
A Exponential Convergence

The exponential convergence can be proved for the two methods: expansion and sparse expansion.
We first prove it for the expansion on sequential models, then generalize the result to more diverse
architectures. Before detailing the proof of lemma A.1, we empirically motivate the assumption of
symmetry over the weight values distribution. In Figure 4, we plot the distributions of the weights
of several layers of a ResNet 50 trained on ImageNet. The assumption is often satisfied in practice.
Furthermore, in any instances where it would not be satisfied, it can be enforced using asymmetric
quantization.
Lemma A.1. Let f be a layer with weights W 2 Rn

with a symmetric distribution. We denote R
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where w and w
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denote the elements of W and W
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and (sR(k))i denotes the row-wise rescaling

factor at order k corresponding to w, as defined in equation 1.
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Proof. Assume K = 1, then W
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where sR(2) is the rescaling factor in the second order residual R2 computed from w � w
(1). The

quantized weights are thus given by: �����w �
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Because the weight distribution is symmetric we know that for any k, sR(K) =
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k=1 w(k)}

2b�1�1

or any other definition of the delta in the full-precision space. Also, by definition we have max{w �PK�1
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We conclude by using a trivial induction proof.

As an immediate consequence we have the following corollary which justifies the expansion appella-
tion:
Corollary A.2. Let f be a layer of real-valued weights W with a symmetric distribution and R

(k)

the k
th

quantized weight from the corresponding residual error. Then,
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and f =
P1

k=1 f
(k)

.

The first inequality results from detailing the induction in the previous proof. Instead of an upper
bound on the error over all the scalar values we consider each error and show using the same properties
that they go down after each step. f =

P1
k=1 f

(k) is a direct consequence of equation 8.
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Figure 4: Distribution of the scalar weight values of different layers of a ResNet 50 trained on ImageNet. We
observe that every distribution is symmetric around 0.

Sparse Expansion Let N (k)
i denotes the L1 norm of an output channel i of the k-th order residue

R
(k). The sparse residue is defined as:⇣

R
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where · is the element-wise multiplication, (k)
� = {N(k)

i �⌧ (k)
� } and ⌧

(k)
� is a threshold defined as the

� percentile of N (k). In other words, we remove a proportion � of channels from residue R
(k) that

are the least important, as indicated by their norm N
(k). Note however that these pruned channels can

be encoded in subsequent residuals, i.e. R
(k0), with k

0
> k. The result from Lemma A.1 becomes:

Lemma A.3. Let f be a layer of real-valued weights W with a symmetric distribution. Then we have�����w �
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where kk1 is the infinite norm operator with the convention that k0k1 = 1 and (sR(k))i denotes the

row-wise rescaling factor at order K corresponding to w.

Proof. From equation 8, we have:�����w �
 

K�1X

k=1

w
(k) +Q

�1
⇣
R

(K)
1

⌘!����� 
(sR(K))i

2

✓
1

2b�1 � 1

◆K

(16)

which corresponds to the case where �
l = 1. If �l

< 1, we have two possibilities for w. First, the
coordinate in N

(K) associated to is greater than ⌧
(K)
�l then we fall in the case where R

(K)
� = R

(K)

and as such we have the result from equation 8 which is stronger than equation 15. Second, the
coordinate in N

(K) associated to is lower than ⌧
(K)
�l . Then we have that the difference between

the baseline weight w and the slim expansion is bounded by the expansion of lower order and the
maximum of the norm N

(K) which leads to the result in equation 15.

Empirical validation: In lemma A.1 and A.3 we stated the exponential convergence to 0 of the
approximation error on the weight values. In order to empirically confirm this theoretical result, we
quantize a ResNet 50 trained on ImageNet in ternary values for different orders K. As can be seen in
Figure 5, the average error per layer, exponentially converges to 0 which matches our expectations.
The figure also confirms the empirical result on the strategies for �. The higher errors are located on
the last layers, thus these layers require more attention.
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Figure 5: Comparison of the average norm of the quantization error for each layers of a ResNet 50 trained on
ImageNet. We observe the exponential convergence stated in lemma A.1 and A.3.

B Upper Bound Error

Theorem B.1. Let F be a trained L layers sequential DNN. We note �l the largest singular value of
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where u
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2 from equation 8.

Proof. Let’s consider L = 2, and F : X 7! B�(Ax). For any X in the domain of F such that
kXk = 1, we have

kF (X)k2  �B + �A + �B�A (18)
where �B is the largest singular value of B and �A is the largest singular value of A. Following the
definition of the 2-norm and 1-norm, we get that
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Sparse Expansion
Theorem B.2. Let F be a trained L layers sequential DNN. We note �l the largest singular value of
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where u
(K)
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kN(K)· (K)
� k1(sR(k))i

(2b�1�1)K2
from equation 15.

This results is directly derived from Theorem B.1. This result can be extended to more sophisticated
architectures. To do so we simply need to address specific attributes such as skip connections,
concatenations and other activation functions.
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Skip Connections and Concatenations In the case of skip connections, the graph is split from a
starting layer l1 and split in at least two branches that are added after layer l2 and l3. Assuming we
can compute the upper bound for each branch (sub-networks) we simply add these sub-errors. In the
case of U-nets, where skip connections contain skip connections, we simply perform this process
recursively.

A similar approach can be applied to address concatenations. However in this case we keep the
largest value instead of adding them.

Self-Attention and Cross-Attention blocks In order to generalize to attention modules, we need
to generalize our formula to a product of layers. Let’s consider the weight tensors of the keys Wkeys
and queries Wqueries. Then the attention scores are computed as follows

Att(X) = (Wkeys ⇥X)T ⇥ (Wqueries ⇥X) (22)

We want to bound the quantization error on the attention mechanism. However, the process involves
the magnitude of the inputs X as we highlight
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If we note �k and �q the spectral norms of the residual errors of the keys and queries respectively,
then we can simplify the previous formulation

ErrorAtt(X) =
���(�k ⇥X)T (Wqueries ⇥X) + (Wkeys ⇥X)T (�q ⇥X) + (�k ⇥X)T (�q ⇥X)

���
(24)

In order to measure this influence on the softmax in the worst case scenario, we can simply compare
the �k and �q to the smallest singular values of Wqueries and Wkeys. If we note ↵k and ↵q the largest
singular values of Wkeys and Wqueries respectively, then we get

ErrorAtt(X)
���
kXk1

 �k↵q + �q↵k + �k�q (25)

If we note ✏ = �k↵q + �q↵k + �k�q this upper bound, then the error on the softmax scores becomes

ErrorSoftmax(X)
���
kXk1

 1� e
�2✏ (26)

Other Activation Functions Although ReLU activations are predominant in modern DNNs, there
are still many other widely used activation functions such as SiLU, GeLU or even sigmoid. SiLU
and GeLU are bounded by the ReLU on the positive side which is where the highest errors occur.
Consequently, the upperbound is invariant to GeLU and SiLU activation functions (although under
more assumptions on the support, the upper bound could be tightened for ReLU and should be
modified for GeLU and SiLU). On the other hand, for sigmoid activations or similar activations (e.g.
tanh), the upper bound becomes an upper bound on X in the domain of F instead of X on the unit
circle.

C Sparse Expansion Outperforms Standard Expansion

Lemma C.1. Let f be a layer of real-valued weights W with a symmetric distribution. Then, for

K
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where Err is the quantization error (i.e. the absolute difference between the quantized and original

weights, as in Equation 8) and K
0 ⇥ �1 = K ⇥ �2 = �.

Proof. Let’s assume the layers outputs two channels. Then, we have �1 = 1 and �2 = 0.5. We
simply need to prove the result for k1 = 2 and k2 = 1 as the result will extend naturally from this
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case. The idea of the proof consists in showing that using lower � values enables more possibilities
of expansions which may lead to better performance. Let’s note (W )1 and (W )2 the weights
corresponding to the computation of the first and second output channels respectively. Using �1 = 1,
the second order expansion correspond to either quantizing (W )1 or (W )2. Assume (W )1 is
chosen for R(2)

�1 . Then, R(3)
�1 will either quantize the error from (W )2 or further quantizes the error

from R
(2)
�1 . In the first case we end up with R

(1) +
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D Implementation Details and Datasets

We validate the proposed method on three challenging computer vision tasks which are commonly
used for comparison of quantization methods. First, we evaluate on ImageNet [33] (⇡ 1.2M images
train/50k test) classification. Second, we report results on object detection on Pascal VOC 2012 [34]
(⇡ 17k images in the test set). Third, we benchmark on image segmentation on CityScapes dataset
[35] (500 validation images). Our NLP results were obtained on the transfer learning task GLUE [36].
We also evaluate the OPT-13B [42] LLM on the standard common sense reasoning datasets: BoolQ
[48], PIQA [49], HellaSwag [50], WinoGrande [51], ARC easy and challenge [52] and OpenBookQA
[53]. In our experiments we used MobileNets [54] and ResNets [1] on ImageNet. For Pascal VOC
object detection we employed an SSD [2] architecture with MobileNet backbone. On CityScapes we
used DeepLab V3+ [55] with MobileNet backbone. We also test our method on VGG 16 [45] and
transformers such as BERT model [4] as well as large language models such as OPT-13B [42].

In our experiments, the inputs and activations are quantized using the same method as [14]. We count
the bit-wise operations as follows: let W be the real-valued weights of a d⇥ d convolutional layer
on input feature maps of shape D ⇥ D ⇥ ni and no outputs and stride s. Then the convolutional
product requires d2D2

s2 nino floating point multiplications. The quantized layer requires two rescaling
operations (for the quantization of the inputs and the Q

�1 operation) and an int-b convolution, i.e.
niD

2 + D2

s2 no floating point multiplications and d
2D2

s2 nino int-b multiplications. Note that the
number of additions remains unchanged. According to [56] the lowest complexity for b-digits scalar
multiplication is o(b log(b)) bit operations. This is theoretically achieved using Harvey-Hoeven
algorithm (also the asymptomatic bound has yet to be proved). We use this value as it is the least
favorable setup for the proposed method. As a consequence the number Ooriginal bit operations
required for the original layer, OR(1) the number of bit operations for the naively quantized layer and
OR(k) for the ith order residual quantization expansion are

8
>><

>>:

Ooriginal = D
2 d2nino

s2 32 log(32)

OR(1) = D
2
h
(ni +

no
s2 )32 log(32) +

d2nino
s2 b log(b)

i

OR(k�1) = D
2
h
(ni +

no
s2 )32 log(32) + k

d2nino
s2 b log(b)

i (28)

Using this result we can estimate the maximum order of expansion before which the number of
operations in f

(k) exceeds the Obaseline. Note that in the case of fully-connected layers, D = 1,
s = 1 and d = 1. In the following section, we use the induced metric of accuracy with respect
to the total number of bit-wise operations performed by the DNN on a single input. This metric
doesn’t consider the fact that the added operations can be performed in parallel. For SQuant [19],
we use our own implementation which achieve different accuracy results due to different initial
accuracies for baseline models. As for ZeroQ [17], we use results provided by SQuant [19]. Similarly
to prior work [15, 14, 19], we denote W·/A· the quantization setup (number of bits for weight
quantization and number of bit for activation quantization). We used Tensorflow implementations of
the baseline models from the official repository when possible or other publicly available resources
when necessary. MobileNets and ResNets for ImageNet come from tensorflow models zoo. In object
detection, we tested he SSD model with a MobileNet backbone from Manish’s git repository. Finally,
in image semantic segmentation, the DeepLab V3+ model came from Bonlime’s git repository. The
networks pre-trained weights provide standard baseline accuracies on each tasks. The computations
of the residues as well as the work performed on the weights were done using the Numpy python’s
library.
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Table 6: Overhead induced by the sum reduction in full integer implementation of REx. In this table R means
one full residue without sparsity.

model W4+25%/A4 W4+50%/A4 W4+100%/A4 W4+1R/A4 W4+2R/A4
ResNet 0.035% 0.070% 0.138% 0.415% 0.830%
MobileNet v2 0.016% 0.032% 0.063% 0.189% 0.378%
BERT 0.004% 0.009% 0.018% 0.054% 0.107%

Table 7: Overhead induced by the sum reduction in full integer implementation of REx. In this table we study a
1 by 1 convolution on inputs of shape 224 ⇥ 224 ⇥ 320 and output of 1280 channels as well as a depthwise
convolutions on inputs of shape 224⇥ 224⇥ 96.

Filter expansion order full runtime (ops) overhead (ops) relative cost
Conv 1x1 2 2.0⇥ 107 6.2⇥ 104 0.15
Conv 1x1 3 4.0⇥ 107 6.1⇥ 104 0.10
Conv 1x1 4 6.0⇥ 107 6.2⇥ 104 0.08
Depthwise Conv 3x3 2 2.7⇥ 105 3.0⇥ 104 5.49
Depthwise Conv 3x3 3 5.4⇥ 105 3.0⇥ 104 3.38
Depthwise Conv 3x3 4 8.7⇥ 105 2.9⇥ 104 2.43

E Expansion Reduction in the Accumulator

Let’s go though the detailed procedure we applied in order to go from the simulated quantization
with floating point scaling factors to integer only inference. We rely on the procedure introduced
in [1]. First, let’s consider the quantization of a single tensor A. Quantization is simulated using
A ⇡ sA ⇥ bA/s(A)e = sA ⇥ A

Q In the present situation, AQ is quantized and actually fits on
the target bit-width while sA is stored as a floating point value. In order to achieve integer-only
inference, we need to convert the multiplication by sA to an integer multiplication. From [1], we
rely on equation (6) and, using similar notations, we get sA ⇥ A

Q ⇡ MA ⇥ 2�n ⇥ A
Q. All these

operations are integer-only operations. However, in practice, these operations may add errors on
top of the quantization scheme itself. To measure this error, we conducted our own experiment
and observed that the extra error does not change the quantized output of the layer; this is due to
the fact that the term MA has at least 30 bits of precision while A

Q has 1, 4 or 8 bits of precision
(depending on the quantization bit-width). This difference in precision comes from the use of a larger
accumulator which is standard in quantized inference.

Now that we detailed how to quantize, we detail how to add two distinct tensors A and B (which will
be of special importance to add the residues, as you pointed out). In the simulated quantization, we
would get A+B ⇡ sA ⇥ bA/s(A)e+ sB ⇥ bB/s(B)e = sA ⇥A

Q + sB ⇥B
Q. Now, by applying

the same technique as above, we get sA⇥A
Q+sB ⇥B

Q ⇡ MA⇥2�n⇥A
Q+MB/A⇥2�n⇥B

Q,
where MB/A is the integer closest to MB/MA encoded with 30 bits of precision. This was discussed
in Appendix A.2 in [1]. The authors state that this operation is costly as it requires to perform the
integer multiplication prior to the addition. This is a result of the fact that we need to go from the
accumulator down to the quantized bit-width and then back up to the accumulator size.

In our pipeline, we limit this cost by using a fused operation in order to introduce low overhead
as compared to simply using a larger kernel size. Formally, we used the above mentioned formula
directly on the multiplication result. In other words, we get the following formula for A and its
quantized residue RA in the case of quantization using b bits: sA ⇥ A

Q + sRA ⇥ RA ⇡ 2�n ⇥
(MA ⇥A

Q +MRA ⇥ 2�b ⇥RA). Consequently, the overhead from residual summation is limited
to a bit-shift on the residue during reduction of the accumulator. In Table 6, we report the relative
overhead introduced by this extra bit-shift in the residual summation scheme with respect to the total
inference cost. For instance, we list in Table 7 some results with Gap9 hardware: we compare the
overhead of computing several convolutional layers with the cost of the reduction of the residuals.
On convolutions, as expected the cost are completely negligible. Due to the parallelization abilities
of the hardware, as the expansion order increases, the overhead decreases. Furthermore, it should be
noted that depthwise convolutional layers are not well supported by most hardware to this day, hence
the less impressive results but similar absolute overhead cost.
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Table 8: Latency impact of a 50% structured sparsity overhead.
method CPU GPU accuracy

original model | 7.108 | 0.861 | 76.15
DFQ W6/A6 3.039 0.606 71.36

REx 150% W4/A6 3.059 (+0.658%) 0.564 (�6.930%) 76.01

Table 9: Latency impact of a 1% sparse overhead.
method CPU

original layer 0.104799
DFQ W4/A16 0.055230

REx W4/A16 + 1% A1/A16 0.055376 (+0.2643%)

F Latency Evaluation

Latency with structured sparse expansions 50% structured sparsity is leveraged by all hardware
devices. Thus, we could conduct our experiments on multiple hardware devices. We considered a
CPU (intel xeon) and a GPU (A100) for their difference in bit-width support. The latency is reported
as the average over 1000 runs in milliseconds. We decide to compare to DFQ as it is the method that
offers the lowest latency due to its use of per-tensor uniform quantization. Our results are listed in
Table 8 (for a ResNet-50).

We can observe that although the bops are equivalent REx offers a lower latency than DFQ on GPU
by 6.930%. This result can be explained by the fact that in the GPU do provide support in int4 and
int8. On the other hand on the CPU, we can clearly see the lack of support for this bit-width which
leads to the measurement of the expansion overhead only and an overhead of 0.658%. Still this
overhead is fairly limited due to the good parallelization capabilities of the hardware. If measured the
throughput instead, the lack of support for the int4 format would hinder the performance of REx on
CPU.

Overall, if the hardware supports multiple quantization format, then REx offers the highest accuracy
at the lowest inference latency which supports our initial claim that REx offers better trade-offs in
terms of accuracy v.s. speed.

Latency with unstructured sparse expansions Regarding unstructured sparsity efficiency, we
only considered the CPU benchmark as it is the only support for such inference format. For our own
sake, we measured the latency of a single fully-connected layer from the MLP block of the OPT-13B
model, on which we conducted our initial experiments. Similarly to the previous test, we measure
1000 runs using a naive implementation based on scipy and report the average latency in Table 9.

Our results highlight the marginal overhead of 0.2643% introduced by the sparse binary expansion
on fully-connected layers.

All in all, we believe that these results (Table 1 and 2 in this response for latency, as well as e.g. Table
3 in the paper for accuracy on OPT-13B), and the fact that REx significantly improve the accuracy
(and outlier handling in LLMs) of existing quantization methods at the price of, in the worst case
scenario (when the considered bit-width is not supported), very little latency overhead, and with
adequate hardware support, significant speed boost. This further shows the interest of the proposed
method.
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