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Abstract

The focus of our work is on diagnostic tasks in personalized learning, such as cogni-
tive diagnosis and knowledge tracing. The goal of these tasks is to assess students’
latent proficiency on knowledge concepts through analyzing their historical learn-
ing records. However, existing research has been limited to single-course scenarios;
cross-course studies have not been explored due to a lack of dataset. We address
this issue by constructing PTADisc , a Diverse, Immense, Student-centered dataset
that emphasizes its sufficient Cross-course information for personalized learning.
PTADisc includes 74 courses, 1, 530, 100 students, 4, 054 concepts, 225, 615 prob-
lems, and over 680 million student response logs. Based on PTADisc, we developed
a model-agnostic Cross-Course Learner Modeling Framework (CCLMF) which
utilizes relationships between students’ proficiency across courses to alleviate the
difficulty of diagnosing student knowledge state in cold-start scenarios. CCLMF
uses a meta network to generate personalized mapping functions between courses.
The experimental results on PTADisc verify the effectiveness of CCLMF with an
average improvement of 4.2% on AUC. We also report the performance of baseline
models for cognitive diagnosis and knowledge tracing over PTADisc, demonstrat-
ing that our dataset supports a wide scope of research in personalized learning.
Additionally, PTADisc contains valuable programming logs and student-group
information that are worth exploring in the future.

1 Introduction

Personalized learning aims to provide students with customized learning services that align with their
specific goals and abilities, which is facilitated by the vast amount of data accumulated on thriving
online learning platforms. The focus of personalized learning is on diagnosing students’ knowledge
state and involves two key research tasks: (1) Cognitive Diagnosis (CD) [23, 5, 24, 3, 27, 8, 13],
which assesses students’ static latent proficiency on concepts using their learning records, and (2)
Knowledge Tracing (KT) [21, 32, 20, 9, 30, 29, 16, 25, 15], which evaluates students’ dynamic
latent proficiency during various study phases based on their past sequential learning records. Based
on the diagnostic results of students’ knowledge states, several applications such as Computerized
Adaptive Testing [1, 14] and Personalized Educational Planning [11] can be conducted, as illustrated
in Figure 1(a).

To support the above research, several educational datasets are constructed [7, 12, 4, 31, 33, 22, 28].
However, existing datasets still face the following challenges: (1) Insufficient Data Coverage: Many
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Figure 1: (a) Illustration of the personalized learning process. (b) Illustration of cold-start problem in
personalized learning. (c) Overview of PTADisc.

existing datasets are limited in their application scope due to being built for specific tasks. For
instance, KDD Cup 2010 [12] lacks exercise content text, making it unsuitable for supporting content-
based knowledge tracing. (2) Lack of Concept Annotation: Existing datasets reveal two problems
including incomplete relation annotations between concepts and problems, and missing dependency
relations among concepts, as seen in Table 5. (3) Poor Cross-course Information: Most existing
datasets are constructed within a single course (e.g., ASSIST [7] in Math and EdNet [4] in English).
Although MOOCCubeX [31] consists of 4, 216 courses, there exist no students with learning records
in multiple courses. Cross-course studies are not supported by existing datasets.

In our work, we first address the above challenges by constructing a Diverse, Immense, Student-
centered and Cross-course dataset licensed by Programming Teaching Assistant (PTA1) platform,
namely PTADisc. Specifically, PTADisc features in: (1) Diverse. As shown in Figure 1(c), it
contains various information, comprising four key entities and relationships among them. The entities
include course, student, problem, and concept. The relationship among entities is reflected in student
behavior, concept-problem correlation and concept dependency. (2) Immense. It includes 74 courses,
1, 530, 100 students, 4, 504 concepts, 225, 615 problems, and over 680 million student exercising
response logs (i.e., answer correctly or not). (3) Student-centered. The entire dataset is organized
around student behaviors (i.e., response logs), providing valuable insight into personalized learning.
(4) Cross-course. A subdataset with 29, 454 students simultaneously taking 5 courses is extracted.
This makes PTADisc the first dataset to support cross-course analysis.

Furthermore, we proposed a model-agnostic Cross-Course Learner Modeling Framework (CCLMF)
based on the cross-course subdataset of PTADisc. As shown in Figure 1(b), when a student enrolls in
a new course and has few response logs, it’s difficult to predict the student’s latent proficiency on
concepts and future performance. To address this cold-start problem, CCLMF leverages student latent
proficiency relationships between courses to transfer knowledge from courses with sufficient response
logs, thereby improving performance in the target course. The experimental results demonstrate the
advancement of CCLMF in cold-start scenarios with an average improvement of 4.2% on AUC. Our
code and datasets are available at https://github.com/wahr0411/PTADisc.git.

The contributions of this paper include: (1) Construct PTADisc, a diverse, immense, student-centered
and cross-course dataset, supporting various studies in personalized learning. (2) Construct a cross-
course subdataset with a significant amount of students enrolled in multiple courses, making up
for the lack of existing datasets that cannot support cross-course analysis. (3) Propose CCLMF, a
model-agnostic Cross-Course Learner Modeling Framework which can improve the performance of
diagnostic tasks in cold-start scenarios.

1https://pintia.cn/
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2 Problem Definition

This study focuses on two tasks: cognitive diagnosis (CD) and knowledge tracing (KT). CD aims
to analyze students’ latent proficiency on concepts, assuming that they are in a stable learning state.
Alternatively, KT focuses on dynamically assessing the knowledge proficiency of students as they
progress through the learning process. Figure 2 visually represents the differences.

2.1 Cognitive Diagnosis

Figure 2: Illustration of CD (a) and KT (b).

Suppose there is a course with a to-
tal of N students, M problems, and
K knowledge concepts, which can
be denoted as S = {s1, s2, . . . , sN},
P = {p1, p2, . . . , pM} and C =
{c1, c2, . . . , cK} respectively. The re-
sponse logs of student s are denoted by
Rs, a set of tuple (p, r), with p ∈ P
and r indicating the score obtained by
student s on problem p. In addition, we
have Q = {Qij}M×K , with Qij = 1 if
problem pi is related to knowledge concept cj , and Qij = 0 in all other cases. The goal of CD is to
assess student’s level of proficiency on different knowledge concepts through the prediction process
of student performance, given students’ response logs R and the Q-matrix Q [27].

2.2 Knowledge Tracing

The presentations of problems and knowledge concepts in KT are the same as in CD. For each student
s, their response logs are represented by Rs = {ej}lj=1, where ej denotes the j-th response log and
l is the total number of logs. Each e is denoted by a triplet (p, r, t) where p ∈ P , r is the score and t
is the timestamp of the student’s response. The goal of KT is to predict students’ proficiency levels of
concepts at different study phases, given their response logs R and the Q-matrix Q.

3 Dataset

PTADisc is sourced from PTA, an online learning platform developed by Hangzhou PAT Education
Technology Co., Ltd. PTA is an automatic program evaluation and open teaching assistance platform
for universities and society. Given the close collaboration between PTA and universities, it is common
for students to concurrently pursue a series of courses that align with their training program. Up
to July 2023, PTA has attracted over 1, 000 organizations, 9, 000 teachers and 3, 900, 000 users
and provides a problem bank of over 290, 000 problems referenced by course problem sets and
exams. The highlight of PTA is that it covers a significant amount of students enrolled in multiple
courses. This feature perfectly meets the need to conduct cross-course research and mine student
characteristics between courses.

3.1 Privacy Protection

To prevent privacy disclosure, we have excluded personal and sensitive data such as student names and
email addresses, retaining only the unique student IDs as individual identifiers, with anonymization
employed. Additionally, we confirmed that the user-generated data was strictly authorized during the
registration process, as specified in the terms of service and privacy statement of the PTA platform.

3.2 Dataset Construction

3.2.1 Raw Data Processing

Figure 3: Construction pipeline of PTADisc.

First, we manually selected 74
courses. Then as shown in Fig-
ure 3, we applied privacy protec-
tion, data curation, data filtering
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and data extraction to generate intermediate structured data. To eliminate redundancy, we created a
unified problem bank that captured each problem’s full score, content, and relevant concepts across
all courses. Additionally, we filtered out problems without concept annotations or those with full
scores of 0. For non-programming data, we selected only those students who had 5 or more response
logs for each course. For programming data, we performed extraction to include relevant details such
as codes submitted, programming language, as well as time and memory consumption.

3.2.2 Structured Data

The data is organized by course, and we provide examples of course, problem, and response logs in
Tables 1, 2 and 3, respectively. These structured data include the following content.

Knowledge Concepts. Knowledge concepts, also known as knowledge skills, are structured into a
tree format that illustrates the hierarchical dependencies among concepts, as depicted in Figure 1(c).
This hierarchical structure is manually annotated using the textbook catalog, and each relation is
denoted as a tuples (ci, cj) where cj is the sub-concept of ci. Each problem in the dataset is associated
with one or more leaf concepts within the tree, while the course name is the root node.

Problems. On PTA platform, registered teachers can create and publish problems containing content,
title, problem difficulty, problem type, full score, and other specialized configurations. In general,
PTADisc contains two broad categories of problems, which are non-programming and programming
problems. All the problems are stored in a problem bank and assigned a unique problem ID.

Student Groups. Student groups can be regarded as classes. Each student group is given a student
group ID and contains multiple students taking the same course.

Problem Sets. Problem sets are published by teachers as homework or quiz. All the problems in
problem sets are selected from the problem bank. Once a problem is selected into a problem set, it is
given a problem_set_problem ID (psp ID) and a specified full score. Each problem set has an opening
and closing time, and students are only allowed to complete the problem set during this period.

Student Behaviors. Response logs are provided to represent student behaviors, including submission
time, problem type, test score, psp ID, and judge status. It is important to note that PTADisc provides
a variety of judge-related information for the programming problems, such as code, language, running
time and memory consumption, which are well worth exploring in the future.

Table 1: An example of a course in PTADisc.

Course ID Course Name Concept ID Concept
Name

Concept
Parent ID Problem ID Student

Group ID Student ID

C_9088
Python

Programming

C_1568 Loop C_9088 P_3122 G_2144 S_e28d
C_9472 Function C_9088 P_3120 G_2144 S_369e
C_2592 Break C_1568 P_2600 G_5952 S_1c3a
C_7488 Continue C_1568 P_3143 G_5952 S_6f58

Table 2: Examples of two problems in PTADisc.

Problem ID Concept ID Difficulty Reference
Count Problem Type Problem Set

Problem ID
Full
Score

Problem
Set ID

Start
Time

End
Time

P_9600 C_3408 3 1479 Programming PSP_1617 10 PS_8480 2018/6/7
01:08

2018/7/6
23:59

PSP_3168 15 PS_4512 2018/7/3
11:50

2018/7/8
23:59

P_4480
C_5696,
C_6400 1 464

Multiple
choice

PSP_7537 2 PS_2112 2020/11/3
08:24

2020/11/4
10:24

PSP_5952 1 PS_2448 2021/3/26
16:00

2021/3/31
23:59

Table 3: Examples of three response logs in PTADisc.
Problem

Type
Submission

ID
Student

ID
Submit
Time Score Problem Set

Problem ID Status Language Code Judge Logs

True or false Sub_4736 S_9059 2018/12/28
09:05 0 PSP_4731 NO_ANSWER \ \ \

Multiple
choice Sub_1520 S_9059 2018/12/28

08:58 2 PSP_4750 ACCEPTED \ \ \

Programming Sub_5088 S_be7f 2018/6/8
19:18 75 PSP_6944 PARTIAL_

ACCEPTED PYTHON
# Code

s=input()
......

time: 0.025,
memeory: 3260416,
result: ACCEPTED;......
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(a) (b)

Figure 4: PTADisc statistics. (a) Correlation coefficients of student performance between five courses.
(b) The distribution of response logs and enrolled students.

3.2.3 Task-specific Datasets
Table 4: Cross-course datasets in PTADisc.

Course Name Java C++ Python DS2 C

#Students 29,454 29,454 29,454 29,454 29,454
#Problems 16,752 15,172 17,787 21,952 26,056
#Response Logs 4,750,970 6,587,356 6,454,336 7,789,280 11,378,017
#Concepts 773 547 685 767 847

Cognitive Diagnosis Dataset. Following
the generation of structured data, we per-
formed index mapping to create the CD
datasets, which consist of a Q-matrix and
students’ response logs. The Q-matrix stores
the relationships between problems and con-
cepts. The response logs of each student were split into training, validation, and testing datasets in a
ratio of 70%/10%/20%, respectively.

Knowledge Tracing Dataset. The process for generating the KT dataset is similar to the CD dataset,
except that each log in the KT dataset includes an additional submitting time.

Cross-course Dataset. We analyzed students taking multiple courses and identified the top five
frequent course sets. Furthermore, we eliminated students with less than 10 response logs for any of
the five courses and were left with a total of 29, 454 students for the study, as presented in Table 4.

3.3 Dataset Statistics

PTADisc includes 74 courses, 1, 530, 100 students, 4, 504 concepts, 225, 615 problems, and over 680
million student response logs. The response logs were partitioned according to problem type into
programming and non-programming logs. Figure 4(b) presents the distribution of response logs and
enrolled students for each course. Additional detailed statistics can be found in Appendix B.

3.4 Dataset Characteristics

The comparison of PTADisc with other open-access educational datasets is shown in Table 5. We
divide these datasets into three categories: (1) student-centered datasets including ASSIST09[7]3,
Junyi4, KDD Cup 2010 [12], EdNet [4], which focus on student behaviors and are frequently used
for diagnostic tasks in personalized learning; (2) knowledge-centered datasets including MOOC-
CubeX [31]; and (3) programming datasets including BePKT [33] and CodeNet [22]. We illustrate
the characteristics of PTADisc in four aspects.

Diverse. As illustrated in Table 5, PTADisc contains extensive concept-related information and
detailed records of student behaviors. PTADisc offers coverage of concept dependencies which are
not found in ASSIST, EdNet and CodeNet. Moreover, PTADisc is the only dataset that evaluates
student responses using a scoring ratio system rather than binary values [17]. Besides, PTADisc
includes student group information, enabling group-level analysis.

Immense. As Table 5 illustrates, PTADisc is currently the largest educational dataset, featuring
diverse data scales across multiple courses. This range of data scales presents researchers with a
multitude of options for personalized learning studies.

2DS stands for Data Structure and Algorithm Analysis.
3https://sites.google.com/site/assistmentsdata/datasets
4https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=1198
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Table 5: Comparison between PTADisc and existing open datasets.
Field Dataset Name PTADisc ASSIST Junyi KDD. EdNet MOOCCubeX BePKT CodeNet

Overview Number of Logs 6.81e8 4.02e5 2.59e7 2.27e6 1.31e8 2.96e8 6.79e4 1.39e7
Cross-course Info ✓ × × × × × × ×

Concepts Variety Concepts Annotations ✓ ✓ ✓ ✓ ✓ incomplete5 ✓ ×
Concepts Dependencies ✓ × ✓ × × ✓ × ×

Problems Variety Programming Problems ✓ × × × × × ✓ ✓
Problem Type ✓ ✓ ✓ × × ✓ × ×

Logs Variety Detailed Programming Logs ✓ × × × × × ✓ ✓
Non-binary Response Results ✓ × × × × × × ×

Other Info Problem Set ✓ ✓ × ✓ ✓ ✓ × ×
Student Group ✓ ✓ ✓ × × × × ×

Student-centered. PTADisc is a student-centered dataset focusing on student behaviors. By validat-
ing problems and knowledge concepts through analysis of student response logs, the dataset improves
consistency and maintainability, making it well-suited for diagnostic tasks.

Cross-course. PTADisc is the first dataset with cross-course information. For the cross-course
subset in PTADisc, we further analyzed the correlation coefficient between these courses based on
the performance of each student. As shown in Figure 4 (a), there is a positive correlation among the
five courses, providing a statistical basis for cross-course learner modeling.

3.5 Dataset Applications

PTADisc provides support for CD and KT tasks, as mentioned in Section 2. Section 5 presents the
CD and KT baseline experimental results on several existing methods. Additionally, PTADisc can
also support the following tasks in the field of AI for education: (1) Prerequisite discovery [19],
which identifies the sequence in which concepts or topics should be learned, ensuring foundational
concepts are understood before advanced ones. (2) Computerized adaptive testing [1], which aims
to rapidly and accurately diagnose a candidate’s level of knowledge mastery through personalized
test items. (3) Educational recommendation [11], which provides appropriate learning suggestions to
students based on their interactions with problems. (4) Cross-course research. PTADisc provides
cross-course information, enabling the study of how students perform in different classes. We
conducted a cross-course study addressing the cold-start issue in Section 4.

With various information provided, PTADisc also has the potential to support the following research
directions: (1) It provides non-binary performance data. Most existing CD and KT methods tackle
this as binary classification (wrong/right answer). Non-binary grades allow for regression-focused
investigations. (2) It provides information on problem types, aiding research of CD and KT. (3) It
provides information on problem difficulty, enabling to study how the level of difficulty of exercises
relates to students’ final learning outcomes. (4) It provides problem set specifics, like submission
time, enabling modeling of students’ learning habits based on when they submit their work. (5) It
provides data on student groups, facilitating the assessment of teaching quality within classes and
group-level educational analysis. (6) It provides information on programming exercises, including
detailed code submissions and records, enabling in-depth research into programming-related studies.

4 CCLMF: Cross-course Learner Modeling Framework

By utilizing the cross-course subdataset of PTADisc, we can leverage the relationships between
courses to mitigate the challenges associated with the cold-start problem. When a student begins a
new course (i.e., target course) and has limited data, it can be challenging to diagnose his proficiency
level through CD or KT. To address this problem, we present the Cross-Course Learner Modeling
Framework (CCLMF) inspired by cross-domain recommendation [18, 34], which utilizes auxiliary
information from another course (i.e., source course) taken by the student and has enough data. By
identifying connections between the student’s proficiency in the target and source courses, CCLMF
enhances the model’s performance in low-data scenarios. CCLMF incorporates a meta-learner to
predict network parameters, leveraging the power of meta-learning to improve performance in the
target course by harnessing the knowledge acquired from source courses. Please note that CCLMF

5Concept annotations are not available for all problems, since the annotation process is similar to keyword
matching.
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Figure 5: CCLMF architecture consists of two stages. (a) In the pre-training stage, we train a CDM
in the source course and get student i’s proficiency representation us

i . (b) In the meta stage, we
utilize the meta network to generate the mapping function Fui for each student i, and the proficiency
representation in the target course is obtained by ut

i = Fui(u
s
i ;wui).

Algorithm 1 CCLMF: Cross-course Learner Modeling Framework

Input: shared students: S
other inputs: Ps, Cs,Qs,Rs,Pt, Ct,Qt,Rt

Pre-training Stage:
1. Train a CDM in the source course.
2. Get student proficiency representation in the source course: us

i = HCDM(si;wh).
Meta Stage:

1. Use a meta network G(·) to generate mapping function Fu.
2. Get the student proficiency representation in the target course by ût

i = Fui
(us

i ;wui
).

3. Train G(·) and Fu by optimizing lossCC−CDM = lossCDM(ût
i, other_inputs).

Inference:
For a cold-start student sj in the target course, his level of proficiency is Fuj

(us
j ;wuj

).

is a model-agnostic framework that can be applied to various CD or KT models. To explain it in a
simpler way, we will illustrate CCLMF in the context of cognitive diagnosis.

4.1 Problem Definition

We assumed that N students have enrolled in both the source and target courses, denoted as S. The
source course has Ms problems and Ks knowledge concepts, denoted as Ps and Cs. And the target
course has M t problems and Kt knowledge concepts, denoted as Pt and Ct. The response logs in
the source and target course are denoted as Rs and Rt. For both courses, the Q-matrices are denoted
as Qs = {Qs

ij}Ms×Ks and Qt = {Qt
ij}Mt×Kt . The goal of the CCLMF is to accurately measure

students’ level of proficiency on various knowledge concepts in the target course, which incorporates
student response logs and Q-matrices from both the target and source courses.

4.2 CCLMF Architecture

We illustrate the architecture of CCLMF in Figure 5. CCLMF mainly consists of two stages: a
pre-training stage and a meta stage. In the pre-training stage, a cognitive diagnosis model (CDM)
such as NCD is trained using data from the source course, yielding a representation us

i for student si.
In the meta stage, instead of directly mapping us

i to student representation of the target course ut
i,

we applied the idea of meta-learning to learn a personalized cross-course transformation function
Fu for each student. Moreover, this meta learning procedure is task-oriented, with Fu being trained
by minimizing Equation (4) for specific tasks using data in the target course. After completing the
meta stage, a personalized transformation function is obtained for each student. Thus, given any
student sj who is new to the target course, their proficiency representation can be determined by their
transformation function as Fuj

(us
j ;wuj

).
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Table 6: CCLMF results on MIRT and NCD.
Metrics Model no dropout 10% dropout 20% dropout 30% dropout 40% dropout 50% dropout

AUC MIRT 0.6379 0.6412 0.6398 0.6399 0.6342 0.6363
CC-MIRT 0.7059 (+0.0680) 0.7025 (+0.0612) 0.6998 (+0.0600) 0.6998 (+0.0599) 0.6957 (+0.0615) 0.6918 (+0.0555)

ACC MIRT 0.6832 0.7037 0.6869 0.6886 0.6889 0.6991
CC-MIRT 0.7854 (+0.1022) 0.7834 (+0.0797) 0.7826 (+0.0958) 0.7833 (+0.0947) 0.7822 (+0.0933) 0.7797 (+0.0806)

RMSE MIRT 0.4902 0.4821 0.4884 0.4916 0.5013 0.4949
CC-MIRT 0.3948 (-0.0954) 0.3965 (-0.0856) 0.3973 (-0.0911) 0.3973 (-0.0943) 0.3983 (-0.1029) 0.3999 (-0.0950)

AUC NCD 0.6885 0.6846 0.6797 0.6787 0.6736 0.6675
CC-NCD 0.7106 (+0.0221) 0.7061 (+0.0215) 0.7028 (+0.0231) 0.7007 (+0.0221) 0.6953 (+0.0216) 0.6895 (+0.0221)

ACC NCD 0.7613 0.7662 0.7682 0.7606 0.7635 0.7640
CC-NCD 0.7859 (+0.0246) 0.7834 (+0.0172) 0.7819 (+0.0137) 0.7814 (+0.0208) 0.7812 (+0.0177) 0.7817 (+0.0177)

RMSE NCD 0.4109 0.4095 0.4081 0.4127 0.4121 0.4133
CC-NCD 0.3966 (-0.0143) 0.3973 (-0.0122) 0.3981 (-0.0100) 0.3991 (-0.0136) 0.3998 (-0.0123) 0.4009 (-0.0124)

Pre-training stage. CCLMF aims to leverage valuable insights gleaned from the vast data in the
source course. In the pre-training stage, a CDM is trained in the source course, generating an
informative student representation us. Specifically, our CCLMF can be employed on CDMs which
characterize student proficiency as:

us
i = HCDM(si;wh), (1)

where wh denotes the parameters of HCDM, and HCDM is a function abstracted from CDM which
can calculate each student’s latent proficiency representation us

i . The dimensionality of vector us
i is

ds which is usually related to the number of knowledge concepts and the number of problems. The
generated us contains personalized and auxiliary information that can be utilized in the meta stage.

Meta stage. Due to individual differences, the relationships between student proficiency in the source
and target courses can vary significantly from one student to another. Therefore we need to create
personalized mapping functions for each student in order to retain students’ individual characteristics.
In the meta stage, we utilized a meta network to learn personalized mapping functions for each
student. The meta network G(·) is formulated as:

wui
= G(us

i ;wg), (2)

where wg is the parameters of G(·) and wui
is used as the parameters of the mapping function.

The personalized mapping function Fu(·;wu) then produces personalized transformed student’s
representation in the target course as:

ut
i = Fui

(us
i ;wui

). (3)

Instead of mapping-oriented optimization used by Man et al.[18], we directly used the performance
of diagnostic tasks as our optimization goal to train the meta network. This task-oriented training
procedure advances in making full use of the ground truth values rather than approximate intermediate
results. Therefore, the meta network G(·) as well as the mapping function Fu(·;wu) are trained
together using data in the target course.

Given the ground truth value r from Rt and the CC-CDM’s final output r̂i which is generated based
on ut

i, the task-oriented loss can be formulated as:

lossCC−CDM = −
∑
i

(ri log r̂i + (1− ri) log (1− r̂i)). (4)

Inference. The goal of CCLMF is to accurately measure students’ level of proficiency in the target
course. During inference, for any student sj who is new to the target course, their level of proficiency
can be determined by their personalized transformation function ut

j = Fuj (u
s
j ;wuj ).

The whole procedure of CCLMF is summarized in Algorithm 1. Detailed implementation of CCLMF
on NCD [27] can be found in Appendix C.

4.3 Experiment Settings

We conducted CCLMF on a traditional cognitive diagnosis model MIRT [24] and a deep-learning-
based model NCD [27], called CC-MIRT and CC-NCD respectively.
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Datasets. We constructed the cross-course datasets based on the datasets shown in Table 4. As
depicted in Figure 4(a), the correlation coefficient between students’ performance in Python Pro-
gramming (Python) and Java Programming (Java) is 0.65, indicating a relatively high correlation.
This high correlation makes these two courses well-suited for addressing cold-start problems. Python
Programming was chosen as the source course. To simulate cold-start scenarios, 332, 568 response
logs (7% of each student’s response logs) from Java Programming were selected to form the target
course. We reserved 20% of response logs in the target course as the test set and then conducted
experiments on sub-datasets with varying degrees of sparsity. Specifically, we randomly dropped 10%,
20%, 30%, 40%, and 50% of the remaining data and split the resulting data into 7/1 as train/valid set.
To reduce the influence of randomness, we repeated the dropout process 10 times for each dropout
ratio, then reported the average results across the 10 sets of data.

Settings and Metrics. The meta network was implemented as a two-layer perceptron with input-size
Ks, output-size Ks ×Kt and hidden-size 100, where each linear layer was followed by a RELU
activation function. The weights were initialized by Xavier [10]. The batch size and learning rate are
128 and 1× 10−3. All experiments were executed on a Linux server with two GeForce RTX 3090s.
The evaluation metrics include Area Under the ROC Curve (AUC) [2], Prediction Accuracy (ACC)
and Root Mean Square Error (RMSE).

4.4 Experimental Results and Analysis

Table 6 shows the superiority of CCLMF over baseline models. CCLMF has better performance
on both NCD and MIRT models with different dropout ratios on all metrics. Specifically, CCLMF
achieves an average improvement of 4.2% on AUC, 5.5% on Accuracy, and 5.3% on RMSE.

To investigate the performance of our model over students of different sparsity levels, we show the
performance with respect to the number of response logs a student has in Figure 6. Note that we did
not re-train the model with different sets of students, instead we divided the test set into different
groups by the number of logs per student. We observe that the performance improvement of CCLMF
is more significant for students with fewer response logs, highlighting the advantage of our model in
cold-start scenarios.

Figure 6: AUC on NCD and CC-NCD w.r.t. student groups with varying degrees of sparsity.

5 Experiments on CD and KT Tasks
Table 7: Datasets for CD and KT.

Course Name Probability Linux DB Comp

#Students 557 4,398 12,646 45,329
#Problems 1,054 2,678 3,616 8,399
#Concepts 247 284 325 477
#Response Logs 46,106 391,434 2,363,206 6,504,414
Logs per Student 82.78 89.00 186.87 143.49

To demonstrate PTADisc’s support for
CD and KT, we specifically selected
four courses with varying response
log scales, namely Probability and
Statistics (Probability), Linux System
(Linux), Database Technology and Ap-
plication (DB), and Computational
Thinking (Comp), as seen in Table 7, which were also marked in Figure 4(b) with vertical dashes.

5.1 Baseline Models

For CD, we considered the following baseline methods: three traditional methods DINA [5, 26],
IRT [6], and MIRT [24], deep-learning method NCD [27] and graph based method RCD [8]. For
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KT, we considered the following baseline methods: deep sequential method DKT [21], memory
augmented method DKVMN [32], attention-based methods AKT [9] and SAKT [20], graph based
methods GIKT [30] and SGKT [29], and pre-training based method PEBG [16]. Due to the intensive
computing resources required by RCD, we did not conduct RCD on two courses with relatively
large-scale data, which are DB and Comp. Additional information of these baseline models can be
found in Appendix D.

5.2 Experiment Settings and Metrics

For each baseline model, we employed the same parameter settings and optimization methods as
described in their respective papers to ensure fairness in the comparison. The evaluation metrics used
for CD included AUC, ACC, and RMSE, while for KT, the evaluation metrics were AUC and ACC,
which are consistent with commonly used metrics in the literature.

5.3 Experimental Results and Analysis

The results of the CD and KT tasks have yielded notable findings, as shown in Table 8. Firstly,
we observed that the dataset size has a significant influence on model performance, with higher
prediction accuracy observed for larger datasets. Secondly, we noted in Table 8 that the MIRT model
performance was generally higher than that of the NCD model; this contrasts with the findings in
Table 6. We attribute this discrepancy to the cross-course dataset’s lower average number of student
response logs (i.e. approximately 10 logs per student), compared to the larger dataset with over 80
logs per student, as shown in Table 7. These results suggest that the number of logs per student
significantly influences model performance, and that the NCD model may outperform the traditional
MIRT model specifically in cases where there are fewer student logs on average. Thirdly, PEBG
achieved the best AUC performance across all datasets in the KT task, which demonstrates the
effectiveness of employing pre-training techniques to capture the heterogeneous educational data.

Table 8: Baselines of existing CD and KT models on PTADisc.
Dataset Name Metric DINA IRT MIRT NCD RCD DKT DKVMN SAKT AKT GIKT SGKT PEBG

Probability
AUC 0.6569 0.7257 0.7324 0.7092 0.7485 0.6876 0.6815 0.6879 0.7123 0.7086 0.7079 0.7320
ACC 0.6121 0.7097 0.7112 0.6894 0.7196 0.7025 0.6961 0.6721 0.6978 0.6883 0.6938 0.6977
RMSE 0.5141 0.4490 0.4730 0.4590 0.4346 - - - - - - -

Linux
AUC 0.7577 0.8199 0.8168 0.8171 0.8318 0.7898 0.7856 0.7756 0.8074 0.8173 0.8156 0.8379
ACC 0.7053 0.7802 0.7799 0.7755 0.7860 0.7726 0.7713 0.7665 0.7849 0.7791 0.7801 0.8040
RMSE 0.4493 0.3900 0.4023 0.3934 0.3841 - - - - -

DB
AUC 0.7141 0.7901 0.8121 0.7901 - 0.7813 0.7635 0.7562 0.7956 0.8101 0.7996 0.8381
ACC 0.7856 0.8322 0.8424 0.8299 - 0.8312 0.8281 0.8181 0.8383 0.8353 0.8299 0.8373
RMSE 0.3934 0.3493 0.3407 0.3504 - - - - - - - -

Comp
AUC 0.7137 0.7819 0.8096 0.7734 - 0.7978 0.7811 0.7717 0.8091 0.8091 0.8172 0.8281
ACC 0.7303 0.7929 0.8018 0.7880 - 0.8276 0.8234 0.8012 0.8283 0.8337 0.8274 0.8194
RMSE 0.4335 0.3808 0.3749 0.3849 - - - - - - - -

6 Conclusion

Outlook: We describe concrete ongoing and future work based on PTADisc. Specifically,

• We will conduct research about adaptive learning and personalized educational planning, and
incorporate them into a personalized learning system alongside the CCLMF model as shown in
Figure 1(a). We will also analyze the group-level student learning behaviors.

• We will explore programming knowledge tracing based on PTADisc which contains a large amount
of multi-round programming problem submission records and rich evaluation information.

Limitation: The original content text of the problems cannot be shared currently due to copyright
constraints. We intend to disclose the content by extracting text features in the future.

Conclusion: PTADisc is a diverse, immense, student-centered and cross-course dataset that enables
researchers to conduct previously infeasible cross-course studies. Based on PTADisc, we developed
CCLMF to alleviate the difficulty of diagnosing student knowledge states in the cold-start scenario.
Furthermore, we demonstrate the broad range of applications of our dataset by reporting on the
performance of baseline models for CD and KT tasks over PTADisc.
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Our code, dataset, and detailed description for the dataset are available at https://github.com/
wahr0411/PTADisc.git.

A Related Work
A.1 Cognitive Diagnosis and Knowledge Tracing
The goal of cognitive diagnosis (CD) is to assess students’ level of proficiency of different knowledge
concepts through the prediction process of student performance, given students’ exercise records, aka
response logs. Traditional psychometric-based methods include Item Response Theory (IRT) [18],
MIRT [19] and DINA [4, 22]. These methods depend on manually designed functions and the
effectiveness requires a large number of psychological experiments to verify, which are labor-intensive
and lack of ability to capture complex relationships between students, problems, and knowledge
concepts. Recent years, with the development of artificial intelligence [10], deep learning-based
cognitive diagnosis models have been developed [23, 6, 9, 28]. Specifically, NCD [23] incorporates
neural networks to learn the complex exercising interactions. And RCD [6] models the interactive
and structural relations via a multi-layer student-problem-concept relation map.

The goal of knowledge tracing (KT) is to dynamically model students’ knowledge proficiency through
her historical learning records, so as to predict her performance to new problems. Traditional proba-
bilistic KT models assume students’ knowledge state as a set of binary variables where each variable
represents whether a student masters an individual concept or not, such as Bayesian Knowledge
Tracing (BKT) [3]. Recent years, deep learning-based KT models are proposed for learning valid rep-
resentations especially when large amounts of data are available, such as DKT [21] and DKVMN [26].
Further, from the perspective of model structure, a few methods based on transformers (SAKT [15]),
GNNs (SGKT [24]), and pre-training frameworks (PEBG [11]) are proposed.

A.2 Cross-Domain Recommendation
Cross-domain recommendation is a promising method to alleviate data sparsity and the cold-start
problem [30, 27, 2]. Several models have been proposed, including CMF [20], which uses shared
parameters for all domains, and CST [14], which transfers knowledge about users and items from
auxiliary data sources. Mapping-based methods have been shown to be effective in solving cold-start
recommendation problems [12], by learning a mapping function from the source domain to the target
domain. However, these methods have limited generalization ability for cold-start items or users. To
address this issue, TMCDR [29] introduces meta learning to improve the generalization ability and
PTUPCDR [30] further improves TMCDR by learning personalized bridges for each user. While
the cross-domain problem has been widely explored in the recommendation domain, there is limited
research on cross-course learner modeling in personalized learning.

A.3 Other educational applications
Prerequisite discovery refers to the task of identifying and establishing the sequence or order
in which concepts or topics should be learned or presented, ensuring that foundational concepts
are understood before more advanced ones [13]. Suppose a MOOC corpus is composed by n
courses in the same subject area, denoted as D = {D1, · · · ,Di, · · · ,Dn}, where Di signifies an
individual course. Course concepts are subjects taught in the course, i.e., the concepts not only
mentioned but also discussed and taught in the course. Let us denote the course concept set of D as
C = C1 ∪ · · · ∪ Cn, where Ci representing the concepts intrinsic to Di . Prerequisite relation learning
in MOOCs is formally defined as follows. Given a MOOC corpus D and its corresponding course
concepts C, the objective is to learn a function P : C2 → {0, 1} that maps a concept pair ⟨a, b⟩, where
a, b ∈ C, to a binary class that predicts whether a serves as a foundational prerequisite for concept b.

Computerized adaptive testing (CAT) is an emerging testing format in many standardized examina-
tions, aiming to rapidly and accurately diagnose a candidate’s level of knowledge mastery through
personalized test items [1]. Let’s conceptualize a set of students represented by S = {s1, s2, . . . , sN},
a problem set represented by P = {p1, p2, . . . , pM} and a set of knowledge concepts represented by
C = {c1, c2, . . . , cK} related to the problems. We denote the record of student si answering problem
pj as a triplet rij = ⟨si, pj , aij⟩, where aij equals 1 if si answers pj correctly, and 0 otherwise.
Problem set P is divided into a tested set PT and an untested set PU . When introduced to a novel
student si ∈ S , a problem pool P with knowledge concepts C, the challenge is to architect a strategy
A to select a X-size question set PT = {p∗1, p∗2, . . . , p∗X} step by step that has the maximum quality
and diversity. Prior to the testing phase, we set up an abstract cognitive diagnosis model M with
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parameters θ capturing knowledge states. During testing, at step t(1 ≤ t ≤ X), we select one
question p∗t = A (PU ,M), then observe a new interaction test record r∗it = ⟨si, p∗t , a∗it⟩ and update
the knowledge states, i.e., θ, in M instantly. After testing, we measure the effectiveness of A by
computing Inf(A) and Cov(A), where Inf(A) denotes the measurement of quality and Cov(A)
denotes the measurement of diversity.

Educational recommendation lies in constructing a recommend system that can process the inter-
actions between students and questions. This system should be capable of making appropriate
learning suggestions to students [8]. In the context of a digital educational platform, assume
there are N students and P problems. We record the exercising process of a certain student
n = {(p1, r1) , (p2, r2) , · · · , (pt, rt)} , n ∈ N , where pt ∈ P represents the problems that stu-
dent n practices at her time step t, and rt denotes the corresponding score. Conventionally, a correct
response to problem pt is denoted by rt equals to 1, , and an incorrect response by rt equals to 0. Each
problem p ∈ P is characterized by a triplet p = {w, c, d}. Specifically, the element w represents
its text content as a word sequence p = {w1, w2, . . . , wW }. c ∈ C describes its knowledge concept
coming from all K concepts. And d means its difficulty factor.

B Dataset Statictics

Figure 1: Distribution of the number of students, problems, concepts and non-programming logs over
courses in PTADisc.
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Table 1: Detailed statistics of 68 courses in PTADisc.
course name #student #problem #concept #non-programming

log
#programming log

C++ programming 362,585 20,786 617 110,641,195 4,058,080
Computer App. foundation 37,280 7,304 527 110,200,887 216,146
C programming 1,074,901 43,140 1,069 97,385,606 164,459,382
DS. and algorithm analysis 294,236 29,914 897 41,667,618 -
Python programming 277,621 28,396 817 39,087,014 21,827,297
Java programming 198,335 24,524 906 23,542,208 8,461,930
Computational thinking foundation 34,519 4,500 401 16,871,472 2,212
Information technology 36,700 6,499 516 9,935,894 159
Computational thinking 45,329 8,399 477 6,504,414 19,085
Database principle 33,031 10,428 758 5,219,955 1,039
Information processing technology and App. 17,152 2,428 221 3,127,821 7,536
Computer network 20,333 7,372 609 2,451,121 1,023
Database technology and App. 12,646 3,616 325 2,363,206 -
Introduction to computer science 26,884 4,077 419 2,108,904 13,159
Operating system 18,237 8,563 726 1,777,233 64,947
Object oriented programming java 7,552 2,993 315 944,474 395,830
Principles of computer composition 11,699 5,474 475 755,982 34,456
Web front-end technology 6,612 4,247 438 572,879 876
Compilation principle 5,635 1,830 263 493,449 65,249
Thinking by data 2,597 1,027 156 445,636 -
Multivariate statistical analysis 1,704 790 83 416,427 62,393
Linux system 4,398 2,672 284 391,434 1,026
Computer and problem solving 14,241 1,518 226 370,605 522
Software engineering 4,197 2,815 335 270,692 -
Assembly language programming 2,830 1,300 206 200,231 26
Machine learning 2,073 1,984 331 197,685 500
Csharp programming 2,134 1,981 91 194,984 76,053
Java web 4,783 1,547 215 189,171 332
Big data processing technology 1,211 1,055 155 165,573 -
VB programming 2,032 1,273 113 157,360 5,829
Discrete mathematics and App. 3,516 1,278 123 147,522 17,855
Digital image processing 1,984 956 218 142,497 -
English 1,952 660 19 139,328 -
Software project management 850 1,753 133 133,824 970
Scala programming 1,378 616 124 127,382 9,367
Literature and history 2,306 886 31 126,748 -
Discrete mathematics 1,694 608 92 125,378 58,724
Fortran programming 1,398 858 106 123,498 248,698
Intro to algorithm competition 2,699 1,403 229 119,565 190,772
Data warehouse and data mining 689 777 97 117,717 -
Practice of statistics 210 394 35 99,217 -
Principles of information security 1,844 1,298 201 93,303 10,055
Software design and architecture 496 360 43 82,141 16,658
Single chip microcomputer principle and App. 784 505 88 80,977 -
Network programming technology 1,236 362 71 77,571 -
Digital logic 1,805 348 64 76,986 382
Introduction to computer 1,801 546 99 63,889 -
Numerical analysis 610 1,111 241 54,558 17,348
Big data management 217 640 65 51,724 -
Psychology 296 111 1 50,180 -
Probability and statistic 557 1,054 247 46,106 1,413
Problem solving fundation 1,037 373 63 38,440 323
Artificial intelligence 582 353 77 28,088 -
Intro to artificial intelligence 740 301 58 24,879 11
Software testing and quality assurance 454 172 4 24,342 -
Linear algebra 494 420 100 17,341 8,811
PHP programming 165 632 153 14,462 340
Object oriented analysis and design 265 178 47 11,872 -
Introduction to internet of things 217 291 14 10,949 -
Microcomputer principle and interface tech. 422 41 19 10,213 -
Signals and systems 378 38 12 8,502 -
Calculus 154 357 120 7,024 9,085
Matlab simulation 249 76 10 6,030 6,089
Japanese 54 190 19 5,375 -
Computer system fundamentals 67 91 25 3,643 -
Introduction to cloud computing 104 59 39 3,571 -
Wireless network 60 54 26 2,242 -
Swift programming 31 102 14 2,170 -
Data visualization 87 53 6 2,105 513
Fundamentals of analogy electron technique 36 29 19 1,476 -
Politics 56 29 3 1,450 -
Tourism 22 30 1 1,320 -
Software requirement analysis and design 331 21 20 21 5,492
Haskell programming 98 3 3 - 302

C Implementation Details

CCLMF is a model-agnostic framework that can be applied to various CD or KT models. Here,
we take NCD as an example and showcase the implementation details of CCLMF based on NCD,
namely CC-NCD. After pre-training the NCD model in the source course, the student’s proficiency
representation in the source course can be obtained by extracting the corresponding row from the
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matrix As given the student ID i:
us
i = As

NCD[i], (1)

where As is the student representation matrix learned by NCD.

In the meta stage, we used a two-layer perceptron (MLP) as the meta network. This meta network
then generates a transformation matrix for each student as the personalized mapping function:

TKs×Kt = MLP(us
i ; θ), (2)

where θ is the parameters of MLP, and TKs×Kt is the transformation matrix. Ks and Kt denote
the dimensionality of the student proficiency representation in the source and target course respec-
tively. Specifically, the dimensionality of the student representation is determined by the number of
knowledge concepts considered.

The transformation matrix TKs×Kt is then used to map student proficiency representation to the
target course using matrix multiplication:

ut
i = us

i · TKs×Kt . (3)

The final output r̂i of CC-NCD is formulated as:

r̂i = L(Qt
p ◦ (ut

i − hdiff )× hdisc; θl), (4)

where Qt
p ∈ {0, 1}1×Kt

is the concept relevancy of the problem p in the target course. hdiff ∈
(0, 1)1×Kt

, hdisc ∈ (0, 1) denotes concept difficulty and problem discrimination learned from the
NCD model using data of the target source. L(·) denotes the Linear Layers in NCD which is shown
in full paper Figure 5 and θl is the parameters of L(·).
Given the ground truth value r from Rt, all learnable parameters are trained together with the meta
network and mapping function by optimizing the cross-entropy loss function as:

lossCC−NCD = −
∑
i

(ri log r̂i + (1− ri) log (1− r̂i)). (5)

During the inference stage, given a cold-start student sj in the target course, we can get the latent
proficiency representation in the target course as:

ut
j = As

NCD[j] ·MLP(As
NCD[j]; θ), (6)

which can be utilized to predict the student’s performance in the target course via Equation (4).

D Baseline Model Details
Cognitive diagnosis models:

DINA [4, 22] is a traditional method that is well-suited for binary scoring items, and it can effectively
account for student errors due to guessing or slipping.

IRT [5] is an important psychological and educational theory rooted in psychometrics, which employs
a linear function to model the features of both students and problems.

MIRT [19] is a multidimensional extension of IRT, modeling multiple knowledge proficiency.

NCD [23] is the first attempt to introduce neural networks for Cognitive Diagnosis, which can model
high-order and complex student-problem interaction.

RCD [6] models the interactive and structural relations via a multi-layer student-problem-concept
relation map and infers students’ proficiency through the representations from this map.

Knowledge tracing models:

DKT [17] is the first approach applying deep learning to knowledge tracing tasks, making use of the
recurrent neural network in the process of modeling students’ behavior.

DKVMN [26] makes use of a memory network, a static matrix to store all concepts and a dynamic
matrix to update students’ knowledge states of those concepts.
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SAKT [16] employs a self-attention mechanism to capture the connections between exercises and
student responses.

AKT [7] utilizes an attention mechanism to analyze the temporal gap between questions and students’
prior interactions to better understand their past engagement.

GIKT [25] makes use of a bipartite graph to model the input information, namely problems and
concepts, and uses graph convolutional neural network (GCN) to process the data. Then the results
were sent to LSTM and get the final prediction.

SGKT [24] uses a session graph and during the process of students’ answering, a gated graph neural
network was set to handle the problem-concept graph.

PEBG [11] utilizes pre-training model to get the low-dimensional problem embeddings and models
the relation between problems and concepts as a bipartite graph.

E Supplementary Experiment Results
We conducted experiments between the selected five courses in Figure 4(a) of the paper. The
experimental results are presented in Table 2. We chose C++ Programming as the target course
due to its wide range of correlation coefficients with other courses. The source courses are marked
within brackets and are ranked from lowest to highest correlation coefficient with C++ Programming:
0.54 for Python Programming (Python), 0.59 for Data Structure and Algorithm Analysis (DS), 0.64
for i (Java), 0.79 for C Programming (C). To simulate cold-start scenarios, we sampled 5% of each
student’s response logs in C++ Programming to form the target course.

From Table 2, we can observe that CCLMF achieves a certain improvement of the two models in all
source courses. Notably, the results of the NCD model reveal that the extent of model improvement
is related to the correlation coefficient between the source course and the target course. The source
course with the highest correlation coefficient (0.79 for C Programming) exhibits the most significant
improvement, while the source course with the weakest correlation coefficient (0.54 for Python
Programming) demonstrates relatively less improvement.

Table 2: CCLMF results on MIRT and NCD, taking C++ Programming as the target course. Source
courses are marked within brackets.

Metrics Model no dropout 10% dropout 20% dropout 30% dropout 40% dropout 50% dropout

AUC

MIRT 0.6272 0.6218 0.6157 0.6124 0.6051 0.6057
CC-MIRT (Python) 0.7150 (+0.0878) 0.7123 (+0.0905) 0.7102 (+0.0945) 0.6864 (+0.0740) 0.6801 (+0.0750) 0.6716 (+0.0659)
CC-MIRT (DS) 0.6912 (+0.0640) 0.6933 (+0.0715) 0.6904 (+0.0747) 0.7012 (+0.0888) 0.7042 (+0.0991) 0.6990 (+0.0933)
CC-MIRT (Java) 0.7132 (+0.0860) 0.7093 (+0.0875) 0.7065 (+0.0908) 0.7004 (+0.0880) 0.6975 (+0.0924) 0.6890 (+0.0833)
CC-MIRT (C) 0.6996 (+0.0724) 0.7021 (+0.0803) 0.6935 (+0.0778) 0.6912 (+0.0788) 0.6870 (+0.0819) 0.6768 (+0.0711)

ACC

MIRT 0.7493 0.7479 0.7479 0.7471 0.6825 0.6860
CC-MIRT (Python) 0.7738 (+0.0245) 0.7721 (+0.0242) 0.7714 (+0.0235) 0.7657 (+0.0186) 0.7637 (+0.0812) 0.7606 (+0.0746)
CC-MIRT (DS) 0.7668 (+0.0175) 0.7681 (+0.0202) 0.7665 (+0.0186) 0.7694 (+0.0223) 0.7706 (+0.0881) 0.7685 (+0.0825)
CC-MIRT (Java) 0.7719 (+0.0226) 0.7707 (+0.0228) 0.7706 (+0.0227) 0.7672 (+0.0201) 0.7671 (+0.0846) 0.7641 (+0.0781)
CC-MIRT (C) 0.7703 (+0.0210) 0.7719 (+0.0240) 0.7695 (+0.0216) 0.7683 (+0.0212) 0.7671 (+0.0846) 0.7643 (+0.0783)

RMSE

MIRT 0.4919 0.4935 0.4935 0.4931 0.511 0.5106
CC-MIRT (Python) 0.4009 (-0.0909) 0.4016 (-0.0919) 0.4022 (-0.0913) 0.4104 (-0.0827) 0.4118 (-0.0992) 0.4151 (-0.0955)
CC-MIRT (DS) 0.4089 (-0.0830) 0.4074 (-0.0861) 0.4086 (-0.0849) 0.4052 (-0.0879) 0.4035 (-0.1075) 0.4054 (-0.1052)
CC-MIRT (Java) 0.4021 (-0.0898) 0.4027 (-0.0908) 0.4035 (-0.0900) 0.4055 (-0.0876) 0.4062 (-0.1048) 0.4085 (-0.1021)
CC-MIRT (C) 0.4050 (-0.0869) 0.4039 (-0.0896) 0.4062 (-0.0873) 0.4071 (-0.0860) 0.4085 (-0.1025) 0.4112 (-0.0994)

AUC

NCD 0.6981 0.6960 0.6926 0.6873 0.6846 0.6791
CC-NCD (Python) 0.7008 (+0.0028) 0.6979 (+0.0019) 0.6943 (+0.0017) 0.6931 (+0.0058) 0.6873 (+0.0027) 0.6807 (+0.0016)
CC-NCD (DS) 0.7225 (+0.0244) 0.7189 (+0.0229) 0.7164 (+0.0238) 0.7128 (+0.0255) 0.7078 (+0.0232) 0.6997 (+0.0206)
CC-NCD (Java) 0.7154 (+0.0173) 0.7123 (+0.0163) 0.7079 (+0.0153) 0.7058 (+0.0185) 0.6989 (+0.0143) 0.6907 (+0.0116)
CC-NCD (C) 0.7663 (+0.0682) 0.7627 (+0.0667) 0.7598 (+0.0672) 0.7541 (+0.0668) 0.7486 (+0.0640) 0.7423 (+0.0632)

ACC

NCD 0.7619 0.7602 0.7616 0.7552 0.7556 0.7558
CC-NCD (Python) 0.7693 (+0.0074) 0.7675 (+0.0073) 0.7666 (+0.0050) 0.7674 (+0.0122) 0.7668 (+0.0112) 0.7668 (+0.0110)
CC-NCD (DS) 0.7747 (+0.0128) 0.7702 (+0.0100) 0.7677 (+0.0061) 0.7673 (+0.0121) 0.7675 (+0.0119) 0.7671 (+0.0113)
CC-NCD (Java) 0.7661 (+0.0043) 0.7695 (+0.0093) 0.7687 (+0.0071) 0.7667 (+0.0115) 0.7668 (+0.0112) 0.7660 (+0.0102)
CC-NCD (C) 0.7854 (+0.0235) 0.7875 (+0.0273) 0.7833 (+0.0217) 0.7759 (+0.0207) 0.7734 (+0.0178) 0.7710 (+0.0152)

RMSE

NCD 0.4116 0.4124 0.4115 0.4174 0.4164 0.4156
CC-NCD (Python) 0.4102 (-0.0014) 0.4094 (-0.0030) 0.4111 (-0.0004) 0.4115 (-0.0059) 0.4123 (-0.0041) 0.4130 (-0.0026)
CC-NCD (DS) 0.4018 (-0.0098) 0.4059 (-0.0065) 0.4081 (-0.0034) 0.4133 (-0.0041) 0.4123 (-0.0041) 0.4181 (0.0025)
CC-NCD (Java) 0.4088 (-0.0028) 0.4066 (-0.0058) 0.4075 (-0.0040) 0.4097 (-0.0077) 0.4104 (-0.0060) 0.4130 (-0.0026)
CC-NCD (C) 0.3877 (-0.0239) 0.3881 (-0.0243) 0.3913 (-0.0202) 0.3956 (-0.0218) 0.3967 (-0.0197) 0.4028 (-0.0128)
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