10

11

12
13

14
15
16
17

Appendix For Debiasing Pretrained Generative
Models by Uniformly Sampling Semantic Attributes
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A Appendix

A.1 Corrections

We unfortunately had an error in Definition 3, and in Figure 5.

A.1.1 Correction for Definition 3

We had an error in the subscripts of the summations in Definition 3. The statement should have been:

Definition (P},). Define P}, = Zg‘l ML i as a distribution over Y determined by prediction-
conditional error matrix E and X = {\1, A2, ..., Ay}, A € R, Eg‘l Ai=1

A.1.2 Correction for Figure 5

We incorrectly transposed the Antimode and Mode Polarity Sampling results in this figure. Corrected
figure is shown below.

KL Divergence From Uniform Of Each Approach For The CelebHQ Progressive GAN

Distribution Latent Editing MaGNET Polarity Sampling Polarity Sampling Standard
Mapping (Ours) (Antimodes) (Modes) Progressive GAN

Figure 1: KL Divergence between the distribution over the semantic space for the output of each
method (lower is better).

A.2 Calculating F for The Generated Distribution

The error rates reported for a classifier Cy are typically reported on the distribution on the distribution
of fit’s training data, P;,qining. However, the distribution Pg, of the generative model

Gy may differ from the training distribution. Additionally, rather than reporting P(y|y), often times
the error rates are given in a confusion matrix Cy|, where Cy|y [i, j] = P(y|y). Thankfully, we can
construct the error rate matrix F for the generative distribution P, under the simplifying assumption
that the difference between P, and Py, 4ining can be explained as a label shift [T} [3]].
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By Bayes’ Theorem, we know that

Under the label shift assumption, P(y|y) stays the same between Py qining and Pg,. Additionally,
P(y) can be calculated for Pg, under label shift [} 3]]. Lastly, P(y) can be approximated for P¢,
by finding the proportion predicted for each class on a large sample from the generative model. Thus,
E can be calculated as:

P, Gy (y)

i Pg,(y)

E=Cy

A.3 Distribution of Races Generated By Progressive GAN

We show the two best performing methods’ distributions on Progressive GAN, along with the
distribution of the unmodified ProgressiveGAN, over the Race attribute.

Distribution Of Races Resulting From Compared Methods

0.81 Distribution —
Mapping (Ours)
0.7 1 . . .
==== Polarity Sampling (Antimode)
0.6 mmm= Standard Progressive GAN
P
5?05
%]
S 0.4
5
A 0.31
0.2 ]
0.11 I I I
0.0 e——
asian black indian latino hispanic middle eastern white

Race

Figure 2: Distribution of our approach, Polarity Antimode Sampling (next best), and the standard
generator.

A.4 Implementation Details

Ground Truth Shape Classifier

Layer (type) Output Shape
Conv2d-1 [-1, 32, 16, 16]
ReLU-2 [-1, 32, 16, 16]
Conv2d-3 [-1, 64, 8, 8]
RelLU-4 [-1, 64, 8, 8]
Conv2d-5 [-1, 128, 4, 4]
ReLU-6 [-1, 128, 4, 4]
Conv2d-7 [-1, 256, 2, 2]
ReLU-8 [-1, 256, 2, 2]
Conv2d-9 [-1, 2, 1, 1]
Encoder for Shapes VAE
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Layer (type)

Output Shape

Conv2d-1 (-1, 32, 16, 16]
ReLU-2 [-1, 32, 16, 16]
Conv2d-3 [-1, 64, 8, 8]
RelLU-4 [-1, 64, 8, 8]
Conv2d-5 [-1, 128, 4, 4]
ReLU-6 [-1, 128, 4, 4]
Conv2d-7 [-1, 256, 2, 2]
ReLU-8 [-1, 256, 2, 2]
Conv2d-9 [-1, code_dim, 1, 1]
Decoder for Shapes VAE

Layer (type)

Output Shape

ConvTranspose2d-1
ReLU-2
ConvTranspose2d-3
ReLU-4
ConvTranspose2d-5
ReLU-6
ConvTranspose2d-7
ReLU-8
ConvTranspose2d-9
Sigmoid-10

L

-1
(
L

[-1, 256, 2, 2]
[-1, 256, 2, 2]
[-1, 128, 8, 8]
[-1, 128, 8, 8]
[-1, 64, 16, 16]
[-1, 64, 16, 16]
[-1, 32, 32, 32]

-1,
-1

3

B

2, 32, 32]
3, 64, 64]
3, 64, 64]

Biased Age Classifier (Note: Target value was normalized age, made binary after)

Layer (type)

Output Shape

Conv2d-1
BatchNorm2d-2
LeakyReLU-3
Dropout-4
Conv2d-5
BatchNorm2d-6
LeakyReLU-7
Dropout-8
Conv2d-9
BatchNorm2d-10
LeakyReLU-11
Dropout-12
Flatten-13
Linear-14
LeakyReLU-15
Linear-16
Sigmoid-17

32, 32]
32, 32]
32, 32]
32, 32]
16, 16]
16, 16]
16, 16]
16, 16]
1, 8, 8, 8]
1, 8, 8, 8]
1, 8
1, 8

PR

-

-

-

PP PN DNDDNDN

-

s 8’ 8]

Ground Truth Age Classifier (Note: Target value was normalized age; made binary after)

Layer (type)

Output Shape

Conv2d-1

[-1, 8, 32, 32]
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BatchNorm2d-2 [-1, 8, 32, 32]
LeakyReLU-3 [-1, 8, 32, 32]
Dropout-4 [-1, 8, 32, 32]
Conv2d-5 [-1, 16, 16, 16]
BatchNorm2d-6 (-1, 16, 16, 16]
LeakyReLU-7 [-1, 16, 16, 16]
Dropout-8 [-1, 16, 16, 16]
Conv2d-9 [-1, 32, 8, 8]
BatchNorm2d-10 [-1, 32, 8, 8]
LeakyReLU-11 [-1, 32, 8, 8]
Dropout-12 [-1, 32, 8, 8]
Flatten-13 [-1, 2048]
Linear-14 [-1, 64]
LeakyReLU-15 [-1, 64]
Linear-16 [-1, 1]
Sigmoid-17 [-1, 1]

The distribution mapper used default architecture of SDV’s CTGAN [H version 0.6.0, except for in the
ProgressiveGAN experiment where embedding_dim =512, generator_dim =(512,512) were
passed as arguments.

For the networks we trained, we utilized the Adam optimizer [2] with learning rate between 0.002
and 0.0001.

The linear classifier utilized Scikit-Learn’s LinearSVC (for latent editing) and RidgeClassifier for the
biased Shapes classifier.

A.5 Proof of Lemma 1

Proof. First, note that if 111 € Cone(E), then likewise %1'3)‘ € Cone(E).

Letz' ~ P.|c,=i; 1.e., z is a draw from the distribution of noise such that the classifiers prediction of
the generated sample corresponding to z’ is group 7.

Let (C" 0 G)«P.|c,—; be the pushforward distribution of the perfect classifier C"’s output when
conditioned on the generator’s output of draws from P,c,—;. Then, (C' o Gp).P,ic,—i =
[Pr(y = 1|Cy = i),Pr(y = 2|Cy = 1),...,Pr(y = N|Cp = i)] = E.;. Thus, Cone({(C’ o
Go)sPujcy=ir - - (C' 0 Gp)uPuycy—y|}) = Cone(E). Therefor, following from above, 1V €
Cone({(C" o Go)«P.icy=is-- -, (C" 0 Gg)«P.ic,—|y|}). This means that I\;, Aa,..., Ay s.t.

A(C"0Go)Pricy=i + -+ Ny (C" 0GPy =y = [ﬁ, cey ﬁ] = UnifY. This is equiva-

lent to saying that C'(Gy(z)) ~ Unif(}) for z ~ ZLZ‘I AiP.c,—; = Q*. Thus, by definition Q*
is a Fair Noise Distribution.

O

A.6 Proof of Lemma 2

Proof. Note that the sign of the coefficient of the cross product E.; X E.o is P(y = 1
)Py =2y =2)— Py =1y = 2)P(y = 2|y = 1). Also note that E. ; x [0.5,0
0.5P(y =1y =1)—05P(y = 2]y = 1).

Additionally, P(y = 1ly = 1)P(y =2y =2) > P(y =1]y =1)0.5 > 0,and 0 < P(y = 1|y =
2)P(y = 2|y = 1) < 0.5P(y = 2|y = 1). Thus, the coefficient of E.; x E. 5 is greater than
E. 1 % [0.5,0.5], while there signs are equal. This implies that [0.5,0.5] is in between E. ; and E. 5.
Thus, [0.5,0.5] € cone(E). The rest of the proof follows directly from Lemma 1. O

y =
.b] is

"https://sdv.dev/SDV/user_guides/single_table/ctgan.html#
how-to-modify-the-ctgan-hyperparameters


https://sdv.dev/SDV/user_guides/single_table/ctgan.html#how-to-modify-the-ctgan-hyperparameters
https://sdv.dev/SDV/user_guides/single_table/ctgan.html#how-to-modify-the-ctgan-hyperparameters
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A.7 Proof of Proposition 1

Proof. Note that P}, has density [>_, \i Pr(y = 1
of notation let us refer to Y, \; Pr(y = m|y = 1)

Then,

)\
K L{Py||Unif(¥ )}:Z »log (=)

ly =14),...,>; \iPr(y = N|y = i)]. For ease
asr

A
T'm:

u

= A ) =1 lo
= %: (rm log(r,) 1 g(|y|)>
= Zrﬁl log(r}) — ZT{; log(m)

Note that log (47 ) is constant for each term in the second summation. Thus,

= erh log (1)) —log (= Zr
= Zr; log (1)) — log (%)7
m

As log (4) does not depend on 7)),

argmin K L{Py||Unif(Y)} = argmin Z o log ()
A m

A.8 Proof of Proposition 2
Proof.

(C" 0 Gy)uPyc, =
= Z Ai(C" 0 G)uP 0, =

— Pg

A.9 Proof of Theorem 1

i =[Pr

A

= argmin —H (P},)
A

= argmax H(P7,)
A

(y =1|Cy =14), Pr(y =2|Cy =1),...,Pr(y = N|Cy = )]

i:Z)\Pry:HCg:i ,ZPT y =2|Cy = i),

., Z APr(y = N|Cy = i)]

=Q*

The first statement follows directly from Proposition 1 and Proposition 2.

If Cy = C’,then{lgf—’h,...

.y
7|E

‘} forms a standard basis of RI, and therefor 11! is is in

Cone(FE). Thus, O™ is a Fair N01se DlStI‘lbuthI’l by Lemma 1.
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