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Abstract

Our ability to use deep learning approaches to decipher neural activity would likely
benefit from greater scale, in terms of both model size and datasets. However, the
integration of many neural recordings into one unified model is challenging, as
each recording contains the activity of different neurons from different individual
animals. In this paper, we introduce a training framework and architecture designed
to model the population dynamics of neural activity across diverse, large-scale
neural recordings. Our method first tokenizes individual spikes within the dataset
to build an efficient representation of neural events that captures the fine temporal
structure of neural activity. We then employ cross-attention and a PerceiverIO
backbone to further construct a latent tokenization of neural population activities.
Utilizing this architecture and training framework, we construct a large-scale multi-
session model trained on large datasets from seven nonhuman primates, spanning
over 158 different sessions of recording from over 27,373 neural units and over
100 hours of recordings. In a number of different tasks, we demonstrate that our
pretrained model can be rapidly adapted to new, unseen sessions with unspecified
neuron correspondence, enabling few-shot performance with minimal labels. This
work presents a powerful new approach for building deep learning tools to analyze
neural data and stakes out a clear path to training at scale.

1 Introduction

Recent advances in machine learning, particularly in the context of large-scale pretrained models
like GPT [1, 2, 3, 4], have showcased the immense potential of scaling up, both the terms of the size
of datasets and models [5, 6]. Similarly, in neuroscience, there is a growing need for a foundational
model that can bridge the gaps between diverse datasets, experiments, and individuals, allowing for a
more holistic understanding of brain function and information processing [7]. The development of
such a model would allow researchers to uncover underlying patterns and interactions within neural
populations [8], and potentially allow for more robust decoding of brain states.

However, creating a large-scale neural decoding model that can effectively combine spiking datasets
from various sources is a complex challenge [9]. One of the central challenges is the lack of a shared
“vocabulary” in neural recordings. Unlike the case for text—wherein every document written in
a given language shares a basic lexicon for tokenization—there is no one-to-one correspondence
between neurons in different individuals. As such, every recording from a different individual
involves a unique set of neurons that cannot be easily aligned with another set. An additional core
challenge lies in the inherent variability of neuron sets observed across different days [10]. Even
when monitoring the same individual, variability in electrode/tissue interface can lead to distinct
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neuron sets which, despite advanced sorting methods, can lead to inconsistencies in input channels
across sessions [11, 12, 9]. Overall, this lack of correspondence across recordings complicates the
integration of information from different experiments and individuals, ultimately hampering efforts
to construct a unified perspective on population-level interactions and dynamics in the brain.

In response to these challenges, we propose a new framework for large-scale training on neural spiking
data called POYO (Pre-training On manY neurOns).2 This framework is designed to enable scalable
and efficient training across multiple sessions of neural recordings, even when spanning different
sets of neurons with no known correspondence. Our approach centers around a novel tokenization
scheme that transforms individual neural action potentials, or “spikes”, into discrete tokens, thereby
preserving the neural code’s finest temporal structure while simultaneously enhancing computational
efficiency. The resulting tokenization not only allows for a more effective representation of neural
activity but also paves the way for training on larger volumes of data. We combine this input
tokenization method with an architecture that builds on the PerceiverIO [13] to compress the input
spikes into a latent space and learns interactions across spikes in time and across neurons.

We evaluate the performance of our proposed approach on data from over 158 sessions from open
electrophysiology datasets from seven non-human primates (NHPs), spanning over 27,373 units
and 100 hours of recordings. We demonstrate that through pretraining on large amounts of data,
we can transfer with very few samples (few-shot learning) and thus improve overall brain decoding
performance. Our work not only presents an innovative framework for training large models on
neuroscience datasets, but also offers insights into the scaling laws that govern decoding from neural
populations. By enabling the development of large pretrained models for neural decoding, our
approach advances the field of brain-machine interfaces and other decoding applications.

The main contributions of this work include:

• A framework for large-scale training on neural recordings: We present a novel framework
for training transformer models end-to-end on multi-session and across-individual elec-
trophysiology datasets derived from neural populations, enabling efficient and effective
decoding from a diverse range of neural recordings.

• Innovative spike-based tokenization strategies: We introduce a fundamentally different way
to tokenize neural population activity. Our approach tokenizes individual spikes (events)
across neural populations, preserving fine temporal structure and enhancing computational
efficiency by adopting a sparse representation of the data.

• Pre-trained models for neural decoding: We build two large pretrained models (POYO-1,
POYO-mp) that can be fine-tuned on new sessions and across recordings from different
animals and new behavioral tasks. We will make the weights and code available, and provide
both pretrained models as a resource to the community.

2 Approach

The transformer architecture [14], originally introduced in the context of natural language processing
(NLP), has shown remarkable flexibility and effectiveness in various domains, especially in the
presence of large and diverse datasets [15, 3]. In this work, we explore how to leverage this versatility
in the neural data domain.

2.1 Tokenizing neural population activity

Neurons communicate asynchronously using electrical impulses called spikes. The timing and
frequency of spikes encode signals that convey information about the external world and coordinate
the internal dialogue within the brain. In many neuroscience experiments, neural activity is recorded
from the brain through multiple electrodes, and then processed [16] to extract the spiking events
for a set of neural “units” [17].3 The resulting data are multi-variate event-based sequences that are
typically very sparse relative to the number of recorded time points.

2Poyo is the exclamation used by Kirby, who has an insatiable appetite. Similarly, POYO consumes spikes
from many neural datasets and combines them into one unified model.

3We use the term units instead of neurons because recordings may include both single-units (isolated neurons)
and multi-units (contain spikes from multiple neurons).
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Figure 1: Overview of our approach. Input spike tokens are compressed into a smaller set of latent tokens which
are processed through multiple self-attention blocks, finally time-varying outputs are predicted by querying the
latent space. All tokens in this model are assigned a timestamp, which are used towards rotary position encoding.

Neurons and their spikes are of course not independent of one another. Rather, they are part of a
complex, interwoven tapestry of neural activity, with each spike contributing to a collective dialogue
across billions of neurons. The true challenge and opportunity lie in interpreting these spikes not in
isolation, but in the context of this broader “conversation.”

When trying to scale up and train on many sessions of data, we are faced with the challenge of having
recordings of neural conversations with completely different set of “speakers” for which we don’t
know the identity or their functional tuning (or what they respond to). This is because each time we
record from the brain, we are tuning into a conversation between a new set of speakers. However, as
with language, there is some reason to think that neurons are ultimately communicating on similar
topics, e.g. sensations from the external world, internal states of the body, muscle commands, etc. In
other words, the lexicon may be different, but everyone is talking about similar subjects. Despite the
variability of our data, our aim is to decipher these “conversations” in a way that generalizes to new
neural datasets without fixed or known correspondence across their inputs.

The neural tokenizer. Based upon these motivations, we propose a novel approach for tokenizing
neural population activity where each spike is represented as a token (see Figure 1). In this case, each
token can be defined in terms of which unit it came from (via a learnable embedding) and the time
that the spike event was detected. By representing our data in this way, we never define or fix the
expected number of units, and the model can ingest populations of arbitrary size, and thus can be
trained across many datasets. At the same time, this approach also avoids having to specify a specific
time resolution for the neural code, as is the case with binning, and gets rid of the accumulation of a
lot of sparse tokens containing no events.

More concretely, we assign each unit a unique identifier and a corresponding D-dimensional learnable
embedding. Let UnitEmbed(·) denote a lookup table that associates each unit to its unit embedding.
Akin to word embeddings that encode semantic meaning and relationship between words, the unit
embedding space encodes something about the “speaker’s” identity and role in neural computation.
A unit fires a sequence of spikes in a context window of time [0, T ]. Each spike will be represented
by a token characterized by (xi, ti), where

xi = UnitEmbed(spike i′s unit)

is the learned embedding associated with the unit that emitted the spike and ti is the event timestamp.

Collectively, and for an arbitrary set of units, we combine all the spikes into a sequence of length
M . The neural population activity is represented by [x1, . . . ,xM ] and their corresponding times
[t1, . . . , tM ]. While the size of our context window T stays fixed, M will vary depending on the
number of units in the population and their firing rates (see Figure 1). Note that all spikes from a
specific unit have the same unit embedding, and only differ in their timing.
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2.2 Building the latent space

Compressing the input sequence. Rather than processing the input sequences with self-attention,
which is quadratic in sequence length and can be expensive for long sequences, we use a perceiver
encoder module [18] that summarizes the input sequence into a shortened “latent” sequence. Let’s
consider a sequence of M input tokens X = [x1, . . . ,xM ] and a sequence of learned latent tokens
Z0 = [z0,1, . . . , z0,N ], where z0,i ∈ RD and N ≪ M . We use cross-attention to pull information
from the input sequence into a compressed latent sequence. The queries Q = WqZ0 are a projection
of the learned latent tokens Z0 and the keys and values are a projection of the input tokens: K =
WkX and V = WvX, respectively. The cross-attention operation can be expressed as follows:

Z1 ← Cross-Attn( Q , K , V ) = softmax

(
QKT

√
dk

)
V. (1)

Z0 X

We use the standard transformer block with pre-normalization layers and feed-forward nets.

Attention in the latent space. Following the compression of the input sequence through cross-
attention, we apply multiple self-attention blocks on the latent token sequence, which now costs
O(N2) instead of O(M2) with N ≪M . Let Zl denote the embedding of the latent tokens at the lth
layer. The self-attention operation can be expressed as follows:

Zl+1 ← Self-Attn( Q , K , V ) = softmax

(
QKT

√
dk

)
V (2)

Zl

We denote the final latent sequence obtained after L layers as ZL = [zL,1, . . . , zL,N ].

2.3 Encoding relative timing information

To incorporate timing information, we leverage rotary position encoding (RoPE) [19] across all
attention layers in the architecture. Unlike traditional position encoding methods that inject absolute
position information into the token’s embedding, RoPE applies a rotation operation in the query,
key embedding space, allowing each token in a sequence to attend to others based on its relative
positional information.

Recall that each input token i has an associated timestamp ti. We will also assign a timestamp to
each of the latent tokens: we divide the latent tokens into groups of equal size and spread each group
uniformly over the context window [0, T ]. This method allows us to capture temporal relationships
between the latent tokens and the input tokens, enabling a temporal understanding of the encoded
sequence. By distributing the latent tokens evenly within the context window [0, T ], we create a
structured temporal representation, which preserves and propagates temporal information all the way
through the model. A detailed formulation of the relative encoding can be found in Appendix A.1.

2.4 Querying the latent space

Having built a latent space which can encode and model any population of units, we now want a
flexible way to readout behavioral variables. The output of the latent encoder is the latent sequence of
size N , while the desired output can be any arbitrary sequence of length P . Let us consider the task of
hand velocity decoding for example, in the context window [0, T ], the length of the output sequence
will depend on the sampling frequency. Since we aspire to train on datasets sourced from various
labs, the sampling rate can differ significantly. We thus need a flexible mechanism for predicting
outputs of varying lengths and querying from the neural activity at specific points in time.

We define a sequence of output tokens Y0 = [y0,1, · · · ,y0,P ], where P is the number of output time
points, which can change across sequences. Each output token is defined by (y0,i, t

out
i ). Initially all

the output tokens within a session are set to the same learned embedding y0,i = y0 ∈ RD ∀i. The
output Y is obtained by querying the latent space through cross-attention:

Y ← Cross-Attn( Q , K , V ) = softmax

(
QKT

√
dk

)
V (3)

Y0 ZL
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Since we use rotatary embeddings, and both the latent and output tokens have assigned timestamps,
the querying mechanism can leverage the relative position of latent and output tokens to extract the
temporally relevant context that enable prediction of the behavioral variable of interest.

Session embeddings. To account for variability of the experimental setups in real world settings, we
propose to define a learnable session embedding which captures the hidden experimental variables.
This information is injected into the output query y0, where again we use a lookup table to register
each new session we encounter. To illustrate how we probe the model to generate an output, we can
think about it as asking a question of the form:

"Predict [BEHAVIOR] at time [TIMESTAMP] under the experimental conditions of [SESSION ID]".

This produces a set of output tokens of the dimension of the number of queries which we then pass
through an MLP to generate the behavioral variables of the desired dimension (e.g., 2D for hand
velocities in a planar movement task).

2.5 Unit identification in new sessions

Our design of the unit embedding space allows our model to learn latent information about the
units it encounters, as well as capture the relationship between units in the population. Given a new
recording with unidentified units, we can transfer our model by mapping these new units into the
unit embedding space. To do this, we introduce an approach that we call “unit identification”, which
leverages gradient descent to learn the embeddings of new units. In this approach, we freeze all
existing weights of the model and simply add new rows to the UnitEmbed(·) lookup table for each
of the new units, as well as a new session embedding. Notably, the bulk of our model which maps the
neural population activity to behavior is unchanged and is simply transferred to the new dataset. In
our experiments, we find that this approach is surprisingly effective and allows us to rapidly integrate
new datasets into the same underlying model. Further details and analysis on the robustness of this
approach are presented in Appendix C.2.

3 Experiments

In this section, we demonstrate the promise of our approach for large-scale training and examine the
benefit of scaling in neural population decoding.

3.1 Datasets and experiment setup

One of the key advantages of our approach is its ability to scale to handle large amounts of neural data,
including sessions from different numbers of neurons, across different tasks and recording setups, and
from different animals. Thus we set out to build a diverse dataset large enough to test our approach.
We curated a multi-lab dataset with electrophysiological recordings from motor cortical regions,
where neural population activity has been extensively studied [10], and deep learning tools and
benchmarks have recently been established [27]. In total, we aggregated 178 sessions worth of data,
spanning 29,453 units from the primary motor (M1), premotor (PMd), and primary somatosensory
(S1) regions in the cortex of 9 nonhuman primates (see Table 1). We place this in the context of
standard analyses within a single lab or paper which typically involve 10’s of sessions and a few
hundred neurons.

All of these neural recordings were collected while the animals performed various motor tasks
that vary in their inherent complexity (see Figure 2A-B). The center-out (CO) task is relatively
stereotyped, with the animal making a reach to one of eight targets after receiving a go cue, and

Study Regions # Indiv # Sess # Units # In # Out Tasks
Perich et al. [20, 21, 22, 23] M1, PMd 4 117 11,557 143M 20M CO, RT
Churchland et al. [24] M1 2 9 1,728 706M 87M CO
Makin et al. [25] M1, S1 2 47 14,899 123M 15M RT
Flint et al. [26] M1 1 5 957 7.9M 0.3M CO
NLB-Maze [27] M1 1 1 182 3.6M 6.8M Maze
NLB-RTT [27] M1 1 1 130 1.5M 2.8M RT

Table 1: Datasets used in this work. CO: Center-Out, RT: Random Target.
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Figure 2: Building a multi-session model spanning multiple animals and tasks. (A) Center-out reach and (B)
Random target task [20], along with examples of true and predicted behavior (x,y velocities). In (C-D), we show
the decoding performance for single-session models (gray) and the POYO-mp multi-session model (green).

then returning to the center. In contrast, the random target (RT) task is significantly more complex.
The animals make continuous and self-paced movements with new targets appearing in succession
at random locations in the workspace. In addition to the greater exploration of the workspace and
heterogeneity in movements, this task allows individual to plan their next movement while finishing
the execution of the current movement leading to greater complexity in neural dynamics. Other
sources of variability that we find across labs include the: choice of pre-processing algorithms
(spike sorting or threshold crossing analysis), type of controller (manipulandum, touch screen), and
sampling rate when recording behavior (100Hz to 1kHz). We do not re-process the data or attempt to
standardize it across labs or tasks. Further details on the datasets are provided in Appendix B.

Experiment setup. Throughout all of our experiments, we use a context window of 1s and do not
segment data into trials during training. We only use the trial structure when reporting the decoding
performance, in particular, center-out sessions are evaluated during the reaching movement. We train
the model with N = 512 latent tokens and a dimension D = 128. We use the LAMB optimizer
[28], and employ a cosine decay of the learning rate at the end of training. For every session, we
holdout 20% of the trials for testing, and 10% for validation. We use 1-GPU and 8-GPU setups for
single-session and multi-session models, respectively. All details can be found in Appendix A.

3.2 Testing the model on single sessions

To first investigate the performance of our architecture when trained on a single session, we trained
single-session models on 100 different recording sessions acquired from three nonhuman primates
(Monkey C, Monkey M, Monkey Ja), each containing anywhere from 10 to 106 minutes of data [29].
In all of these recordings, the same behavioral task setup, behavioral recording apparatus (10 ms
temporal resolution), and spike sorting procedure was used.

Across all 100 single-session models, we obtained an average R2 of 0.9347 on CO and 0.8402 for RT
sessions. When we compared these single-session results with existing models for neural decoding,
including a Wiener Filter, GRU and MLP [30], we found that our approach consistently outperforms
these baselines, with even greater improvements observed on the RT task. Additionally, we found
that our single-session models are stable for a wide range of hyperparameters (Appendix C.3).

3.3 POYO-mp: Building a large pretrained across-animal, multi-session model

To investigate the question of how training with more sessions of data can improve brain decoding, we
trained a large model (POYO-mp, 24 layers) on all 100 sessions that we studied in our single-session
analysis. In total, we used 9,789 units and 4,367 neuron-hours (number of neurons× amount of time
recorded) to train our POYO-mp model.
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Same animal, New day New animal
Method Monkey C - CO (2) Monkey T - CO (6) Monkey T - RT (6)

Fr
om

sc
ra

tc
h Wiener Filter 0.8860 ± 0.0149 0.6387 ± 0.0283 0.5922 ± 0.0901

GRU 0.9308 ± 0.0257 0.8041 ± 0.0232 0.6967 ± 0.1011
MLP 0.9498 ± 0.0119 0.8577 ± 0.0242 0.7467 ± 0.0771
POYO-[Single-session] 0.9682 ± 0.0111 0.9194 ± 0.0185 0.7800 ± 0.0702

Pr
e-

tr
ai

ne
d POYO-mp + Unit ID 0.9675 ± 0.0079 0.9012 ± 0.0271 0.7759 ± 0.0471

POYO-mp + Finetune 0.9708 ± 0.0116 0.9379 ± 0.0193 0.8105 ± 0.0561
POYO-1 + Unit ID 0.9677 ± 0.0096 0.9028 ± 0.0248 0.7788 ± 0.0548
POYO-1 + Finetune 0.9683 ± 0.0118 0.9364 ± 0.0132 0.8145 ± 0.0496

Table 2: Behavioral decoding results across neural recordings from two nonhuman primates performing two
different tasks. All the baselines and the single-session model are trained from scratch, while POYO-mp and
POYO-1 are pretrained. The standard deviation is reported over the sessions. The number of sessions in each
dataset is contained in (·) and the top performing models in each category are indicated in boldface (first) and
underlined (second).

This model achieves an average test R2 of 0.9512 on the center-out tasks and 0.8738 on the random
target tasks, which is a marked improvement over the single-session average. When we compared the
performance of our multi-session model to single-session models head-to-head (see Figure 2C-D), we
found that across the board, multi-session training improves over single-sessions, and we observed
even greater improvements for datasets with fewer trials (indicated by the size of the circles in the
plot). On RT sessions, we observe an even bigger improvement over the single session models. These
results suggest that there are significant benefits in joint-training across multiple sessions, especially
when decoding more complex behaviors like the random target task.

Figure 3: Scaling curves. R2 is evaluated and averaged over
the test splits on both CO and RT tasks. The single-session
performance is the mean over 100 different models.

Scaling analysis. By enabling multi-
session training, we can start to ask ques-
tions about the extent to which having more
data or more parameters can improve de-
coding (Figure 3). Thus, we studied the
improvements obtained for three different
depths of models, with L=6 (3.8M), L=14
(7.4M), and L=26 (13M) layers (param-
eters). For both CO and RT tasks, we
find that even at the same depth (L=6),
our 1 multi-session model shows an im-
provement over the average performance of
100 single-session models. We see further
improvements with increasing the model
depth, with the RT task benefiting even fur-
ther from scaling. When we fix the model depth to L=6, and study how training jointly with more data
contributes to improvement in performance, we find an improvement in performance when comparing
single-session training (average 1.2M tokens) to training jointly on all RT sessions (26M tokens).
When we also train jointly with other CO sessions (134M tokens in total), and increase model depth to
help in accommodating the more growing and diverse training set, we continue seeing improvement
in the decoding performance on RT sessions, accumulating to 4% over our single-session baseline.

3.4 Transferring to new sessions

After pretraining, we can then test on new sessions with unknown neurons using either the (i) unit
identification approach we described in Section 2.5, or (ii) full finetuning of the model weights. Recall
that when we use a unit identification approach, we freeze the weights of the model and only learn
new unit and session embeddings.

Results on held out sessions from the same animals. We first tested the unit identification
approach on held-out sessions from Monkey C that are unseen during training (Table 2, Left). In
this case, we don’t have correspondence between units in the training and the testing conditions.
Surprisingly, we find that we can achieve comparable performance with unit identification on the
pretrained model (0.9675) with that of the single-session models trained fully from scratch (0.9682).
With further finetuning of the rest of the model’s weights, we can improve the accuracy further
(0.9708) to go beyond the accuracy of the single-session models. This highlights the robustness
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Figure 4: Sample and compute efficiency for training, unit identification, and fine-tuning approaches. On the
left, we show the sample and compute efficiency for a heldout CO session. On the right, we plot the sample and
compute efficiency for a new animal not seen during training.

of our model and its flexibility to accommodate fresh data with even a simple input mapping (unit
identification).

We compare with the single session model and a GRU baseline (Figure 4A) with our multi-session
model trained on the same number of trials. Both our single-session and finetuning approach achieve
good performance scaling as we increase the number of samples, with the finetuning maintaining a
gap over the single session models over the entire sampling space.

Results on a new animal performing the same tasks. Next we tested our model on 12 sessions
from a completely new animal (6 CO sessions, 6 RT sessions from Monkey T) that was not included
in the training of the model (Table 2, Right). When we applied our unit identification approach on
the multi-session model (POYO-mp + Unit ID), we see a bit of a dip in overall accuracy from the
single-session model (POYO-[Single-session]); however, when we fine-tune the weights of the model
further, we achieve an accuracy of 0.9379 on CO, which is a significant improvement over all of the
other baselines. For the RT task, the single session model is 0.7569 and with unit identification we
achieve 0.7669 and with full fine-tuning we get up to 0.7916 (Figure 4B). These results are promising
and show that we can use our pretrained model on new animals with only a few minutes of labeled
data.

Method NLB-Maze NLB-RTT

Fr
om

sc
ra

tc
h

Wiener Filter 0.7485 0.5438
GRU 0.8887 0.5951
MLP 0.8794 0.6953
AutoLFADS + Linear [31] 0.9062 0.5931
NDT + Linear [32] 0.8929 0.5895
NDT-Sup [33] 0.8708 0.4621
EIT [33] 0.8791 0.4691
POYO-[Single-session] 0.9470 0.6850

Pr
et

ra
in

ed POYO-mp + Unit ID 0.8962 0.7107
POYO-mp + Finetune 0.9466 0.7318
POYO-1 + Unit ID 0.9329 0.7294
POYO-1 + Finetune 0.9482 0.7378

Table 3: Behavioral decoding results for datasets from the
Neural Latents Benchmark [27]. Best performing model
is in bold and second best model is underlined.

Performance on the Neural Latents Bench-
mark (NLB). To understand how well our
pre-trained model performs on data collected
from new animals performing novel tasks
with different equipment (example: touch
screen vs. manipulandum), we applied our
pretrained model to the MC-Maze (Monkey
L) and MC-RTT (Monkey I) datasets from
the NLB (Table 3)[27]. The NLB serves as a
benchmark for neural representation learning
and decoding and thus we can include other
single-session baselines to our comparisons,
including self-supervised models AutoLFADS
[31] and NDT [32] which produce denoised
firing rate estimates over which we fit a linear
layer (+ Linear), a supervised variant of NDT
[33] (NDT-Sup), and EIT [33]. Both datasets contain single sessions from new animals performing
movement tasks that we haven’t seen during training.

On the NLB-Maze dataset, we obtain a R2 of 0.8952 after unit identification, which is competitive
with the baselines. These results are surprising since we do not modify the model’s weights, and yet
our pretrained model yields competitive results on a dataset collected under very different conditions.
When we finetune the model, we boost the performance even further establishing a 4.4% gap over the
best baseline. Similar trends can be observed for the RTT task (Monkey I), with even larger (2%)
improvement after finetuning.

3.5 POYO-1: A multi-lab, multi-task model for neural decoding

Given the impressive transfer results of POYO-mp to datasets from different labs, we ask whether we
can use our approach to build a model that spans even more diverse recording setups that we expect
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Figure 5: Scaling up to more tasks and diverse neural and behavioral recording conditions. (A) Random target
task from Makin et al. included in training of POYO-1 and (B) Maze task from NLB heldout for transfer testing.
In (C) decoding accuracy for the single-session (gray) and the POYO-1 model (blue). (D) PCA projection of the
learned session embeddings.

to encounter when trying to unify data from many sources. In total, we used datasets from seven non-
human primates spanning three different labs, with a total of 27,373 units and 16,473 neuron-hours
for training our model. We call this pretrained multi-lab, multi-task model POYO-1.

Even in light of the high amounts of variability across these different datasets, POYO-1 provides
consistent improvements over the single-session models (Figure 5C). When tested on a number
of different transfer tasks (Tables 2, 3), we again find that the unit identification and finetuning
approaches provide effective strategies for adapting our pretrained model to new datasets. We obtain
notable performance on the NLB-Maze, where we find that we obtain a R2 of 0.9329 with only
unit identification remapping, an almost 4% improvement over the unit identification result for our
POYO-mp pretrained model, suggesting that we cover more of the task space with POYO-1.

When comparing the POYO-1 model with POYO-mp model, it is clear that both methods have their
strengths. POYO-mp excels on the datasets sourced from the same lab, with 0.8788 on RT sessions
compared to POYO-1’s 0.8664. On the other hand, both models exhibit great transfer capabilities, with
POYO-1 having the edge especially when using unit identification, indicating its ability to generalize
better across diverse experimental conditions. This flexibility and scalability make these methods
promising tools for future research in analyzing neural data from diverse sources.

Visualizing the session embedding space. We visualized the learned task embeddings to see if the
model learns relationships between sessions seen during training (Figure 5D), even though it was not
explicitly trained with this information. This analysis revealed clusters corresponding to different
data sources and tasks, suggesting that our model has not only learned to identify patterns within
each session but also recognized overarching structures across sessions. In particular, we find that the
datasets collected in the Miller Lab (C,M,J) used to train the POYO-mp model are mapped into similar
regions of the session latent space, and (I and L) sessions are mapped to their own distinct clusters.

4 Related Work

Transformer architectures for time-series data. Transformers have emerged as a powerful model
for processing time-series data due to their ability to capture long-range dependencies [34, 35]. The
key to their success lies in the self-attention mechanism [14], which allows the model to weigh the
importance of each time step in the input sequence when producing an output. A typical approach
in applying transformers to time-series data involves discretizing the continuous time domain into
discrete bins [35], and treating the binned data as a sequence of tokens. Each bin is then linearly
projected into a high-dimensional embedding, which is input to the transformer model. The Perceiver
framework [18, 13] moves away from the idea of patches, by directly processing the input bytes,
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using cross-attention layers to reduce the complexity of attention. In addition to regular timeseries,
there has been interest in applying transformers to model irregular timeseries including event stream
and point process data [36, 37, 38]. However, many of these models work on univariate event streams
and when they extend to multivariate cases, they assume fixed and known input channels.

Transformers applied to neural data. With the recent advances in transformers for sequence
modeling in many different time-series, transformers have also recently found successful applications
in building representations of neural population activity [32, 33, 39]. In these models, the spiking
activity is first binned and then the estimated bin counts are tokenized. In the neural data transformer
(NDT) model [32], the firing rates of all neurons in the population are embedded jointly in one
token (time step or bin). In the embedded interaction transformer (EIT) [40], neurons are considered
independently in one stage of processing and at a population level in a second stage, and thus the
whole dataset is tokenized over both neurons and time. In the spatiotemporal (STNDT) model [39],
two different tokenizations are also considered, one in space and one in time, and two representations
are learned jointly for both tokenizations. In all cases, binned data are used and the models are trained
on a single session and fixed set of neurons.

Multi-session training and alignment. The idea of decoding across multiple sessions has been
explored in previous work [41, 42, 43, 44]. In many of these works, an initial baseline representation
is formed on one day and alignment-based approaches are used to transfer a model trained on one
session across recording days [23, 45, 12, 46, 47]. A subset of these methods [41, 43] can be trained
on many sessions jointly, but rely on the assumption of shared dynamics or structure of a single task
to achieve alignment. To the best of our knowledge, our work is the first to demonstrate multi-session
transfer across subjects performing different tasks, and the first to demonstrate scaling across different
data and model sizes.

5 Discussion

In this paper, we introduce a novel framework for training transformers on large multi-session,
multi-task neural activity datasets. To tackle the challenges of training on such large heterogeneous
sources, we introduce a novel spike-level tokenization scheme and architecture that enables the model
to learn from populations with varying numbers of neurons. We show that training a single unified
model on multiple recordings is possible, and find that it leads to improved decoding performance.
Finally, we build two large pretrained models (POYO-1, POYO-mp) that can be efficiently fine-tuned
on new datasets, and make them available as a resource to the community.

In contrast to models trained on a single dataset, the pretrained models that we have developed provide
a potential way to compare and contrast datasets, and also understand common motifs of activity and
dynamics that may be shared across different sessions, tasks, and individuals. Thus, it will be critical
to develop tools to probe the patterns and motifs learned by such models and characterize the neural
mechanisms underlying different tasks and computations. In particular, we look to understand how
spike tokens are grouped across different latent tokens and how the dynamics of the population are
modeled in this latent space. Additionally, our proposed unit embedding space allows us to map units
into a high-dimensional space; thus understanding how unit projections are organized might help
reveal the similarities between different neurons and the nature of their interactions. Similarly, we
can analyse the session embeddings to glean insights into inter-session and across-animal differences.

Our work shows how pretraining on diverse data, including datasets from animals performing different
tasks and across different laboratories, can all help to improve our ability to decode from novel and
unseen neural datasets. Already, our results demonstrate the positive effect of scale for neural data
analysis. However, to scale this approach further and integrate even more diverse brain regions and
tasks, it will be critical to move toward a self-supervised objective. Thus, our current architecture and
multi-session framework could be also extended to self-supervised tasks like generative next-event
prediction or masked modeling to allow for even larger datasets to be ingested.

This framework has the potential to advance neuroscience research in several ways. By enabling
the development of large pretrained models that can be fine-tuned for various downstream tasks, our
work can accelerate progress in brain-machine interfaces and disease modeling applications. The
ability to quickly and effectively decode neural activity from diverse datasets and modalities can have
significant implications for improving our understanding of the brain and developing new therapeutic
interventions.
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Appendix

A Additional Model Details

A.1 Rotary position encoding

Rotary Position Embeddings (RoPE) are used to incorporate relative positional information into
transformer models in a memory and compute efficient manner[19]. Unlike absolute position
embeddings which are added or appended to the input embeddings, these are directly incorporated in
the attention mechanism.

First, we define a 2× 2 rotation matrix R2×2(t, T ) for a given timestamp t and time-period T :

R2×2(t, T ) =

[
cos(2πt/T ) − sin(2πt/T )
sin(2πt/T ) cos(2πt/T )

]
R2×2(t, T ) provides a time/positional encoding with a time period T . Intuitively, the sinusoidal
values in this rotation matrix can help the model learn and distinguish variations in timestamps at a
timescale T .

Given the head dimension of the attention block D, we create a D ×D rotary embedding matrix
R(t) for a timestamp t by constructing a block-diagonal matrix of rotation matrices R2×2, where the
time-periods are varied logarithmically between Tmin and Tmax

R(t) =


R2×2(t, T0) 0 · · · 0

0 R2×2(t, T1) · · · 0
...

...
. . .

...
0 0 · · · R2×2(t, TD

2 −1)


Given D, Tmin, and Tmax, we generate Ti by the following equation:

Ti = Tmin

(
Tmax

Tmin

)2i/D

In our models, Tmin and Tmax were set to 1ms and 4s respectively.

This rotation matrix is incorporated into the attention mechanism by replacing the attention score
calculation with the following equation:

aij = softmax
(
(R(ti)qi)

T
(R(tj)kj)

)
Since R(ti)

TR(tj) = R(tj− ti), the attention score aij depends only on the relative timing between
the query and key tokens. This is what makes RoPE relative in nature.

What is explained above has been introduced in [19], and use successfully in many models [18]. In
our experiments, we found an interesting extension of RoPE. In addition to incorporating RoPE in
calculating the attention scores, we also incorporate it in the weighted-summation of values inside
the attention mechanism. We do this to encode the relative timing between values and queries in the
output of the attention block. A direct, but computationally inefficient, way of doing so would be:

zj ← zj +
∑
i

aijR(ti − tj)vi

This is inefficient since it requires us to explicitly compute R(ti − tj) for all N2 values of (ti − tj).
We use the fact that R(ti − tj) can be factorized as R(−tj)R(ti) to reach the following, much more
efficient, implementation:

zj ← zj +R(−tj)
∑
i

aijR(ti)vi

That is, we first apply rotation matrices R(ti) to all values vi before passing them to as inputs to the
attention block. Then we apply the rotation matrices R(−tj) to its outputs.
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This value-rotation mechanism captures relative-timing information more explicitly in the output
of the attention block, allowing the feedforward network to take advantage of timing information.
In the absence of this mechanism, the only way timing information is added to the latent tokens is
through the attention scores. We observed in early experiments that our model performed better with
value-rotation enabled for the input cross-attention and all self-attention layers.

As discovered in the Perceiver framework [13], we observed an improvement in performance upon
rotating only half of the head dimensions. That is, half of the R2×2 matrices in R were replaced by
2× 2 identity matrices.

A.2 Time-based context window

We consider an arbitrary window of time [t, t + T ], meaning that we do not use the trial structure
when training our model. In our experiments, we set T equal to 1 second. At inference time, we use
a sliding window of step 500ms and average the predicted output in overlapping segments.

In language models, and more generally transformer-based models, the context window is defined
with respect to the number of tokens. The neural data modality is a bit more complex, as the number
of spikes scales with the number of units: Across multiple datasets, we record a variable number
of units, ranging from tens of units to hundreds of units. Defining the context window with respect
to number of tokens will result in a variable time duration, long for small populations and short for
larger ones. Our context window is defined with respect to time (fixed to 1s), each sequence will have
a variable number of tokens (M ). When creating batches, we pad to the largest sequence in the batch,
and appropriately use an attention mask in the first cross-attention layer. GPU hardware is optimized
to process fixed-size tensors, to make computation more efficient, we introduce a distributed training
load balancing mechanism, which deals with variable-length input sequences (Appendix A.4.4).

A.3 Further details on tokenization

Delimiters. When extracting the spike data in a window of time [t, t+ T ], we include delimiters
for each unit, indicating to the model that we are tuning into the activity of that unit between times
t and t + T . This choice is important because: 1) we are using relative position encoding, so the
beginning or the end of the window is not clear, and 2) our tokenization only captures activity and
not inactivity. If we consider a unit that is inhibited and does not fire in that window of time, the
model would be unaware of the presence of that unit, unless we add [START] and [END] tokens. We
learn two embedding vectors for these delimiters xstart and xend. For each unit in the population,
we add these two tokens with embedding equal to the sum of the delimiter embedding and the unit
embedding, and assign each token timestamps t and t+ T respectively.

Latent tokens. Recall that we divide the latent tokens into groups of n and spread each group
uniformly over the context window. Specifically, we use a total of 256 latent tokens and divide
them into groups of 8, this means that there will be 32 tokens that share the same timestamp. We
experiment with weight-sharing, where we set the learned latent tokens in the same group to have the
same weights (e0, . . . , e31 in Fig 1). This means that tokens in the same group (size 8) will have the
same embedding z0,i = e(i mod 32), but different timestamps (tl0, . . . , t

l
7 in Fig 1). We believe this

is a reasonable inductive-bias to architecturally enforce since, intuitively, we want all sets of latent
tokens that share a timestamp to query the spike tokens in the exact same manner, just with a different
timestamps. These tokens will evolve independently once the information is pulled from the input
space (after the first cross-attention).

A.4 Training details

The model is trained using the LAMB optimizer [28] with weight decay. The learning rate is held
constant, then decayed towards the end of training (last 25% of epochs), using a cosine decay schedule.
Single-session models are trained on a single GPU with a batch size of 128 while large models are
trained with 8 GPUs with a total batch size of 1400. Note that we didn’t see any benefits in increasing
the batch size when training single-session models.
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A.4.1 Compute

The large models are trained on a machine with an AMD EPYC 7452 32-Core Processor and 8 Nvidia
A40 GPUs (48Gb memory), POYO-mp was trained for 2 days, and POYO-1 was trained for 5 days
(both for a total of 400 epochs). Single-session models are trained with a single Nvidia GeForce RTX
3090 GPU, and take less than an hour to train. Finetuning models is also done with a single GPU.
Unit identification converges very quickly and takes less than a minute on a single GPU or a few
minutes on the CPU.

A.4.2 Data augmentation

Previous work [48, 49] explores the use of augmentations when training neural population models.
In our experiments, we use the unit dropout augmentation which randomly samples a subset of the
population. We set a minimum population size of 30 for this augmentation to ensure that it is not too
destructive (note that our model is still trained with any number of units, this limit is only imposed
for the augmentation). We did not explore the use of other augmentations, but believe it could be a
promising direction to further improve the capabilities of the model.

A.4.3 Loss

We train our model using a mean-squared error loss over the hand velocity sequence. We normalize
the velocity data using z-scoring at the lab level, this means that all velocity data in datasets from the
same lab is rescaled using the same scalar.
Dealing with variable sampling rate. When training on mixtures of datasets from multiple labs,
any given batch will contain behavior sequences that have different sampling rates. In a window of
1s, some sequence will have more timepoints over which we will evaluate the MSE compared to other
sequences. To avoid the over-representation of samples that simply have a high sampling rate, we
evaluate the error on a randomly sampled 100 timepoints (these points are randomly sampled at each
pass).
Weight in training mix. While behavior during random target tasks can be more complex and noisy,
behavior during center-out reaching tasks is more structured, the monkey usually gets a preparation
phase, where the movement can be planned [20]. The latter task has been studied extensively for
that reason. Knowing that neural activity is very salient during center-out reaching, we increase the
weight of the prediction loss during the reaching segments by a factor of 5. The idea of over-weighing
samples of "good quality" is not novel and is commonly used when training language models [15].

A.4.4 Load Balancing

We distribute our training over multiple GPUs. Note that, in our experiments, the input sequence
length (M ) can vary anywhere between 1k and 20k tokens. Because of the variability in the length of
the input sequences, we distribute sequences that have close length to same GPU node.

We now provide further details on our load balancing strategy:

• Each GPU node has a local batch size. A GPU that is assigned large sequences will have a
smaller local batch size than one that is assigned shorter sequences.

• We create a number of data buckets equal to the number of GPUs. Each bucket i is assigned
sequences that are of length M ∈ [M i

min,M
i
max], and a local batch size Bi.

• We select these parameters in such a way that we effectively utilize all available compute
capacity, and minimize the amount of padding used.

A.5 Evaluation Details

During training, we train on any 1s segment of the recording, but at evaluation we report the decoding
performance using the same evaluation strategy used in previous work [27, 10]: for center-out
reaching datasets, we report the decoding score during the reaching movement (only when the trial is
completed successfully), for random target datasets that are trialized (hold period followed by 3/4
random reaches), we report the decoding score during the reaching as well, and finally for all other
continuous random target datasets, we report the decoding score for all segments. Note that none of
the segments used for testing are seen during training.
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Figure 6: Diversity of neural recordings used to train POYO. We visualized the array locations for all
of the datasets used in our current study. POYO-mp is trained on recordings from PMD and M1 (CL,
CR, M, Ja) and POYO-1 is trained on recordings from (CL, CR, M, Ja, I, L, Mi) spanning PMD, M1,
and S1 across both hemispheres and in seven animals.

A.6 Fine-tuning Details

When finetuning the model, we perform gradual unfreezing of the weights. For the first few steps, we
optimize the unit embeddings and the session embedding only (unit identication) and then unfreeze the
rest of the weights. We use the LAMB optimizer with batch size 128, learning rate 10−4 and weight
decay 10−4. We use the exact same hyper parameters and finetuning process for all experiments we
report. This strongly suggests that our method is general, and easy to adapt to new data, without the
need for expert neural network training knowledge, or expensive hyperparameter search.

B Datasets

To train and evaluate our framework, we curated a large number of open and publicly available
datasets that represent a range of neural and behavioral recording platforms.

B.1 Datasets used for training

Datasets used to train POYO-mp. To build our first large-scale model (POYO-mp), we acquired 100
sessions of unique recordings from three non-human primates performing two different movement
tasks that were previously studied in four publications [21, 22, 20, 23]. We make these datasets
publicly available on the DANDI open repository [29]. In all of these datasets, a nonhuman primate
is seated in a primate chair and executes movements using a custom 2-D planar manipulandum to
control a cursor on a computer screen. They performed one of two tasks within a session.

• Center-out Task (CO): They performed a standard center-out reaching task involving eight
outer targets arranged around a circle with a radius of 8 cm. The monkeys were required to
move to the center target, wait for a variable hold period, and then move to one of the outer
targets upon receiving an auditory go cue. The task aimed to study neural activity during
movement planning, preparation, and execution.

• Random Target Task (RT): The setup is similar, the targets are not arranged around a circle
but are randomly placed. The monkeys were required to move between 4 targets upon
receiving an auditory go cue.

After extensive training, the monkeys were implanted with chronic multi-electrode arrays in the
primary motor cortex (M1) and the dorsal premotor cortex (PMd). Neural activity was recorded using
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a Blackrock Cerebus system, and the data was manually processed offline to identify single neurons.
To ensure only independent channels were included, steps were taken to identify and disable potential
candidates with high crosstalk and to exclude cells with a high percentage of coincident spikes.

Datasets used to train the multi-lab, multi-session model (POYO-1). When training POYO-1, we
acquire more data as shown in Table 1, adding all of the datasets outlined from Churchland et al.,
[24], Makin et al., [25], and Flint et al., [26]. We still hold out the 12 sessions from Monkey T, 2
sessions from Monkey C, and the two Neural Latents Benchmark (NLB) [27] datasets from training.

As depicted in Figure 5, instead of using a manipulandum like in the previous experiments, these new
datasets use a touch screen and have different sampling rates for their behavioral outputs. In addition,
in the Churchland, et al. datasets, they use threshold crossing based processing rather than applying
spike sorting to identify single units. We refer the reader to the listed publications for more details
about how these datasets were collected.

We would like to reiterate that there are major differences in the way the datasets were collected. Yet,
in spite of this variability, it is important that our method works without having to standardize the
datasets across sites further and apply specialized techniques to one dataset but not other. Thus we
did not attempt to homogenize or standardize the data. The only processing that we perform is on
the behavior to clip outliers in the behavior based upon times of high acceleration. We use a simple
threshold heuristic to avoid training on periods with extremely high acceleration.

This means that:

1. We do not filter units based on a presence ratio, or reject multi-units.

2. We do not re-apply the same spike sorting algorithm on all datasets, and use the data as is. In
[24], the spiking events obtained through threshold crossings (i.e. all units are multi-units),
and in [25], we have both threshold crossing units and spike sorted isolated single units, and
we use both. Each algorithm used in each lab was tuned differently, but we consider this a
good example of diversity that a general model needs to deal with.

3. We do not resample or process the velocity timeseries.

Minimizing the amount of processing needed to integrate new datasets into our model is key for more
easily scaling to more datasets, and also providing an accessible model that the community at large
can use out of the box, without having to adapt to a specific standard.

B.2 Datasets for evaluation and fine-tuning

In addition to holding out 20% of the data from each session, we hold out all sessions from Monkey
T (6 CO, 6 RT). We also use two datasets from the Neural Latents Benchmark [27], MC-Maze and
RTT. The Maze dataset consists of recordings from primary motor and dorsal premotor cortices of a
monkey performing reaches with instructed delays to visually presented targets while avoiding the
boundaries of a virtual maze. This dataset offers a variety of behavioral configurations, with each
configuration using a different combination of target position, number of virtual barriers, and barrier
positions, resulting in a variety of straight and curved reach trajectories. With thousands of trials,
the Maze dataset allows for a rich investigation into the structure of population activity, while its
instructed delay paradigm enables a clear separation of neural processes related to preparation and
execution. On the other hand, the RTT dataset introduces different modeling challenges, as it contains
continuous, point-to-point reaches that start and end in various locations, have highly variable lengths,
and few repetitions. We report the performance of our models on the same segments of data used to
evaluate models in the NLB benchmark.

C Additional Results

C.1 Comparison with single-session baselines

In our comparisons in Table 2, we compared POYO against existing baseline models that are commonly
used for neural decoding [30]. In particular, we applied a Wiener Filter (WF), Feed Forward Network
(MLP), and a Gated Recurrent Unit (GRU). These models predict the behavior at each timestamp
t given a history window of neural activity [t− T, t]. For the NLB datasets, we also compare with
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Auto-LFADS [31], an unsupervised approach that can be used to obtain single trial smoothed rate
estimates for a population of neurons before applying a linear layer on top of the inferred rates to
obtain an estimate of the behavior. While this model isn’t designed for decoding per se, it is frequently
used for denoising for BMI decoding applications.

For the NLB, we use a 5 ms binning of the neural activity for training models and for evaluation
of the behavioral output as this is the finest resolution used in the benchmark. For the rest of the
MP datasets, we use a 10 ms binning rate for the neural data and behavior as this corresponds to the
behavior sampling rate for these datasets.

The hyperparameters we used for training our single-session POYO model can be found in Table 4.

Hyperparameter Value
Embedding Dimension 128

Head Dimension 64
Number of Latents 128

Depth 6
Number of Heads 8

FFN Dropout 0.3
Linear Dropout 0.3

Attention Dropout 0.3
Weight Decay 1e-4
Learning Rate 4e-3

Batch Size 128

Table 4: Hyperparameters used for training all POYO single-session models

C.2 Robustness of Unit-identification

Unit-identification, introduced in Section 2.5, can be seen as an approach for identifying units from a
new dataset. To evaluate the robustness of this process, we ran unit-identification on a session that
was already seen during pre-training. We test whether finetuning on this “new” set of units, will map
them close to their true embedding (found during pre-training). We use our largest model, POYO-1 ,
start with randomly initialized unit embeddings and run unit-identification.

We perform this experiment on two different animals. In Figure 7, we show the evolution of unit-
embeddings during training. To compare the newly calibrated set of units with its pre-trained version,
we normalize the unit-embeddings and report the cosine similarity averaged over the set of units.
Note that normalization is done because POYO’s first cross-attention layer applies layer norm to these
embeddings. We also report the “unit identification accuracy” which we define as the ratio of tuned
unit embeddings that have their true unit embedding as their nearest neighbor. Results for these
experiments are present in Table 5.

Dataset Num of Units Unit-Id Accuracy Unit-Id Cosine-Similarity
Monkey C, CO, 2013/10/03 73 1.000 0.845
Monkey M, CO, 2014/02/03 116 0.966 0.802

Table 5: Unit re-identification results. Cosine-similarity measure is averaged over all units in a dataset. Accuracy
is measured for 1-nearest-neighbor classifier.

Overall, this analysis suggests that the unit-identification approach is robust and reliable for identifying
units. We believe that understanding the functional similarities of units that are mapped close to each
other in the unit embedding space will be an interesting avenue for future work.

C.3 Hyperparameter sensitivity

When initially training the single-session models, we selected a subset of datasets (out of the 100
sessions) and performed a random hyperparameter search and selected the set of hyperparameters
with the best performance on the validation set. These experiments quickly revealed that the model
was very stable to a wide range of hyperparameters. In Figure 8, we report some examples of this for
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Figure 7: Evolution of the unit embeddings with unit-identification on sessions from two different
animals. From left to right, the finetuned embeddings (orange) are visualized at 10, 100, and 400
epochs, relative to their true embedding in the pre-trained model (blue).

two sessions. We perform 300 runs for each session, then report the average performance for each
hyperparameter.

Given these findings, we selected the best set of hyperparameters for the subset and used the same
parameters when training all of the 100 single-session models that we study in Figure 2.

Figure 8: Single-session model performance for a wide range of values for different hyperparameters.
The R2 score is reported on the validation sets for both datasets.

20


	Introduction
	Approach
	Tokenizing neural population activity
	Building the latent space
	Encoding relative timing information
	Querying the latent space
	Unit identification in new sessions

	Experiments
	Datasets and experiment setup
	Testing the model on single sessions
	POYO-mp: Building a large pretrained across-animal, multi-session model
	Transferring to new sessions
	POYO-1: A multi-lab, multi-task model for neural decoding

	Related Work
	Discussion
	Additional Model Details
	Rotary position encoding
	Time-based context window
	Further details on tokenization
	Training details
	Compute
	Data augmentation
	Loss
	Load Balancing

	Evaluation Details
	Fine-tuning Details

	Datasets
	Datasets used for training
	Datasets for evaluation and fine-tuning

	Additional Results
	Comparison with single-session baselines
	Robustness of Unit-identification
	Hyperparameter sensitivity


