.

[43] Cody Hao Yu, Peng Wei, Max Grossman, Peng Zhang, Vivek Sarker, and Jason Cong. S2FA: an accelerator
automation framework for heterogeneous computing in datacenters . In DAC, pages 1–6, 2018.

[44] Tomofumi Yuki and Louis-Noël Pouchet. Polybench/c.

[45] Jieru Zhao, Liang Feng, Sharad Sinha, Wei Zhang, Yun Liang, and Bingsheng He. COMBA: A compre-
hensive model-based analysis framework for high level synthesis of real applications . In ICCAD, pages
430–437, 2017.

[46] Guanwen Zhong, Alok Prakash, Yun Liang, Tulika Mitra, and Smail Niar. Lin-analyzer: a high-level
performance analysis tool for FPGA-based accelerators . In DAC, pages 1–6, 2016.

[47] Guanwen Zhong, Vanchinathan Venkataramani, Yun Liang, Tulika Mitra, and Smail Niar. Design space
exploration of multiple loops on FPGAs using high level synthesis . In ICCD, pages 456–463, 2014.

12

	Introduction
	Background
	Related Work
	The HLSyn Benchmark
	Experiments on HLSyn
	Baseline Methods
	Evaluation Protocol
	Results and Analysis

	Conclusion and Future Work
	Acknowledgement

