
Appendix For Debiasing Pretrained Generative
Models by Uniformly Sampling Semantic Attributes

Anonymous Author(s)
Affiliation
Address
email

A Appendix1

A.1 Corrections2

We unfortunately had an error in Definition 3, and in Figure 5.3

A.1.1 Correction for Definition 34

We had an error in the subscripts of the summations in Definition 3. The statement should have been:5

Definition (Pλ
E). Define Pλ

E =
∑|Y|

i=1 λiE:,i as a distribution over Y determined by prediction-6

conditional error matrix E and λ = {λ1, λ2, . . . , λ|Y|}, λi ∈ R≥0,
∑|Y|

i=1 λi = 1.7

A.1.2 Correction for Figure 58

We incorrectly transposed the Antimode and Mode Polarity Sampling results in this figure. Corrected9

figure is shown below.10

Distribution
Mapping (Ours)

Latent Editing MaGNET Polarity Sampling
(Antimodes)

Polarity Sampling
(Modes)

Standard
Progressive GAN

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

K
L

D
iv

er
ge

nc
e

0.41

0.62
0.56

0.49
0.57

0.68

KL Divergence From Uniform Of Each Approach For The CelebHQ Progressive GAN

Figure 1: KL Divergence between the distribution over the semantic space for the output of each
method (lower is better).

A.2 Calculating E for The Generated Distribution11

The error rates reported for a classifier Cϕ are typically reported on the distribution on the distribution12

of fit’s training data, Ptraining. However, the distribution PGθ
of the generative model13

Gθ may differ from the training distribution. Additionally, rather than reporting P (y|ŷ), often times14

the error rates are given in a confusion matrix Cŷ|y where Cŷ|y[i, j] = P (ŷ|y). Thankfully, we can15

construct the error rate matrix E for the generative distribution PGθ
under the simplifying assumption16

that the difference between PGθ
and Ptraining can be explained as a label shift [1, 3].17

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

By Bayes’ Theorem, we know that

P (y|ŷ) = P (ŷ|y)P (y)

P (ŷ)
.

Under the label shift assumption, P (ŷ|y) stays the same between Ptraining and PGθ
. Additionally,

P (y) can be calculated for PGθ
under label shift [1, 3]. Lastly, P (ŷ) can be approximated for PGθ

by finding the proportion predicted for each class on a large sample from the generative model. Thus,
E can be calculated as:

E = Cŷ|y
PGθ

(y)

PGθ
(ŷ)

.

A.3 Distribution of Races Generated By Progressive GAN18

We show the two best performing methods’ distributions on Progressive GAN, along with the19

distribution of the unmodified ProgressiveGAN, over the Race attribute.20

asian black indian latino hispanic middle eastern white
Race

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
en

si
ty

Distribution Of Races Resulting From Compared Methods
Distribution
Mapping (Ours)
Polarity Sampling (Antimode)
Standard Progressive GAN

Figure 2: Distribution of our approach, Polarity Antimode Sampling (next best), and the standard
generator.

A.4 Implementation Details21

Ground Truth Shape Classifier22

--23

Layer (type) Output Shape24

==25

Conv2d-1 [-1, 32, 16, 16]26

ReLU-2 [-1, 32, 16, 16]27

Conv2d-3 [-1, 64, 8, 8]28

ReLU-4 [-1, 64, 8, 8]29

Conv2d-5 [-1, 128, 4, 4]30

ReLU-6 [-1, 128, 4, 4]31

Conv2d-7 [-1, 256, 2, 2]32

ReLU-8 [-1, 256, 2, 2]33

Conv2d-9 [-1, 2, 1, 1]34

==35

36

Encoder for Shapes VAE37

--38

2

Layer (type) Output Shape39

==40

Conv2d-1 [-1, 32, 16, 16]41

ReLU-2 [-1, 32, 16, 16]42

Conv2d-3 [-1, 64, 8, 8]43

ReLU-4 [-1, 64, 8, 8]44

Conv2d-5 [-1, 128, 4, 4]45

ReLU-6 [-1, 128, 4, 4]46

Conv2d-7 [-1, 256, 2, 2]47

ReLU-8 [-1, 256, 2, 2]48

Conv2d-9 [-1, code_dim, 1, 1]49

==50

Decoder for Shapes VAE51

--52

Layer (type) Output Shape53

==54

ConvTranspose2d-1 [-1, 256, 2, 2]55

ReLU-2 [-1, 256, 2, 2]56

ConvTranspose2d-3 [-1, 128, 8, 8]57

ReLU-4 [-1, 128, 8, 8]58

ConvTranspose2d-5 [-1, 64, 16, 16]59

ReLU-6 [-1, 64, 16, 16]60

ConvTranspose2d-7 [-1, 32, 32, 32]61

ReLU-8 [-1, 32, 32, 32]62

ConvTranspose2d-9 [-1, 3, 64, 64]63

Sigmoid-10 [-1, 3, 64, 64]64

==65

Biased Age Classifier (Note: Target value was normalized age, made binary after)66

--67

Layer (type) Output Shape68

==69

Conv2d-1 [-1, 2, 32, 32]70

BatchNorm2d-2 [-1, 2, 32, 32]71

LeakyReLU-3 [-1, 2, 32, 32]72

Dropout-4 [-1, 2, 32, 32]73

Conv2d-5 [-1, 4, 16, 16]74

BatchNorm2d-6 [-1, 4, 16, 16]75

LeakyReLU-7 [-1, 4, 16, 16]76

Dropout-8 [-1, 4, 16, 16]77

Conv2d-9 [-1, 8, 8, 8]78

BatchNorm2d-10 [-1, 8, 8, 8]79

LeakyReLU-11 [-1, 8, 8, 8]80

Dropout-12 [-1, 8, 8, 8]81

Flatten-13 [-1, 512]82

Linear-14 [-1, 64]83

LeakyReLU-15 [-1, 64]84

Linear-16 [-1, 1]85

Sigmoid-17 [-1, 1]86

==87

Ground Truth Age Classifier (Note: Target value was normalized age; made binary after)88

--89

Layer (type) Output Shape90

==91

Conv2d-1 [-1, 8, 32, 32]92

3

BatchNorm2d-2 [-1, 8, 32, 32]93

LeakyReLU-3 [-1, 8, 32, 32]94

Dropout-4 [-1, 8, 32, 32]95

Conv2d-5 [-1, 16, 16, 16]96

BatchNorm2d-6 [-1, 16, 16, 16]97

LeakyReLU-7 [-1, 16, 16, 16]98

Dropout-8 [-1, 16, 16, 16]99

Conv2d-9 [-1, 32, 8, 8]100

BatchNorm2d-10 [-1, 32, 8, 8]101

LeakyReLU-11 [-1, 32, 8, 8]102

Dropout-12 [-1, 32, 8, 8]103

Flatten-13 [-1, 2048]104

Linear-14 [-1, 64]105

LeakyReLU-15 [-1, 64]106

Linear-16 [-1, 1]107

Sigmoid-17 [-1, 1]108

==109

The distribution mapper used default architecture of SDV’s CTGAN 1 version 0.6.0, except for in the110

ProgressiveGAN experiment where embedding_dim =512, generator_dim =(512,512) were111

passed as arguments.112

For the networks we trained, we utilized the Adam optimizer [2] with learning rate between 0.002113

and 0.0001.114

The linear classifier utilized Scikit-Learn’s LinearSVC (for latent editing) and RidgeClassifier for the115

biased Shapes classifier.116

A.5 Proof of Lemma 1117

Proof. First, note that if 1|Y| ∈ Cone(E), then likewise 1
Y 1|Y| ∈ Cone(E).118

Let z′ ∼ Pz|Cϕ=i; i.e., z is a draw from the distribution of noise such that the classifiers prediction of119

the generated sample corresponding to z′ is group i.120

Let (C ′ ◦ Gθ)∗Pz|Cϕ=i be the pushforward distribution of the perfect classifier C ′’s output when121

conditioned on the generator’s output of draws from Pz|Cϕ=i. Then, (C ′ ◦ Gθ)∗Pz|Cϕ=i =122

[Pr(y = 1|Cθ = i), P r(y = 2|Cθ = i), . . . , P r(y = N |Cθ = i)] = E:,i. Thus, Cone({(C ′ ◦123

Gθ)∗Pz|Cϕ=i, . . . , (C
′ ◦Gθ)∗Pz|Cϕ=|Y|}) = Cone(E). Therefor, following from above, 1

Y 1|Y| ∈124

Cone({(C ′ ◦ Gθ)∗Pz|Cϕ=i, . . . , (C
′ ◦ Gθ)∗Pz|Cϕ=|Y|}). This means that ∃λ1, λ2, . . . , λ|Y s.t.125

λ1(C
′ ◦Gθ)∗Pz|Cϕ=i + · · ·+ λ|Y|(C

′ ◦Gθ)∗Pz|Cϕ=|Y| = [1
|Y| , . . . ,

1
|Y|] = UnifY . This is equiva-126

lent to saying that C ′(Gθ(z)) ∼ Unif(Y) for z ∼
∑|Y|

i=1 λiPz|Cϕ=i = Qλ. Thus, by definition Qλ127

is a Fair Noise Distribution.128

129

A.6 Proof of Lemma 2130

Proof. Note that the sign of the coefficient of the cross product E:,1 × E:,2 is P (y = 1|ŷ =131

1)P (y = 2|ŷ = 2) − P (y = 1|ŷ = 2)P (y = 2|ŷ = 1). Also note that E:,1 × [0.5, 0.5] is132

0.5P (y = 1|ŷ = 1)− 0.5P (y = 2|ŷ = 1).133

Additionally, P (y = 1|ŷ = 1)P (y = 2|ŷ = 2) > P (y = 1|ŷ = 1)0.5 > 0, and 0 < P (y = 1|ŷ =134

2)P (y = 2|ŷ = 1) < 0.5P (y = 2|ŷ = 1). Thus, the coefficient of E:,1 × E:,2 is greater than135

E:,1 × [0.5, 0.5], while there signs are equal. This implies that [0.5, 0.5] is in between E:,1 and E:,2.136

Thus, [0.5, 0.5] ∈ cone(E). The rest of the proof follows directly from Lemma 1.137

1https://sdv.dev/SDV/user_guides/single_table/ctgan.html#
how-to-modify-the-ctgan-hyperparameters

4

https://sdv.dev/SDV/user_guides/single_table/ctgan.html#how-to-modify-the-ctgan-hyperparameters
https://sdv.dev/SDV/user_guides/single_table/ctgan.html#how-to-modify-the-ctgan-hyperparameters

A.7 Proof of Proposition 1138

Proof. Note that Pλ
E has density [

∑
i λiPr(y = 1|ŷ = i), . . . ,

∑
i λiPr(y = N |ŷ = i)]. For ease139

of notation let us refer to
∑

i λiPr(y = m|ŷ = i) as rλm.140

Then,141

KL{Pλ
E ||Unif(Y)} =

∑
m

rλm log
(rλm
u

)
=

∑
m

(
rλm log(rλm)− rλm log(

1

|Y|
)
)

=
∑
m

rλm log(rλm)−
∑
m

rλm log(
1

|Y|
)

Note that log
(

1
N

)
is constant for each term in the second summation. Thus,142

=
∑
m

rλm log(rλm)− log
(1

N

)∑
rλm

=
∑
m

rλm log(rλm)− log
(1

N

)
,

As log
(

1
N

)
does not depend on rλm,143

argmin
λ

KL{Pλ
E ||Unif(Y)} = argmin

λ

∑
m

rλm log(rλm)

= argmin
λ

−H(Pλ
E)

= argmax
λ

H(Pλ
E)

144

A.8 Proof of Proposition 2145

Proof.

(C ′ ◦Gθ)∗Pz|Cϕ=i =[Pr(y = 1|Cθ = i), P r(y = 2|Cθ = i), . . . , P r(y = N |Cθ = i)]

=⇒
∑
i

λi(C
′ ◦Gθ)∗Pz|Cϕ=i =[

∑
i

λPr(y = 1|Cθ = i),
∑
i

Pr(y = 2|Cθ = i),

. . .,
∑
i

λPr(y = N |Cθ = i)]

=⇒ PE = Qλ

146

A.9 Proof of Theorem 1147

The first statement follows directly from Proposition 1 and Proposition 2.148

If Cϕ = C ′ , then { E:,1

|E:,1| , . . . ,
E:,|Y|
|E:,|Y||

} forms a standard basis of R|Y|, and therefor 1|Y| is is in149

Cone(E). Thus, Qλ∗ is a Fair Noise Distribution by Lemma 1.150

References151

[1] S. Garg, Y. Wu, S. Balakrishnan, and Z. Lipton. A Unified View of Label Shift Estimation.152

In Advances in Neural Information Processing Systems, volume 33, pages 3290–3300. Curran153

Associates, Inc., 2020.154

5

[2] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization, Jan. 2017.155

arXiv:1412.6980 [cs].156

[3] T. Sipka, M. Sulc, and J. Matas. The Hitchhiker’s Guide to Prior-Shift Adaptation. In 2022157

IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pages 2031–2039,158

Waikoloa, HI, USA, Jan. 2022. IEEE.159

6

	Appendix
	Corrections
	Correction for Definition 3
	Correction for Figure 5

	Calculating E for The Generated Distribution
	Distribution of Races Generated By Progressive GAN
	Implementation Details
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Theorem 1

