
A Appendix564

B Diffusion process as ODE565

In this section, we treat x as a continuous function of time, i.e. let x : R→ Rn, s 7→ x(s). Here s566

denotes the time variable (since t is already taken and n usually refers to discrete variables).567

During prediction, xt is given, ϕ is fixed, and Iϕ only depends on x̂t+h and i. Therefore, we simplify568

notations by writing Iϕ (xt, x̂t+h, i) = Iϕ,xt
(x̂t+h, i). We will further omit the subscripts ϕ and xt.569

B.1 Cold Sampling from the Euler method570

In this section, we show that Cold Sampling is an approximation of the Euler method for (5).571

The Euler method for integrating x is572

xs+∆s = xs +∆s
dI(Fθ(xs, s), s)

ds
(7)

for a small ∆s. We do not have access to dI(Fθ(xs,s),s)
ds . However, since we know Fθ and Iϕ, we can573

approximate dI(Fθ(xs,s),s)
ds by its first-order Taylor expansion around s:574

∆s
dI(Fθ(xs, s), s)

ds
≈ I(Fθ(xs+∆s, s+∆s), s+∆s)− I(Fθ(xs, s), s) (8)

This step can also be interpreted as evaluating the integral in (6) using the fundamental theorem of575

calculus. Then the Euler method becomes576

xs+∆s = xs + I(Fθ(xs+∆s, s+∆s), s+∆s)− I(Fθ(xs, s), s) (9)

Note that xs+∆s on the right hand side is unknown, because it is the quantity we want to approximate577

in this step. A reasonable way to approximate Fθ(xs+∆s, s + ∆s) is to replace it by Fθ(xs, s),578

because they both predict x(h) and use nearby points (assuming ∆s is small and x behaves nicely579

around s). The resulting update,580

xs+∆s = xs + I(Fθ(xs, s), s+∆s)− I(Fθ(xs, s), s), (10)

is exactly the Cold Sampling algorithm (Alg. 2). By formulating the diffusion process as an ODE, we581

have provided a new theoretical explanation for Cold Sampling.582

Note that we made the approximation that Fθ(xs+∆s, s+∆s) ≈ Fθ(xs, s) to obtain the update rule583

(previous equation). The error introduced by this approximation is expected to be larger when s is584

small. The intuition is as follows. When s is small, the distance between s and t+ h is large, and585

Fθ(xs, s) has to make a prediction farther ahead. Predicting far into the further is generally harder than586

predicting the near future. Therefore, the prediction error Fθ(xs, s)− xt+h is expected to be larger587

when s is small. The larger uncertainty may lead to larger difference between Fθ(xs+∆s, s+∆s)588

and Fθ(xs, s).589

To reduce the error brought by this approximation, it makes sense to sample more densely around the590

early part of the prediction window.591

B.2 Why is cold sampling better than naive sampling?592

In experiments, and consistent with prior work [2], cold sampling outperforms naive sampling by a593

large margin. We provide an explanation by analyzing the discretization errors in the two sampling594

algorithms. In cold sampling, the discretization error per step is bounded by a term proportional to595

the step size ∆s. Naive sampling does not have this property.596

The true value of x at s+∆s according to Equation (6) is597

x(s+∆s) = x(s) +

∫ s+∆s

s

dIϕ(Fθ(x, s), s)

ds

= x(s) + I(Fθ(x(s+∆s), s+∆s), s+∆s)− I(Fθ(x(s), s), s). (11)

15

Recall from Alg. 2 that given x(s), cold sampling predicts x(s+∆s) as598

x̂(s+∆s) = x(s) + Iϕ(xt−l:t, Fθ(x(s), s), s+∆s)− Iϕ(xt−l:t, Fθ(x(s), s), s). (12)

The discretization error e(x) of one step of cold sampling is the difference between the exact and599

predicted x(s+∆s):600

e(x,∆s) = x(s+∆s)− x̂(s+∆s)

= I(Fθ(x(s+∆s), s+∆s), s+∆s)− I(Fθ(x(s), s), s+∆s). (13)

The following proposition states that e(x) is bounded by a term proportional to the step size ∆s.601

Proposition B.1. Assume that Fθ(x(s), s) is Lipschitz in s. Assume also that Iϕ(xt+h, s) is Lipschitz602

in xt+h. The norm of the cold sampling discretization error, ||e(x,∆s)||2, is bounded by O(∆s).603

Proof. The proof relied on applying definitions of Lipschitz functions twice. Let L1 be the Lipschitz604

constant for Fθ(x(s), s) in s. Let L2 be the Lipschitz constant for I(x, s) in x. Since Fθ(x(s), s)605

is Lipschitz in s, we have ||Fθ(x(s+∆s), s + ∆s) − Fθ(x(s), s)||2 ≤ L1∆s. Since I(x, s) is606

Lipschitz in x, we have ||I(Fθ(x(s+∆s), s+∆s), s+∆s)−I(Fθ(x(s), s), s+∆s)||2 ≤ L2L1∆s.607

Therefore ||e(x)|| ≤ L2L1∆s, which means the discretization error is bounded by a first-order term608

of the step size.609

Under the same Lipschitz assumptions, the discretization error of the naive sampling is not guaranteed610

to be in the first order of step size. In naive sampling, the predicted x at time s+∆s is611

x̂(s+∆s) = I(Fθ(x(s), s), s+∆s). (14)

The discretization error of one step of naive sampling is x(s+∆s):612

e(x,∆s) =x(s+∆s)− x̂(s+∆s)

=I(Fθ(x(s+∆s), s+∆s), s+∆s)− I(Fθ(x(s), s), s+∆s)

+ x(s)− I(Fθ(x(s), s), s). (15)

Note that the first two terms are the same as the discretization error in cold sampling. However, the613

last two term are not bounded by first-order terms of ∆s. Hence, naive sampling can have larger614

discretization errors.615

B.3 Evaluation616

We use the implementation in the xskillscore3 Python package to compute the CRPS of the617

ensemble forecasts.618

B.4 Datasets619

B.4.1 SST Data Preprocessing620

Figure 4: Visualization of the SST
dataset that we created. It divides
the globe into 60 × 60 latitude ×
longitude grid tiles. We only use the
subset delineated in red, i.e. boxes
84-89 and 108-112.

We create a new sea surface temperatures (SST) dataset based621

on NOAA OISSTv2 [30], which comes at a daily time-scale.622

These data is available from 1982 to the present at a resolution623

of 1/4◦ degrees. For training we use the years 1982-2018, for624

validation 2019, and for testing 2020. We have preprocessed625

the NOAA OI SST V2 dataset as follows:626

1. First, the globe is divided into 60 × 60 latitude ×627

longitude grid tiles,628

2. all tiles with less than 95% of ocean cover are filtered629

out,630

3. standardize the raw SSTs using daily means and stan-631

dard deviations (computed on the training set only,632

i.e. 1982-2018),633

3https://xskillscore.readthedocs.io/

16

https://xskillscore.readthedocs.io/

Table 4: The hyperparameters used for each dataset. For the learning rates, we sweep over each
value and report the best set of runs based on their validation CRPS computed on 50 samples. For
architectural details, see B.5.2.

Hyperparameters for each dataset
Hyperparameter SST Navier-Stokes Spring Mesh

Batch size 64 32 64
Accumulate gradient batches 4 2 1
Max. Epochs 50 200 300
Gradient clipping (norm) 1.0 1.0 1.0
Learning rate(s) 7e-4, 3e-4, 5e-5, 1e-5 7e-4, 3e-4 4e-4
Weight decay 1e-5 1e-4 1e-4
AdamW β1 0.9 0.9 0.9
AdamW β2 0.99 0.99 0.99

4. replace continental NaNs with zeroes (after standard-634

ization), and635

5. we subsample 11 grid tiles (covering mostly the east-636

ern tropical Pacific, as shown in Fig. 4).637

B.5 Experiments638

B.5.1 Implementation Details639

The set of hyperparameters that we use for each dataset, such as the learning rate and maximum640

number of epochs, can be found in Table 4. For all experiments we use a floating point precision641

of 16, and do not use a learning rate scheduler. All diffusion models, including DYffusion, are642

trained with the L1 loss, while all bare-bone UNet/CNN networks are trained on the L2 loss. We643

use three different dropout rates for the SST UNet: 1) before the query-key-value projection of each644

attention layer, drat; 2) After the first sub-block of each ResNet block, drbl1 ; 3) After the second645

sub-block of each ResNet block, drbl2 , where the first ResNet sub-block consists of convolution→646

normalization→ time-embedding scale-shift→ activation function, and the second sub-block is the647

same but without the time-embedding scale-shift.648

Perturbation baseline We perturb the initial conditions, xt, with small amounts of Gaussian noise649

ϵ ∼ N (0, σϵI). We found that σ∗
ϵ = 0.05 gave the lowest CRPS scores among all variances that we650

tried, σϵ ∈ {0.01, 0.03, 0.05, 0.07, 0.1, 0.15, 0.2}. We note that choosing larger variances results in651

better SSR scores, but significantly lower CRPS and MSE scores. Inference dropout was disabled for652

this baseline variant.653

Dropout baseline For this baseline, we enable the bare-bone model’s dropout during both training654

and inference. For the SST dataset, similarly to the interpolator network of DYffusion, we found that655

using high dropout rates results in better performance. An explanation could be that the SST UNet656

has capacity than the other backbone architectures. Concretely, the following SST UNet dropout657

rates resulted in best performance: drat = drbl2 = 0.6, drbl1 = 0.3. For Navier-Stokes and spring658

mesh there is only one dropout hyperparameter, and the corresponding best model uses 0.2 and 0.05659

as dropout rate, respectively (selected from a sweep over {0.05, 0.1, 0.15, 0.2, 0.25, 0.3}).660

DDPM We found that the cosine (linear) noise schedule gives better results for the SST (Navier-661

Stokes) dataset, and always use the “predict noise” objective. For the SST dataset, the best performing662

DDPM is trained with 5 diffusion steps, while for Navier-Stokes it is trained with 500 steps. For663

Navier-Stokes we found that while a DDPM with 5 or 10 diffusion steps can give good validation664

scores (or even better ones than the 500-steps DDPM), it ends up diverging at test time after a few665

autoregressive iterations when used to forecast full trajectories.666

MCVD [65] We train MCVD with 1000 diffusion steps for all datasets, as we were not able to667

successfully train it with fewer diffusion steps. We use a linear noise schedule (we found the cosine668

17

schedule to produce inferior results) using the “predict noise” objective. Due to the inference runtime669

complexity of using 1000 diffusion steps, we only report one MCVD run in our main SST results.670

DYffusion For the SST dataset we use 35 artificial diffusion steps (analogous to the schedule671

in green in Fig. 2), while for the Navier-Stokes and spring mesh datasets we do not use any, i.e.672

S = [j]h−1
j=0 . Furthermore, we found that the refinement step of Alg. 2 did not improve performance for673

the SST dataset so we did not use it there, whereas it did improve performance for Navier-Stokes and674

spring mesh. As for the choice of the interpolator network, Iϕ, we conduct a sweep over the dropout675

rates for each dataset (analogous to the “Dropout” baseline). This is an important hyperparameter,676

since we found that stochasticity in the interpolator is crucial for the overall performance of DYffusion.677

The interpolator network is selected based on the lowest validation CRPS. For the SST dataset, the678

selected Iϕ uses drat = drbl2 = 0.6, drbl1 = 0. The dropout rates for Navier-Stokes and spring679

mesh are 0.15 and 0.05, respectively. Generally, we found that the optimal amount of dropout for680

any given dataset strongly correlates between the “Dropout” multi-step forecasting baseline and681

DYffusion’s interpolator network, Iϕ. Thus, for a new dataset or problem, it is a valid strategy to682

sweep over the dropout rate for just one of the two model types. Motivated by the intuition that683

temporal interpolation is a simpler task than forecasting, the channel dimensionality of Iϕ is only 32684

(instead of 64) for the first downsampling block of the SST UNet.685

B.5.2 Neural architecture details686

SST UNet For the SST dataset, we use a UNet implementation commonly used as backbone687

architecture of diffusion models4. The UNet for the SST dataset consists of three downsampling and688

three upsampling blocks. Each blocks consists of two convolutional residual blocks (ResNet blocks),689

followed by an attention layer, and a downsampling (or upsampling) module. Each ResNet block690

can be further divided into two sub-blocks. The first one consists of convolution→ normalization→691

time-embedding scale-shift→ activation function, and the second sub-block is the same but without692

the time-embedding scale-shift. The downsampling module is a 2D convolution that halves the spatial693

size of the input (with a 4× 4 kernel and stride= 2). The upsampling module doubles the spatial size694

via nearest neighbor upsampling followed by a 2D convolution (with 3×3 kernel). At the end of each695

downsampling (upsampling) block the spatial size is halved (doubled) and the channel dimension696

is doubled (halved). We use 64 channels for the initial downsampling block, which means that the697

channel dimensionalities are 64→ 128→ 256 and the spatial dimensions (60, 60)→ (30, 30)→698

(15, 15) in the corresponding downsampling blocks (reversed for the upsampling blocks). We use699

three different dropout rates for the SST UNet: 1) before the query-key-value projection of each700

attention layer, drat; 2) After the first sub-block of each ResNet block, drbl1 ; 3) After the second701

sub-block of each ResNet block, drbl2 . For all models except the time-conditioned bare-bone network702

and Iϕ in DYffusion, which use higher dropout rates, we use drat = 0.1, drbl1 = 0, drbl2 = 0.3.703

Navier-Stokes UNet and spring mesh CNN For the Navier-Stokes and spring mesh benchmark704

datasets from [43], we simply re-use their proposed UNet and CNN architecture for the respective705

dataset. The only change is, that we integrate the same time embedding module from the SST UNet,706

as described below.707

Time embedding module The time-embedding scale-shift, taken from the SST UNet, is a key708

component of all architectures since it enables them to condition on the diffusion step (for DDPM709

and MCVD) or the dynamical timestep (for the time-conditioned bare-bone models as well as for710

both Fθ and Iϕ in DYffusion). It is implemented by a sine-cosine based featurization of the scalar711

diffusion step/dynamical timestep. These features are projected by a linear layer, followed by a GeLU712

activation, and another linear layer, which results in a “time embedding”. Then, separately for each713

convolutional (or ResNet) block of the neural architecture the “time embedding” is further processed714

by a SiLU activation and another linear layer whose output is interpreted as two vectors which are715

used to scale and shift the block’s inputs. In all architectures, the scale-shift operation is performed716

after convolution and normalization layers, but before the activation function and dropout layer.717

18

Table 5: Sampling ablation. We change one component at a time in DYffusion, starting with all
components enabled (first row). For SST, we perform the ablation only on a subset of the test dataset
(box 88 in Fig. 4). For the Navier-Stokes and spring mesh datasets, we use the full test sets. No ref.
refers to not using the refinement step in line 6 of Alg. 2. No dr. refers to disabling the inference
dropout of the interpolator network, Iϕ. No Dr.& σϵ refers to disabling the inference dropout of Iϕ
and perturbing the inputs by σϵ = 0.05 (like for the Perturbation baseline).

Change SST Navier-Stokes Spring Mesh
CRPS MSE SSR CRPS MSE SSR CRPS MSE SSR

Full 0.182 ± 0.001 0.111 ± 0.001 1.03 ± 0.02 0.067 ± 0.003 0.022 ± 0.002 0.88 ± 0.01 0.0107 ± 0.0025 4.74e-04 ± 2.38e-04 1.11 ± 0.09
No ref. 0.182 ± 0.001 0.111 ± 0.001 1.08 ± 0.00 0.069 ± 0.003 0.024 ± 0.002 1.12 ± 0.02 0.0249 ± 0.0014 7.62e-04 ± 3.10e-04 2.02 ± 0.15
No Dr. 0.320 ± 0.009 0.206 ± 0.012 0.00 ± 0.00 0.098 ± 0.005 0.028 ± 0.003 0.00 ± 0.00 0.0348 ± 0.0042 2.77e-03 ± 6.71e-04 0.00 ± 0.00
No Dr.& σϵ 0.308 ± 0.009 0.197 ± 0.012 0.40 ± 0.01 0.070 ± 0.004 0.024 ± 0.002 0.85 ± 0.03 0.0292 ± 0.0034 2.98e-03 ± 6.79e-04 0.96 ± 0.05

B.5.3 Ablations718

Inference dropout in the interpolator net In Table 5 we show that disabling the inference dropout719

in the interpolator network, Iϕ, results in considerably worse scores. This is to be expected, since720

without stochasticity in Iϕ our current framework collapses to forecasting deterministically (since721

the sampling algorithm and forecaster network are deterministic, and we assume that the given initial722

conditions are fixed). In such a case, computing the CRPS collapses to the mean absolute error, and723

the SSR becomes 0 since there is no spread in the predictions. To attain an ensemble of forecasts,724

but keeping the interpolator dropout disabled, we also include an ablation row where we perturb the725

initial conditions with small random noise ϵ ∼ N (0, σϵI), where we use σϵ = 0.05.726

Refining the forecasts after cold sampling We find in Table 5 (No ref. row), that the addition of727

line 6 to the cold sampling algorithm (see Alg. 2) can sometimes improve performance. However,728

this is not consistent across datasets: While for the SST dataset we hardly observe any difference,729

the scores improve considerably for the spring mesh dataset. A reason could be the relatively long730

training horizon used for spring mesh (134 for spring mesh versus 16 or 7 for Navier-Stokes or SST).731

In practice, we recommend practitioners to train DYffusion with the refinement step being disabled in732

order to accelerate inference time (since the refinement step requires one additional forward pass per733

output timestep). Then, during evaluation it is encouraged to perform inference with DYffusion with734

the refinement step being both enabled as well as disabled to analyze whether enabling the refinement735

step can meaningfully improve the forecasts.736

Accelerated Sampling from DYffusion In Fig. 5 we study how sampling from DYffusion can be737

accelerated in a similar way to how DDIM [60] can accelerate sampling from Gaussian diffusion738

models. The continuous-time nature of the backbone networks in DYffusion, invites using arbitrary739

dynamical timesteps as diffusion states at inference time. Thus, to accelerate sampling, we can skip740

some of the N diffusion steps used for training, Strain = {in}N−1
n=0 , which automatically results in741

fewer neural network forward passes and thus faster inference. In the simplest case, we can only use742

the base schedule Sbase = {0, 1, . . . , h− 1}, where the diffusion states correspond in a one-to-one743

mapping to the temporal resolution of the dynamical data (see black lines in Fig. 2). In Fig. 5, we744

start with Sbase as inference schedule (left-most dots in each subplot) and then incrementally add745

more diffusion steps from Strain \ Sbase to it, until reaching the full training schedule (right-most746

dots). We find that sampling can be significantly accelerated with marginal drops in CRPS and MSE747

performance. Note that the dynamical timesteps needed as outputs of DYffusion or for downstream748

applications pose a lower bound (here, Sbase) on how much we can accelerate our method, since any749

such output timestep needs to be included in the sampling schedule or in the set of output timesteps,750

J (line 6 in Alg. 2).751

Choosing the training horizon In any multi-step forecasting model, the training horizon, h, is a752

key hyperparameter choice. Usually, its choice is constrained by the number of timesteps that fit753

into GPU memory, and it is expected that larger training horizons will improve performance when754

evaluated on long (autoregressive) rollouts. However, for continuous-time models including ours,755

where the number of timesteps needed in GPU memory does not change as a function of h (see756

Table 7), the choice of h is flexible. In Table 6, we explore using three different training horizons757

4https://github.com/lucidrains/denoising-diffusion-pytorch/blob/main/denoising_
diffusion_pytorch/denoising_diffusion_pytorch.py

19

https://github.com/lucidrains/denoising-diffusion-pytorch/blob/main/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
https://github.com/lucidrains/denoising-diffusion-pytorch/blob/main/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py

Figure 5: There is a strong trade-off between inference speed (x-axis) and performance (y-axis) as
a function of the number of diffusion steps used for inference by DYffusion. Here, we show the
SST test scores for one run of DYffusion, which was trained with 35 auxiliary diffusion steps (on
top of the 7 given by the data). Each dot from left to right represents performing inference with an
increasing number of diffusion steps. Each dot uses the base schedule Sbase = {0, 1, . . . , h − 1},
where h = 7, plus Naux additional diffusion steps drawn from the ones used for training. Naux =
(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 23, 26, 29, 35), and each such additional diffusion step
corresponds to an implicit dynamical timestep in (0, 1). Interestingly, almost equivalent (for CRPS)
or slightly better (for MSE) scores can be sometimes obtained by using fewer diffusion steps than
used for training (right-most dots of each subplot), which immediately benefits inference speed.

Table 6: Navier-Stokes ablation of the training horizon, h. Note that h = 16 corresponds to the
main results in Table 1, and that h = 1 corresponds to a next-step prediction model. All methods
are evaluated on the 64-step test trajectories. For example, for h = 1 (h = 16) the corresponding
methods are unrolled autoregressively 64 (4) times.

Method CRPS MSE SSR

Dropout (h = 1) 0.132 ± 0.006 0.046 ± 0.006 0.002 ± 0.000
Dropout (h = 8) 0.086 ± 0.012 0.026 ± 0.002 0.416 ± 0.293

Dropout (h = 16) 0.078 ± 0.001 0.027 ± 0.001 0.715 ± 0.005
Dropout (h = 32) 0.078 ± 0.001 0.025 ± 0.001 0.651 ± 0.005
DYffusion (h = 8) 0.076 ± 0.002 0.027 ± 0.001 0.701 ± 0.024

DYffusion (h = 16) 0.067 ± 0.003 0.022 ± 0.002 0.877 ± 0.006
DYffusion (h = 32) 0.075 ± 0.003 0.028 ± 0.001 0.862 ± 0.038

(h ∈ {8, 16, 32}) for the Navier-Stokes dataset for both the bare-bone time-conditioned Dropout758

model as well as DYffusion. For DYffusion, this means that we train both an interpolator network as759

well as a corresponding forecaster net with the same training horizon. Note that h = 16 corresponds760

to the main results. We find that h = 16 is a sweet spot for DYffusion. However, any of the used761

horizons results in better scores than the best baseline (for any baseline training horizon).762

B.5.4 Modeling Complexity of DYffusion and baselines763

In Table 7 we enumerate the different modeling and compute requirements needed for each of the764

baselines and our method. Dropout (multi-step) refers to the bare-bone backbone network forecasting765

all h timesteps xt+1:t+h in a single forward pass. Dropout (continuous) refers to the bare-bone766

backbone network forecasting one timestep xt+k for k ∈ {1, . . . , h} in a single forward pass,767

conditioned on the time, k. Both methods perform similarly in our exploratory experiments (not768

shown), and in our experiments we always report the scores of the time-conditioned (i.e continuous)769

variant. The multi-step approach corresponds to the way the backbone model of a video diffusion770

model operates, while the continuous variant corresponds to how the forecaster network in DYffusion771

operates. Video diffusion models have higher modeling complexity because they need to model772

the full “videos”, xt+1:t+h, at each diffusion state (or corrupted versions of it). Especially for long773

horizons, h, and high-dimensional data with several channels, this complicates the learning task774

20

Table 7: We report the requirements needed to train a method to forecast up to h steps into the future,
where c refers to the number of input/output channels (e.g. 1 for SST data), and w to the window size
(here, w = 1). In the second and third column we report the input and output channel dimensions,
respectively, that the (backbone) neural network needs to have (assuming that the window dimension
is concatenated to the channel dimension). |Mem(xt)| refers to the number of timesteps that need to
be present in (GPU) memory in order to compute the training objective. The last column denotes
how many network forward passes are needed to get the forecasts for all h timesteps. Here, N1, N2

refer to the number of (sampling) diffusion steps used by DDPM/MCVD and DYffusion, respectively.
Usually, N1 > N2 ≥ h, since Gaussian noise diffusion models will require more diffusion steps to
attain comparable predictive skill. For Navier-Stokes, N2 = h, for SST N2 < 50 and N1 = 1000
(for MCVD). The factor of 3 for DYffusion is a result of the two extra interpolator network forward
passes needed in line 4 of Alg. 2. For large horizons, the model size and memory requirements
of multi-step models and conventional diffusion models can be prohibitive. It is clear that (video)
diffusion models do not scale well for long horizons.

Modeling complexity
Method cin cout |Mem(xt)| #Forward

Dropout (continuous) w ∗ c c w + 1 h
Dropout (multi-step) w ∗ c h ∗ c w + h 1
DDPM / MCVD (h+ w) ∗ c h ∗ c w + h N1

DYffusion w ∗ c c w + 1 3 ∗N2

for the neural network. Meanwhile, our method is only slightly impacted by the choice of h (only775

implicitly through h being some kind of lower bound on the number of diffusion steps in DYffusion).776

B.6 Sampling Trajectories777

Example sampling trajectories of our approach, as a function of the schedule in, are visualized in778

Fig. 6, where the top one corresponds to the simplest case where we use a one-to-one mapping779

between diffusion steps, n, and interpolation/dynamical timesteps, in. Each of the intermediate x̂i780

can be used as a forecast for timestep i. The forecaster network, Fθ, repeatedly forecasts xh, but781

does so with increasing levels of skill (analogously to how conventional diffusion models iteratively782

denoise/refine the predictions of the “clean” data, s(0)).783

x0

n
=
0

in = 1

x̂1

x̂
(0)
h

n
=
1

in = 2

x̂2

x̂
(1)
h

n
=
2

in = 3

x̂3

x̂
(2)
h

n
=
3

x̂
(3)
h

(a) Basic schedule, 1-to-1 diffusion step to dynamical timestep mapping

x0

n
=
0
in = 0.25

x̂0.25

x̂
(0)
h

n
=
1

in = 0.5

x̂0.5

x̂
(1)
h

n
=
2
in = 0.75

x̂0.75

x̂
(2)
h

n
=
3

in = 1

x̂1

x̂
(3)
h

n
=
4

in = 2

x̂2

x̂
(4)
h

n
=
5

in = 3

x̂3

x̂
(5)
h

n
=
6

x̂
(6)
h

(b) Additional diffusion steps (here, 3) map uniformly to (0, 1)

Figure 6: Exemplary sampling trajectories of two different schedules for mapping diffusion steps, n,
to interpolation (dynamical) timesteps, in. The schedules are illustrated using a horizon of h = 4.
The black lines represent forecasts performed by the forecaster network, Fθ. The first forecast is
performed based on the initial conditions, x0. The blue lines represent the subsequent temporal
interpolation performed by the interpolator network, Iϕ.

21

