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Abstract

3D sensing for monocular in-the-wild images, e.g., depth estimation and 3D object
detection, has become increasingly important. However, the unknown intrinsic
parameter hinders their development and deployment. Previous methods for the
monocular camera calibration rely on specific 3D objects or strong geometry prior,
such as using a checkerboard or imposing a Manhattan World assumption. This
work instead calibrates intrinsic via exploiting the monocular 3D prior. Given
an undistorted image as input, our method calibrates the complete 4 Degree-of-
Freedom (DoF) intrinsic parameters. First, we show intrinsic is determined by the
two well-studied monocular priors: monocular depthmap and surface normal map.
However, this solution necessitates a low-bias and low-variance depth estimation.
Alternatively, we introduce the incidence field, defined as the incidence rays be-
tween points in 3D space and pixels in the 2D imaging plane. We show that: 1) The
incidence field is a pixel-wise parametrization of the intrinsic invariant to image
cropping and resizing. 2) The incidence field is a learnable monocular 3D prior,
determined pixel-wisely by up-to-sacle monocular depthmap and surface normal.
With the estimated incidence field, a robust RANSAC algorithm recovers intrinsic.
We show the effectiveness of our method through superior performance on synthetic
and zero-shot testing datasets. Beyond calibration, we demonstrate downstream
applications in image manipulation detection & restoration, uncalibrated two-view
pose estimation, and 3D sensing. Codes/models are held here.

1 Introduction

Camera calibration is typically the first step in numerous vision and robotics applications [27, 46]
that involve 3D sensing. Classic methods enable accurate calibration by imaging a specific 3D
structure such as a checkerboard [49]. With the rapid growth of monocular 3D vision, there is
an increasing focus on 3D sensing from in-the-wild images, such as monocular depth estimation,
3D object detection [35, 36], and 3D reconstruction [42, 43]. While 3D sensing techniques over
in-the-wild images are developed, camera calibration for such in-the-wild images continues to pose
significant challenges.

Classic methods for monocular calibration use strong geometry prior, such as using a checkerboard.
However, such 3D structures are not always available in in-the-wild images. As a solution, alternative
methods relax the assumptions. For example, [29] and [23] calibrate using common objects such as
human faces and objects’ 3D bounding boxes. Another significant line of research [7, 19, 34, 37, 51,
62, 66] is based on the Manhattan World assumption [15], which posits that all planes within a scene
are either parallel or perpendicular to each other. This assumption is further relaxed [28, 30, 64] to
estimate the lines that are either parallel or perpendicular to the direction of gravity. The intrinsic
parameters are recovered by determining the intersected vanishing points of detected lines, assuming
a central focal point and an identical focal length.
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Figure 1: In (a), our work focuses on monocular camera calibration for in-the-wild images. We recover the
intrinsic from monocular 3D-prior. In (c) - (e), an estimated depthmap is converted to surface normal using a
groundtruth and noisy intrinsic individually. Noisy intrinsic distorts the point cloud, consequently leading to
inaccurate surface normal. In (e), the normal presents a different color to (c). Motivated by the observation, we
develop a solver that utilizes the consistency between the two to recover the intrinsic. However, this solution
exhibits numerical instability. We then propose to learn the incidence field as an alternative 3D monocular prior.
The incidence field is the collection of the pixel-wise incidence ray, which originates from a 3D point, targets at
a 2D pixel, and crosses the camera origin, as shown in (b). Similar to depthmap and normal, a noisy intrinsic
leads to a noisy incidence field, as in (e). By same motivation, we develop neural network to learn in-the-wild
incidence field and develop a RANSAC algorithm to recover intrinsic from the estimated incidence field.

While the assumptions are relaxed, they may still not hold true for in-the-wild images. This creates
a contradiction: although we develop robust models to estimate in-the-wild monocular depthmap,
generating its 3D point cloud remains infeasible due to the missing intrinsic. A similar challenge
arises in monocular 3D object detection, as we face limitations in projecting the detected 3D bounding
boxes onto the 2D image. In AR/VR applications, the absence of intrinsic precludes placing multiple
reconstructed 3D objects within a canonical 3D space. The absence of a reliable, assumption-free
monocular intrinsic calibrator has become a bottleneck in deploying these 3D sensing applications.

Our method is motivated by the consistency between the monocular depthmap and surface normal
map. In Fig. 1 (c) - (e), an incorrect intrinsic distorts the back-projected 3D point cloud from
the depthmap, resulting in distorted surface normals. Based on this, intrinsic is optimal when the
estimated monocular depthmap aligns consistently with the surface normal. We present a solution to
recover the complete 4 DoF intrinsic by leveraging the consistency between the surface normal and
depthmap. However, the algorithm is numerically ill-conditioned as its computation depends on the
accurate gradient of depthmap. This requires depthmap estimation with low bias and variance.

To resolve it, we propose an alternative approach by introducing a novel 3D monocular prior in
complementation to the depthmap and surface normal map. We refer to this as the incidence field,
which depicts the incidence ray between the observed 3D point and the projected 2D pixel on the
imaging plane, as shown in Fig. 1 (b). The combination of the incidence field and the monocular
depthmap describes a 3D point cloud. Compared to the original solution, the incidence field is a direct
pixel-wise parameterization of the camera intrinsic. This implies that a minimal solver based on the
incidence field only needs to have low bias. We then utilize a deep neural network to perform the
incidence field estimation. A non-learning RANSAC algorithm is developed to recover the intrinsic
parameters from the estimated incidence field.

We consider the incidence field is also a monocular 3D prior. Similar to depthmap and surface normal,
the incidence field is invariant to the image cropping or resizing. This encourages its generalization
over in-the-wild images. Theoretically, we show the incidence field is pixel-wisely determined
by depthmap and normal map. Empirically, to support our argument, we combine multiple public
datasets into a comprehensive dataset with diverse indoor, outdoor, and object-centric images captured
by different imaging devices. We further boost the variety of intrinsic by resizing and cropping the
images in a similar manner as [23]. Finally, we include zero-shot testing samples to benchmark
real-world monocular camera calibration performance.

We showcase downstream applications that benefit from monocular camera calibration. In addition
to the aforementioned 3D sensing tasks, we present two intriguing additional applications. One
is detecting and restoring image resizing and cropping. When an image is cropped or resized, it
disrupts the assumption of a central focal point and identical focal length. Using the estimated
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Table 1: Camera Calibration Methods from Strong to Relaxed Assumptions. Non-learning methods [23, 29,
34, 37, 38, 51, 62, 71–74] rely on strong assumptions. Learning-based methods [28, 30, 38] relax the assumptions
to using gravity-aligned panorama images during training. Our method makes no assumptions except for
undistorted images. This enables training with any calibrated images and calibrates 4 DoF intrinsic.

[23, 29, 38, 71–74] [34, 37, 51, 62] [28, 38] [30] Ours
Degree of Freedom (DoF) 4 1 1 3 4
Assumption Specific-Objects Manhattan Train with Panorama Images Undistorted Images

intrinsic parameters, we restore the edited image by adjusting its intrinsic to a regularized form. The
other application involves two-view uncalibrated camera pose estimation. With established image
correspondence, a fundamental matrix [25] is determined. However, there does not exist an injective
mapping between the fundamental matrix and camera pose [27]. This raises a counter-intuitive fact:
inferring the pose from two uncalibrated images is infeasible. But our method enables uncalibrated
two-view pose estimation by applying monocular camera calibration.

We summarize our contributions as follows:
⋄ Our approach tackles monocular camera calibration from a novel perspective by relying on monoc-
ular 3D priors. Our method makes no assumption for the to-be-calibrated undistorted image.
⋄ Our algorithm provides robust monocular intrinsic estimation for in-the-wild images, accompanied
by extensive benchmarking and comparisons against other baselines.
⋄ We demonstrate its benefits on diverse and novel downstream applications.

2 Related Works

Monocular Camera Calibration with Geometry. One line of work [7, 19, 34, 37, 51, 62, 66]
assumes the Manhattan World assumption [15], where all planes in 3D space are either parallel or
perpendicular. Under the assumption, line segments in the image converge at the vanishing points,
from which the intrinsic is recovered. LSD [61] and EDLine [2] develop robust line estimators. Others
jointly estimate the horizon line and the vanishing points [40, 54, 70]. In Tab. 1, recent learning-based
methods [28,30,38,63,64] relax the assumption by using the gravity-aligned panorama images during
training. Such data provides the groundrtuth vanishing point and horizon lines which are originally
computed with the Manhattan World assumption. Still, the assumption constrains [28, 38, 63, 64] in
modeling intrinsic as 1 DoF camera. Recently, [30] relaxes the assumption to 3 DoF via regressing
the focal point. In comparison, our method makes no assumption except for undistorted images. This
enables us to calibrate 4 DoF intrinsic and train with any calibrated images.

Monocular Camera Calibration with Object. Zhang’s method [73] based on a checkerboard
pattern is widely regarded as the standard for camera calibration. Several works generalize this
method to other geometric patterns such as 1D objects [74], line segments [72], and spheres [71].
Recent works [29] and [23] extend camera calibration to real-world objects such as human faces.
Optimizers, including BPnP [12] and PnP [56] are developed. However, the usage of specific objects
restricts their applications. In contrast, our approach is applicable to any image.

Image Cropping and Resizing. Detecting photometric image manipulation [5,17,24] is extensively
researched. But few studies detecting geometric manipulation, e.g., resizing and cropping. On resizing,
[18] regresses the image aspect ratio with a deep model. On cropping, a proactive method [67] is
developed. We demonstrate that calibration also detects geometric manipulation. Our method does
not need to encrypt images, complementing photometric manipulation detection.

Uncalibrated Two-View Pose Estimation. With the fundamental matrix estimated, the two-view
camera pose is determined up to a projective ambiguity if images are uncalibrated. Alternative
solutions [31, 47, 58] exist by employing deep networks to regress the pose. However, regression
hinders the usage of geometric constraints, which proves crucial in calibrated two-view pose estima-
tion [60, 75, 77]. Other works [20, 26] use more than two uncalibrated images for pose estimation.
Our work complements prior studies by enabling an uncalibrated two-view solution.

Learnable Monocular 3D Priors. Monocular depth [39, 76] and surface normals [6] are two
established 3D priors. Numerous studies have shown a learnable mapping between monocular images
and corresponding 3D priors. Recently, [30] introduces the perspective field as a monocular 3D
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Figure 2: We illustrate the framework for the proposed monocular camera calibration algorithm. In (a), a deep
network maps the input image I to the incidence field V. A RANSAC algorithm recovers intrinsic from V. In
(b), we visualize a single iteration of RANSAC. An intrinsic is computed with two incidence vectors randomly
sampled at red pixel locations. From Eq. (2), an intrinsic determines the incidence vector at a given location.
The optimal intrinsic maximizes the consistency with the network prediction (blue and orange). Subfigure (c)
details the RANSAC algorithm. Different strategies are applied depending on if a simple camera is assumed. If
not assumed, we independently compute (fx, bx) and (fy, by). If assumed, there is only 1 DoF of intrinsic. We
proceed by enumerating the focal length within a predefined range to determine the optimal value.

prior for inferring gravity direction. In this work, we suggest the incidence field is also a learnable
monocular 3D prior. A common characteristic of monocular 3D priors is their exclusive relationship
with 3D structures, making them invariant to 2D manipulations, e.g., cropping, and resizing. In
contrast, camera intrinsic changes on spacial manipulation. Unlike other monocular priors, computing
the groundtruth incidence field is straightforward, relying solely on intrinsic and image coordinates.

3 Method

Our work focuses on intrinsic estimation from in-the-wild monocular images captured by modern
imaging devices. Hence we assume an undistorted image as input. In this section, we first show how
to estimate intrinsic parameters by using monocular 3D priors, such as the surface normal map and
monocular depthmap. We then introduce the incidence field and show it a learnable monocular 3D
prior invariant to 2D spacial manipulation. Next, we describe the training strategy and the network
used to learn the incidence field. After estimating the incidence field, we present a RANSAC algorithm
to recover the 4 DoF intrinsic parameters. Lastly, we explore various downstream applications of the
proposed algorithm. Fig. 2 shows the framework of the proposed algorithm.

3.1 Monocular Intrinsic Calibration

Our method aims to use generalizable monocular 3D priors without assuming the 3D scene geometry.
Hence, we start with monocular depthmap D and surface normal map N. Assume there exists a
learnable mapping from the input image I to depthmap D and normal map N: D,N = Dθ(I), where
Dθ is a learned network. We denote the intrinsic Ksimple, K, and its inverse K−1 as:

Ksimple =

[
f 0 w/2
0 f h/2
0 0 1

]
, K =

[
fx 0 bx
0 fy by
0 0 1

]
, K−1 =

[
1/fx 0 −bx/fx
0 1/fy −by/fy
0 0 1

]
. (1)

The notation Ksimple suggests a simple camera model with the identical focal length and central focal
point assumption. Given a 2D homogeneous pixel location p = [x y 1]

⊺ and its depth value
d = D(p), the corresponding 3D point P = [X Y Z]

⊺ is defined as:

P =

[
X
Y
Z

]
= d ·K−1

[
x
y
1

]
= d ·

x−bx
fx

y−by
fy
1

 = d ·

[
vx
vy
1

]
= d · v, (2)

where the vector v is an incidence ray, originating from the 3D point P, directed towards the 2D
pixel p, and passing through the camera’s origin. The incidence field V is the collection of incidence
rays v associated with all pixels at location p, where v = V(p).

3.2 Monocular Intrinsic Calibration with Monocular Depthmap and Surface Normal

In this section, we explain how to determine the intrinsic matrix K using the estimated surface normal
map N and depthmap D. Given the estimated depth d = D(p) and normal n = N(p) at 2D pixel
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Figure 3: In (a) and (b), we highlight the ground truth depthmap of a smooth surface, such as a table’s side.
Even with the ground truth depthmap, the resulting surface normals exhibit noise patterns due to the inherent
high variance. This makes the intrinsic solver based on the consistency of the depthmap and surface normals
numerically unstable. Further, (a)-(d) demonstrate a scaling and cropping operation applied to each modality. In
(c), the intrinsic changes per operation, leading to ambiguity if a network directly regresses the intrinsic values.
Meanwhile, the FoV is undefined after cropping. In comparison, the incidence field remains invariant to image
editing, the same as the surface normal and depthmap.

location p, a local 3D plane is described as:

n⊺ · d · v + c = 0. (3)

By taking derivative in x-axis and y-axis directions, we have:

n⊺∇x(d · v) = 0, n⊺∇y(d · v) = 0. (4)

Note the bias c of the 3D local plane is independent of the camera projection process. Without loss of
generality, we show the case of our method for x-direction. Expanding Eq. (4), we obtain:

n1∇x(d ·
x− bx
fx

) + n2
y − by
fy

∇x(d) + n3∇x(d) = 0, (5)

where ∇x(d) represents the gradient of the depthmap D in the x-axis and can be computed, for
example, using a Sobel filter [33]. Next, re-parametrize the unknowns in Eq. (5) to get:

a1fxfy + a2fxby + a3fybx + a4fy + a5fx = 0. (6)

Divide both sides of the equation by fx to get:

a1fy + a2by + a3rbx + a4r + a5 = 0, (7)

where r =
fy
fx

. By stacking Eq. (7) with N ≥ 4 randomly sampled pixels, we acquire a linear system:

AN×4 X4×1 = B4×1, (8)

where the intrinsic parameter to be solved is stored in a vector X4×1 = [fy by rbx r]
⊺. This

solves the other intrinsic parameters as:

fy = fy, by = by, fx =
fy
r
, bx =

rbx
r

. (9)

The known constants are stored in matrix AN×4 and B4×1. If we choose N = 4 in Eq. (8), we
obtain a minimal solver where the solution X is computed by performing Gauss-Jordan Elimination.
Conversely, when N > 4, the linear system is over-determined, and X is obtained using a least
squares solver. The above suggests the intrinsic is recoverable from the monocular 3D prior.

3.3 Monocular Incidence Field as Monocular 3D Prior

Eq. (9) relies on the consistency between the surface normal and depthmap gradient, which may
require a low-variance depthmap estimate. From Fig. 3, even groundtruth depthmap leads to spurious
normal due to its inherent high variance. Thus, minimal solver in Eq. (9) can lead to a poor solution.
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As a solution, we propose to directly learn the incidence field V as a monocular 3D prior. In Eq. (2)
and Fig. 1, the combination of the incidence field V and the monocular depthmap D creates a 3D
point cloud. In Eq. (3), the incidence field V can measure the observation angle between a 3D plane
and the camera. Similar to depthmap D and surface normal map N, the incidence field V is invariant
to the image cropping and resizing. Consider an image cropping and resizing described as:

x′ = ∆K x, ∆K =

[
∆fx 0 ∆cx
0 ∆fy ∆cy
0 0 1

]
, K′ = ∆KK, (10)

where K′ is the intrinsic after transformation. The surface normal map N and depthmap D after
transformation is defined as:

N′(x′) = N(x) = N(∆K−1x′), D′(x′) = D(x) = D(∆K−1x′). (11)

Similarly, the incidence field after transformation is:

V′(x′) = (K′)−1x′ = K−1(∆K)−1 x′ = K−1 x = v = V(x). (12)

Eq. (12) shows that the incidence field V is a parameterization of the intrinsic matrix that is invariant
to image resizing and image cropping. Other invariant parameterizations of the intrinsic matrix, such
as the camera field of view (FoV), rely on the central focal point assumption and only cover a 2 DoF
intrinsic matrix. An illustration is shown in Fig. 3.

Next, we prove the incidence field V is a monocular 3D prior pixel-wisely determined by monocular
depth D and surface normal N. Expanding Eq. (4) using the incidence vector v in Eq. (2), we get:

n1∇x(d)vx + n1(
d

fx
) + n2vy∇x(d) + n3∇x(d) = 0. (13)

Combined with the axis-y constraint, the 2 DoF incidence vector v = [vx vy 1]
⊺ is uniquely

solved. Eq. (13) gives identical solutions when depthmap D is adjusted by a scalar. This implies that
the incidence field V is pixel-wise determined by the up-to-scale depth map and surface normal
map, indicating a learnable mapping from the monocular image I to the incidence field V exists.

Given the strong connection between the monocular depthmap D and camera incidence field V,
we adopt NewCRFs [69], a neural network used in monocular depth estimation, for incidence field
estimation. We change the last output head to output a three-dimensional normalized incidence field
Ṽ with the same resolution as the input image I. We adopt a cosine similarity loss defined as:

Ṽ = Dθ(I), L =
1

N

N∑
i=1

Ṽ⊺(xi)Ṽgt(xi). (14)

We normalize the last dimension of the incidence field to one before feeding to the RANSAC
algorithm. That is to say, V(xi) = [ṽ1/ṽ3 ṽ2/ṽ3 1]

⊺
= [v1 v2 1]

⊺.

3.4 Monocular Intrinsic Calibration with Incidence Field

Since the network inference executes on GPU device, we adopt a GPU-end RANSAC algorithm to
recover the intrinsic K from the incidence field V. Unlike a CPU-based RANSAC, we perform fixed
Kr iterations of RANSAC without termination. In RANSAC, we use the minimal solver to generate
Kc candidates and select the optimal one that maximizes a scoring function (see Fig. 2).

RANSAC w.o Assumption. From Eq. (2), the incidence vector v relates to the intrinsic K as:

v = K−1x =
[
x−bx
fx

y−by
fy

1
]⊺

. (15)

From Eq. (15), a minimal solver for intrinsic is straightforward. In the incidence field, randomly
sample two incidence vectors v1 =

[
v1x v1y 1

]⊺
and v2 =

[
v2x v2y 1

]⊺
. The intrinsic is:{

fx = x1−x2

v1
x−v2

x

bx = 1
2 (x

1 − v1xfx + x2 − v2xfx)
,

{
fy = y1−y2

v1
y−v2

y

by = 1
2 (x

1 − v1yfy + x2 − v2yfy)
. (16)

Similarly, the scoring function is defined in x-axis and y-axis, respectively:

ρx(fx, bx, {x}, {v}) =

Nk∑
i=1

(
∥
xi − bx

fx
− v

i
x∥ < kx

)
, ρy(fy, by, {x}, {v}) =

Nk∑
i=1

(
∥
yi − by

fy
− v

i
y∥ < ky

)
, (17)
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Table 2: In-the-Wild Monocular Camera Calibration. We benchmark in-the-wild monocular camera
calibration. We use the first 9 datasets for training, and test on all 14 datasets. Except for MegaDepth, we
synthesize novel intrinsic by cropping and resizing during training. Note the synthesized images violate the focal
point and focal length assumption. [Key: ZS = Zero-Shot, Asm. = Assumptions, Syn. = Synthesized]

Dataset Calibration Scene ZS Syn. Perspective [30] Ours Ours + Asm.
ef eb ef eb ef eb

NuScenes [10] Calibrated Driving ✗ ✔ 0.378 0.286 0.102 0.087 0.402 0.400
KITTI [22] Calibrated Driving ✗ ✔ 0.631 0.279 0.111 0.078 0.383 0.368
Cityscapes [14] Calibrated Driving ✗ ✔ 0.624 0.316 0.108 0.110 0.387 0.367
NYUv2 [53] Calibrated Indoor ✗ ✔ 0.261 0.348 0.086 0.174 0.376 0.379
ARKitScenes [8] Calibrated Indoor ✗ ✔ 0.325 0.367 0.140 0.243 0.400 0.377
SUN3D [65] Calibrated Indoor ✗ ✔ 0.260 0.385 0.113 0.205 0.389 0.383
MVImgNet [68] SfM Object ✗ ✔ 0.838 0.272 0.101 0.081 0.108 0.072
Objectron [1] SfM Object ✗ ✔ 0.601 0.311 0.078 0.070 0.088 0.079
MegaDepth [41] SfM Outdoor ✗ ✗ 0.319 0.000 0.137 0.046 0.109 0.000
Waymo [58] Calibrated Driving ✔ ✗ 0.444 0.020 0.210 0.053 0.157 0.020
RGBD [55] Pre-defined Indoor ✔ ✗ 0.166 0.000 0.097 0.039 0.067 0.000
ScanNet [16] Calibrated Indoor ✔ ✗ 0.189 0.010 0.128 0.041 0.109 0.010
MVS [21] Pre-defined Indoor ✔ ✗ 0.185 0.000 0.170 0.028 0.127 0.000
Scenes11 [11] Pre-defined Synthetic ✔ ✗ 0.211 0.000 0.170 0.044 0.117 0.000

Table 3: Comparisons to Monocular Camera Calibration with Geometry on GSV dataset [4]. We follow the
training and testing protocol of [38]. For a fair comparison, we convert the estimated intrinsic to camera FoV on
the y-axis direction, following [30, 38], and report our results w/ and w/o the assumptions.

FoV (◦) Upright [37] Perceptual [28] CTRL-C [38] Perspective [30] Ours
PAMI’13 CVPR’18 ICCV’21 CVPR’23 w/o Asm. w/ Asm.

Mean 9.47 4.37 3.59 3.07 2.49 2.47
Median 4.42 3.58 2.72 2.33 1.96 1.92

where Nk and kx/ ky are the number of sampled pixels and the threshold for axis-x/y directions.

RANSAC w/ Assumption. If a simple camera model is assumed, i.e., intrinsic only has an unknown
focal length, it only needs to estimate 1-DoF intrinsic. We enumerate the focal length candidates as:

{f} = {fmin +
i

Nf
(fmax − fmin) | 0 ≤ i ≤ Nf}. (18)

The scoring function under the scenario is defined as the summation over x-axis and y-axis:

ρ(f, {x}, {v}) = ρx(fx, w/2, {x}, {v}) + ρy(fy, h/2, {x}, {v}). (19)

3.5 Downstream Applications

Image Crop & Resize Detection and Restoration. Eq. (10) defines a crop and resize operation:

x′ = ∆Kx, K′ = ∆KK, I′(x′) = I′(∆Kx) = I(x). (20)

When a modified image I′ is presented, our algorithm calibrates its intrinsic K′ and then:
Case 1: The original intrinsic K is known. E.g., we obtain K from the image-associated EXIF file [3].
Image manipulation is computed as ∆K = K′ K−1. A manipulation is detected if ∆K deviates
from an identity matrix. The original image restores as I(x) = I′(∆Kx). Interestingly, the four
corners of image I′ are mapped to a bounding box in original image I under manipulation ∆K. We
thus quantify the restoration by measuring the bounding box. See Fig. 4.
Case 2: The original intrinsic K is unknown. We assume the genuine image possess an identical focal
length and central focal point. Any resizing and cropping are detected when matrix K′ breaks this
assumption. Note, the rule cannot detect aspect ratio preserving resize or centered crop. We restore
the original image by defining an inverse operation ∆K restore K′ to an intrinsic fits the assumption.

3D Sensing Related Tasks. Intrinsic estimation can enable multiple applications. E.g., depthmap to
point cloud, uncalibrated two-view pose estimation, etc.

4 Experiments

Implementation Details Our network is trained using the Adam optimizer [32] with a batch size of
8. The learning rate is 1e−5, and the training process runs for 20, 000 steps. Our RANSAC algorithm
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Table 4: Comparisons to Monocular Camera Calibration with Object. We compare to the recent Face-
Calib [29], which calibrates the camera using video containing human faces. We report our results w/ and w/o
assuming a simple camera model. We perform zero-shot testing using the same model benchmarked in Tab. 2.

Methods BIWIRGBD-ID [48] CAD-120 [59]
ef efx efy eb ebx eby ef efx efy eb ebx eby

Louraki [45] 0.662 0.662 0.662 - 0.387 0.222 0.732 0.732 0.732 - 0.255 0.180
Fetzer [20] WACV’20 0.845 0.845 0.845 - 0.001 0.005 0.679 0.679 0.679 - 0.001 0.005
BPnP [12] CVPR’19 0.675 0.675 0.675 - 0.322 0.479 1.178 1.178 1.178 - 0.103 0.129
FaceCalib [29] FG’23 0.133 0.133 0.133 - 0.026 0.042 0.151 0.151 0.151 - 0.023 0.063
Ours 0.034 0.029 0.016 0.020 0.011 0.018 0.137 0.137 0.054 0.042 0.042 0.008
Ours + Assumptions 0.019 0.019 0.019 0.000 0.000 0.000 0.047 0.047 0.047 0.000 0.000 0.000

is executed on a GPU, performing Kr = 2, 048 iterations, with each iteration including a random
sample of Kc = 20, 000 incidence vectors. During both training and testing, the image is resized to a
resolution of 480× 640. The threshold for determining RANSAC inliers is kx = ky = 0.02.

Evaluation Metrics We follow [29] in assessing camera intrinsic estimation using the metrics:

efx =
∥f ′

x − fx∥
fx

, efy =
∥f ′

y − fy∥
fy

, ebx = 2 · ∥b
′
x − bx∥
w

, eby = 2 ·
∥b′y − by∥

h
. (21)

We additionally consolidate the performance along the x-axis and y-axis into comprehensive mea-
surements, ef = max(efx , efy ) and eb = max(ebx , eby ).

4.1 Monocular Camera Calibration In-The-Wild

Datasets. Our method is trained whenever a calibrated intrinsic is provided, making it applicable to
a wide range of publicly available datasets. In Tab. 2, we incorporate datasets of different application
scenarios, including indoor, outdoor scenes, driving, and object-centric scenes. Many of the datasets
utilize only a single type of camera for data collection, resulting in a scarcity of intrinsic variations.
Similar to [38], we employ random resizing and cropping to synthesize more intrinsic, marked in
Tab. 2 column “Syn.”. In augmentation, we first resize all images to a resolution of 480 × 640.
We then uniformly random resize up to two times its size and subsequently crop to a resolution of
480× 640. As MegaDepth [41] collects images captured by various cameras from the Internet, we
disable its augmentation. We document the intrinsic parameters of each dataset in Supp.

In Tab. 2 column “Calibration", we assess intrinsic quality into various levels. “Calibrated” suggests
accurate calibration with a checkerboard. “Pre-defined” is less accurate, indicating the default intrinsic
provided by the camera manufacturer without a calibration process. “SfM" signifies that the intrinsic
is computed via an SfM method [52].

In-The-Wild Monocular Camera Calibration. We benchmark in-the-wild monocular calibration
performance on Tab. 2. For trained datasets, except for MegaDepth, we test on synthetic data using
random cropping and resizing. For the unseen test dataset, we refrain from applying any augmentation
to better mimic real-world application scenarios.

We compare to the recent baseline [30], which regresses intrinsic via a deep network. Note, [30] can
not train on arbitrary calibrated images as requiring panorama images in training. A fair comparison
using the same training and testing images is in Tab. 4 and Sec. 4.2. [30] provides models with
two variations: one assumes a central focal point, and another does not. We report with the former
model whenever the input image fits the assumption. From Tab. 2, our method demonstrates superior
generalization across multiple unseen datasets. Further, the result w/ assumption outperforms w/o
assumption whenever the input images fit the assumption. Tested on an RTX-2080 Ti GPU, the
combined network inference and calibration algorithm runs on average in 87 ms per image.

4.2 Monocular Camera Calibration with Geometry

Methods in this line of research hold a Manhattan World assumption, positing that images consist of
planes that are either parallel or perpendicular to each other. Stated in Tab. 1, baselines [28, 30, 38]
relax the assumption to training data. Our method imposes no other assumption except for undistorted
images in both training and testing.

This brings three benefits. First, the assumption restricts their training to panorama images. In
contrast, our model is trainable with any calibrated images. This yields improved generalization,
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(a) Input & Incidence (b) Est. Restoration (c) GT. Restoration (d) Original Image

Figure 4: Image Crop & Resize Detection and Restoration. Image editing, including cropping and resizing
changes intrinsic. As in Sec. 3.5, monocular calibration is applicable to detect and restore image manipulations.
We visualize the zero-shot samples on ScanNet and Waymo. More examples are in Supp.

Table 5: Image Crop and Resize Restoration. Stated in Sec. 3.5, our method also encompasses the restoration
of image manipulations. Use model reported in Tab. 2, we conduct evaluations on both seen and unseen datasets.

Methods KITTI [22] NYUv2 [53] ARKitScenes [8] Waymo [58] RGBD [55] ScanNet [16] MVS [21]
mIOU Acc mIOU Acc mIOU Acc mIOU Acc mIOU Acc mIOU Acc mIOU Acc

Baseline 0.686 0.795 0.621 0.710 0.586 0.519 0.581 0.721 0.636 0.681 0.597 0.811 0.595 0.667
Ours 0.842 0.852 0.779 0.856 0.691 0.837 0.681 0.796 0.693 0.781 0.709 0.887 0.638 0.795

as shown in Tab. 2. Second, it constrains the baselines to a simple camera parameterized by FoV.
We consider the proposed incidence field a more generalizable and invariant parameterization of
intrinsic. E.g., while FoV remains invariant to image resizing, it still changes after cropping. However,
the incidence field is unaffected in both cases. In Tab. 3, the substantial improvement we achieved
(0.60 = 3.07−2.47) over the recent SoTA [30] empirically supports our argument. Third, our method
calibrates the 4 DoF intrinsic with a non-learning RANSAC algorithm. Baselines instead regress the
intrinsic. This renders our method more robust and interpretable. In Fig. 2 (b), the estimated intrinsic
quality is visually discerned through the consistency achieved between the two incidence fields.

4.3 Monocular Camera Calibration with Objects

We compare to the recent object-based camera calibration method FaceCalib [29]. The baseline
employs a face alignment model to calibrate the intrinsic over a video. Both [29] and ours perform
zero-shot prediction. We report performance using Tab. 2 model. Compared to [29], our method is
more general as it does not assume a human face present in the image. Meanwhile, [29] calibrates
over a video, while ours is a monocular method. For a fair comparison, we report the video-based
results as an averaged error over the videos. We report results w/ and w/o assuming a simple camera
model. Since the tested image has a central focal point, when the assumption applied, the error of the
focal point diminished. In Tab. 4, we outperform SoTA substantially.

4.4 Downstream Applications

Image Crop & Resize Detection and Restoration. In Sec. 3.5, our method also addresses the
detection and restoration of geometric manipulations in images. Using the model reported in Tab. 2,
we benchmark its performance in Tab. 5. Random manipulations following Sec. 4.1 contribute
to 50% of both train and test sets, and the other 50% are genuine images. In Tab. 5, we evaluate
restoration with mIOU and report detection accuracy (i.e. binary classification of genuine vs edited
images). From the table, our method generalizes to the unseen dataset, achieving an averaged mIOU
of 0.680. Meanwhile, we substantially outperform the baseline, which is trained to directly regresses
the intrinsic. The improvement suggests the benefit of the incidence field as an invariant intrinsic
parameterization. Beyond performance, our algorithm is interpretable. In Fig. 4, the perceived image
geometry is interpretable for humans.
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Omni3D [9] Omni3D [9] w/ our intrinsic Omni3D [9] Omni3D [9] w/ our intrinsic

Figure 5: In-the-Wild Camera Calibration Benefits In-the-Wild 3D Object Detection [9]. Our estimated
intrinsic improves 2D projection of estimated 3D bounding boxes [9], highlighted with red arrows.

Restored I1 Cropped I1 Original Image I Cropped I2 Restored I2

Figure 6: Broader Impact. Our method detects geometric manipulation and helps press image authenticity. In
the figure, our method restores cropping and the aspect ratio. Orange arrows mark estimated incidence field.

Table 6: Uncalibrated Two-View Camera Pose Estimation. We use the model reported in Tab. 2 and assume
distinct camera models for both frames. During calibration, we apply the simple camera assumption. The last
two rows ablate the performance using GT intrinsic and our estimated intrinsic.

Methods Calibrated ScanNet [16] MegaDepth [41]
@5◦ @10◦ @20◦ @5◦ @10◦ @20◦

SuperGlue [50] CVPR’19 ✔ 16.2 33.8 51.8 42.2 61.2 75.9
DRC-Net [44] ICASSP’22 ✔ 7.7 17.9 30.5 27.0 42.9 58.3
LoFTR [57] CVPR’21 ✔ 22.0 40.8 57.6 52.8 69.2 81.2
ASpanFormer [13] ECCV’22 ✔ 25.6 46.0 63.3 55.3 71.5 83.1
PMatch [78] CVPR’23 ✔ 29.4 50.1 67.4 61.4 75.7 85.7
PMatch [78] CVPR’23 ✗ 11.4 29.8 49.4 16.8 30.6 47.4

Uncalibrated Two-View Camera Pose Estimation. With correspondence between two images,
one can infer the fundamental matrix [25]. However, the pose between two uncalibrated images is
determined by a projective ambiguity. Our method eliminates the ambiguity with monocular camera
calibration. In Tab. 6, we benchmark the uncalibrated two-view pose estimation and compare it to
recent baselines. The result is reported using the model benchmarked in Tab. 2 and assumes unique
intrinsic for both images. We perform zero-shot in ScanNet. For MegaDepth, it includes images
collected over the Internet with diverse intrinsics. Interestingly, in ScanNet, our uncalibrated method
outperforms a calibrated one [44]. In Supp, we plot the curve between pose performance and intrinsic
quality. The challenging setting suggests itself an ideal task to evaluate the intrinsic quality.

In-the-Wild Monocular 3D Sensing. In-the-wild 3D sensing, e.g., monocular 3D object detec-
tion [9], requires intrinsic to connect the 3D and 2D space. In Fig. 5, despite 3D bounding boxes
being accurately estimated, incorrect intrinsic produces suboptimal 2D projection. Our calibration
results suggest monocular incidence field estimation is another essential monocular 3D sensing task.

5 Conclusion

We calibrate monocular images through a novel monocular 3D prior referred as incidence field. The
incidence field is a pixel-wise parameterization of intrinsic invariant to image resizing and cropping.
A RANSAC algorithm is developed to recover intrinsic from the incidence field. We extensively
benchmark our algorithm and demonstrate robust in-the-wild performance. Beyond calibration, we
show multiple downstream applications that benefit from our method.

Limitation. In real application, whether to apply the assumption still requires human input.

Broader Impacts. Our method detects image spacial editing. If the Exif files are provided, it further
localizes the modification region. Shown in Fig. 6, it helps improve press image authenticity.
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