
REx: Data-Free Residual Quantization Error
Expansion

Edouard Yvinec1,2 , Arnaud Dapogny2 , Matthieu Cord1 , Kevin Bailly1,2
Sorbonne Université1, CNRS, ISIR, f-75005, 4 Place Jussieu 75005 Paris, France

Datakalab2, 114 boulevard Malesherbes, 75017 Paris, France
ey@datakalab.com

Abstract

Deep neural networks (DNNs) are ubiquitous in computer vision and natural
language processing, but suffer from high inference cost. This problem can be
addressed by quantization, which consists in converting floating point operations
into a lower bit-width format. With the growing concerns on privacy rights, we
focus our efforts on data-free methods. However, such techniques suffer from their
lack of adaptability to the target devices, as a hardware typically only supports
specific bit widths. Thus, to adapt to a variety of devices, a quantization method
shall be flexible enough to find good accuracy v.s. speed trade-offs for every
bit width and target device. To achieve this, we propose REx, a quantization
method that leverages residual error expansion, along with group sparsity. We show
experimentally that REx enables better trade-offs (in terms of accuracy given any
target bit-width) on both convnets and transformers for computer vision, as well as
NLP models. In particular, when applied to large language models, we show that
REx elegantly solves the outlier problem that hinders state-of-the-art quantization
methods. In addition, REx is backed off by strong theoretical guarantees on the
preservation of the predictive function of the original model. Lastly, we show that
REx is agnostic to the quantization operator and can be used in combination with
previous quantization work.

1 Introduction

Deep neural networks (DNNs) achieve outstanding performance on several challenging computer
vision tasks such as image classification [1], object detection [2] and semantic segmentation [3]
as well as natural language processing benchmarks such as text classification [4]. However, their
accuracy comes at a high computational inference cost which limits their deployment, moreso on edge
devices when real-time treatment as well as energy consumption are a concern. This problem can be
tackled via DNN quantization, i.e. by reducing the bit-width representation of the computations from
floating point operations (FP) to e.g. int8 (8-bits integer representation), int4, int3 or even lower-bit
representation such as ternary (where weights values are either �1, 0 or +1) quantization. Because
DNN inference principally relies on matrix multiplication, such quantization dramatically diminishes
the number of bit-wise operations (as defined by [5]), thus limiting the DNN latency and energy
consumption. However, DNN quantization usually comes at the expense of the network accuracy. As
a consequence, DNN quantization is an active field of research [6, 7, 8, 9, 10, 11, 12, 13] that aims at
limiting this accuracy drop while reducing the number of bit-wise operations.

All the aforementioned methods are data-driven as they either involve training a network from scratch
or fine-tune an already trained and quantized one. However, while such approaches usually allow
lower quantization errors using low bit-wise representations, due to the growing concerns on privacy
rights and data privacy, there is an ever-increasing number of real-case scenarios (e.g. health and

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

military services) where data may not be available for quantization purpose. Furthermore, the bloom
of large langage models (LLMs) that are very expensive to train further motivates the use of post-hoc

data-free quantization methods. Motivated by these observations, several data-free quantization
algorithms were published in recent years [14, 15, 16, 17, 18, 19], which focus on the quantization
operator, i.e. the transformation which maps the floating point weights to their low-bit, fixed point,
values. However, these approaches still struggle to offer an interesting alternative to data-driven
techniques in terms of accuracy.

Furthermore, when considering a specific target device for deployment, traditional quantization
methods, usually focusing on the quantization operator, offer limited options: given a supported bit
width (given by the device, as most hardware usually support only a few representation formats [20])
they either achieve satisfactory accuracy or not. To address this concern, we wish to design a flexible
quantization method, i.e. one that can provide several accuracy vs. speed trade-off points for each
bit width. Drawing inspiration from wavelets-based methods for image compression [21, 22], we
tackle this limitation by considering the successive residual quantization errors between the quantized
and original model. Increasing the number of residuals in the expansion (i.e. the expansion order)
increases the fidelity to the original, non-quantized model at the expense of additional computations.
In addition, we propose a group-sparse expansion which allows us to maintain the accuracy using
significantly less bit operations. Hence, given a target device, our approach allows finding the best
accuracy vs. speed trade-off. Our contributions are thus four-fold:

• REx, a data-free quantization method that is both efficient and flexible. REx lever-
ages residual quantization, along with group-sparsity, to enable finding suitable trade-offs
depending on a target bit-width.

• Theoretical guarantees on both the exponential convergence of the quantized model
towards the full-precision model and the maximum error with respect to the predictive
function. This is of paramount importance in a data-free context, where we cannot easily
measure the accuracy degradation.

• Extensive empirical validation we show through a thorough empirical validation that, as
a standalone method, REx significantly outperforms every state-of-the-art data-free quan-
tization technique, allowing to find better trade-offs on a variety of benchmarks involving
ConvNet for classification, object detection or semantic segmentation as well as transformers
on GLUE text classification.

• A ready-to-use solution that uses a single binary residual to handle outliers within the
weight distributions, which is a well-known pitfall when attempting to quantize LLMs.

2 Related Work

2.1 Quantization

In this section, we review existing methods for DNN quantization, with an emphasis on approaches
geared towards run-time acceleration. The vast majority of DNN quantization techniques rely on data
usage (Quantization Aware Training). Furthermore, methods such as [7, 8, 9, 10, 11, 23, 24] rely on
variants of straight through estimation to alleviate the rounding operation gradients. Among these
methods, [25] bears the most resemblance with the proposed REx method. It minimizes the residual
error during training, using weight decay over the residue. The similarity with REx comes from the
use of a second order expansion of the quantization errors. However, it discards the quantization error
after training while we propose to keep the extra operations in order to ensure a high fidelity to the
provided pre-trained model.

2.2 Data-Free Quantization

Nagel et al. [14] discuss the necessity to have data available so as to successfully design a quantization
pipeline. They proposed a method that consists in balancing the weight ranges over the different
layers of a model, using scale invariance properties that are specific to piece-wise affine (e.g. ReLU)
activation functions, and relying on a traditional, naive quantization operator [5]. In the current state
of data-free quantization research, we see two major trends: methods that focus on the rounding
operator itself [19, 26] and methods that generate synthetic data [27, 12, 13]. With REx, we aim

2

F
(4)(x)

(a) residual expansion

x

R
(k=1)

R
(k=2)

R
(k=3)

R
(k=4)

R
(k=1)

R
(k=2)

R
(k=3)

R
(k=4)

F
(4)(x)

x

Rγ=0.5
(k=1)

Rγ=0.5
(k=2)

Rγ=0.5
(k=3)

Rγ=0.5
(k=4)

R
(k=1)

Rγ=0.5
(k=2)

Rγ=0.5
(k=3)

Rγ=0.5
(k=4)

~
F

(4)(x)

x

Rγ=0.5
(k=1)

Rγ=0.5
(k=2)

Rγ=0.5
(k=3)

Rγ=0.5
(k=4)

R
(k=1)

Rγ=0.5
(k=2)

Rγ=0.5
(k=3)

Rγ=0.5
(k=4)

(b) group-sparse expansion (c) ensemble expansion

Figure 1: Illustration of the proposed method for a two-layers neural network. (a) residual expansion at order 4:
the intensity of the colormap indicates the magnitude of the residual error. (b) group-sparse expansion for orders
k � 1 (� = 50% sparsity).

at enabling hardware flexibility for these methods by allowing to find better trade-offs in terms of
accuracy and compression rate given a fixed bit-width.

2.3 Flexibility in Quantization

In practice, the existing data-free quantization methods only offer a single possible quantized model
given a supported bit-width. Nevertheless, most hardwares do not support a wide range of bit-width.
For instance, Turing [28] and Untether [29] architectures support int4 and int8 quantization while the
Nvidia A100 [20] supports int8, int4 and binary (int1) quantization. Conversely, REx circumvents
this limitation by offering several trade-offs given a bit-width representation.

3 Methodology

Let’s consider F , a trained network with L layers and trained weights Wl. Given a target integer
representation in b bits, e.g. int8 or int4, we consider a quantization operator Q. Formally, Q maps
[min{Wl}; max{Wl}] ⇢ R to the quantized interval [�2b�1; 2b�1�1]\Z. The most straightforward
way to do so is to apply a scaling sWl and round b·e the scaled tensor, i.e.:

Q(Wl) =

�
Wl

sWl

⇡
(1)

With sWl the quantization scale for Wl computed as in [5], without loss of generality. Following the
standard formulation [30], a quantization operator Q, comes with a de-quantization operator Q�1. For
the simple quantization operator Q in Equation (1), a natural choice is Q�1(Q(Wl)) = sWl⇥Q(Wl).
Note that, despite the notation, Q�1 is not a true inverse , as by definition of the quantized space, there
is some loss of information. This loss, called the quantization error, is defined as: Wl�Q

�1(Q(Wl)).
In data-free quantization, we want to minimize this error in order to achieve the highest possible
fidelity to the original model. In the following section, we describe how we can efficiently reduce the
quantization error for a fixed target bit-width b.

3.1 Residual Expansion

We propose to quantize the residual errors introduced by the quantization process. Although the
proposed method can be applied to any tensor, let’s consider a weight tensor W . In the full-precision
space (R), its first approximation is R1 = Q

�1(Q(W)). To reduce the quantization error, we define
R

2 as the quantized residual error

R
2 = Q

�1
�
Q
�
W �R

1
��

(2)

Consequently, during the quantized inference, we compute R
1
X + R

2
X ⇡ WX which provides

a finer approximation than the simple evaluation R
1
X . The process can be generalized to any

3

expansion order K, leading to the following:

R
K = Q

�1

Q

W �

K�1X

k=1

R
k

!!
(3)

The resulting expanded layer is illustrated in Figure 1 (a) in the case K = 4. Intuitively, an expansion
(R1

, ..., R
K) provides the approximation

PK
k=1 R

k of W and this approximation converges exponen-
tially fast to the original full-precision weights with respect to K. As the support of the quantization
error space is smaller than one quantization step, the error decreases by a factor larger than 2b with
each expansion term (more details in Appendix A). Furthermore, as the quantization error decreases,
it is expected that the prediction of the quantized model would achieve a closer match to the original
one. This is especially important in the context of data-free quantization as not only do we not have
the option to perform fine-tuning to recover accuracy, but also we cannot evaluate the degradation
of the model on a calibration/validation set. Nonetheless, we can estimate an upper bound on the
maximum error ✏max introduced by quantization on the predictions as

✏max U =
LY

l=1

lX

i=1

✓
1

2b�1 � 1

◆K�1
sRi

2
+ 1

!
� 1 (4)

where sRi is the scaling factor from equation 1 applied to each residue. The detailed derivations are
provided in Appendix B. This implies that, in practice and regardless on the quantization operator, a
network can be quantized with high fidelity with only a few expansion orders to fit a given bit-width.
Furthermore, this process can also be applied to the activations.

3.2 Input Expansion

Quantizing the weights of a DNN with the aforementioned method already leads to significant
memory footprint reduction. However, to significantly decrease the inference runtime, the inputs and
activations of each layer also have to be quantized so that each the computations can be processed in
the quantized bit-width. For that matter, let I be the input tensor of a layer l. We define the expansion
of I in quantized residual errors similarly to the weights expansion. Using the generic quantization
operator Q, we get I(1) = Q(I) and define the K

th order of quantization as

I
(K) = Q

�1

Q

I �

K�1X

k=1

Q
�1(I(k))

!!
(5)

In order to efficiently exploit the resulting expansions, we propose to bound the accumulated order
of the weights and inputs. In other words, if we note k1 the expansion order of a residue from the
inputs and k2 a residue from the weights, then we only perform the computations for orders such that
k1 + k2 < K (the rest being negligible in comparison). As a result, the quantized layer l computes:

f : I 7!
k1+k2K+1X

k1,k22{1,...,K}2

I
(k1) ⌦R

(k2) (6)

where ⌦ is the base operation of the layer, e.g. a convolution for a convolutional layer or a matrix
multiplication for a fully-connected layer. Similarly to the weights, the error between the full-
precision inputs and the proposed expansion of the inputs converges exponentially fast to 0 with
respect to the order K of the expansion. However, with formulations from equations (3) and (5),
the overhead computations induced by the expansion is non-negligible. In the following section, we
provide a solution to tackle this issue.

3.3 Sparse Expansion

The residual expansion as defined in equation 3 is based upon the assumption that the quantization
error is equally important for every neuron. Thus, we propose to reduce the overhead cost by only
expanding the most important neurons. However, in data-free compression we do not have access
to activations or gradients: hence, we measure the relative importance of a neuron in a layer by the
norm of its weights [31]. The resulting expanded layer is illustrated in Figure 1 (b). Given a target

4

budget � (in %) of overhead computations, we only expand the �
K�1% most important neurons. The

sparse residue is defined as: ⇣
R

(k)
�

⌘

i
= (R(k))i · (k)

� (7)

where (k)
� indicates the indices of the most important neurons. Similarly to what precedes, each

expansion order is derived sequentially from previous orders and we can bound the quantization error
for the sparse expansion (see Appendix A). The method for computing the weights of the expanded
model is summarized in Algorithm 1.

Algorithm 1 Expansion Algorithm
Require: trained DNN f with L layers, hyper-parameters : K and �, operator Q

initialize �
l and initialize f

(K) as a clone of f with K per-layer kernels
for l 2 {1, . . . , L} do

W base kernel of layer l in f

Wacc 0 accumulated quantization error
for k 2 {1, . . . ,K} do

R
(k)
�l Q(W �Wacc)

(k)
� I equation 7

set kth kernel of layer l of f (K) with R
(k)
�l

Wacc Wacc +Q
�1(R(k)

�l)
end for

end for

Also note that in the sparse expansion, we allow higher expansion orders to re-consider neurons
that were previously considered unimportant. Consequently, on top of improving the exponential
convergence as well as lowering the upper bound on the maximum error with respect to the overhead
computations, this method systematically outperforms the standard residual expansion in practice.
Proof of this result can be found in Appendix C. The budget � of overhead computations can be set so
as not to introduce computational overhead, depending on the bit-width b. For example, let’s consider
a device supporting only 8 and 1 bit (binary) quantization. If we want to achieve the same latency
as 8 bit quantization using only 1bit quantization we will have a budget lower than 700% overhead
w.r.t. a naive 1 bit quantization. Consequently, for full expansions, we get � 8

1 � 1 = 700%. This
budget is then split across layers using a simple linear repartition. This strategy gives more emphasis
to the layers closest to the prediction head which also correspond to the largest layers, and empirically
provides the best results [32]. As a result, given a number bit operations (BOPS), the expanded model
can better fit the inference device while preserving the full-precision accuracy. Furthermore, all the
added computations are performed in parallel which reduces their cost in practice. It allows better
trade-offs in terms of accuracy and quantization compression rate, as will be shown in the upcoming
experiments.

4 Quantization Experiments

In the following sections, we first go through the implementation requirements and efficient strategies
to fully leverage the proposed expansions. Second, we perform a comparison of each expansion
methods in order to show the flexibility of REx with respect to the bit-width. Third, we compare
REx to other quantization schemes under the constraint of equal bit operations. Finally, we validate
for each expansion their respective upper bound on the maximum error with respect to the original
predictions.

4.1 Implementation Details and Benchmarks

We ran our tests on 6 different backbones, including ConvNets and transformers and 5 tasks from
both computer vision and natural language processing. We used ImageNet [33], Pascal VOC 2012
[34], CityScapes dataset [35] and GLUE [36] and common sense reasoning benchmarks (details
in Appendix D). Unless stated otherwise, we apply symmetric, static, per-channel quantization as
defined in [30] and perform batch-normalization folding prior to any processing using the optimal

5

% of the bit operations with respect to W8/A8

%
 a

cc
ur

ac
y

of
 F

P
 m

od
el

0

25

50

75

100

0.20 0.30 0.40 0.50 0.60 0.70

W2/A8 REx - sparse

W2/A8 REx

W4/A8 REx - sparse

W4/A8 REx

W3/A8

W4/A8

W5/A8

W6/A8

Figure 2: Accuracy vs. inference time, for EfficientNet B0. The higher (accuracy) and the further to the left
(inference cost) the better. The circles show the baseline results with W3/A8, W4/A8, W5/A8 and W6/A8
quantization. The dashed lines show the trade-offs performance of REx in W4/A8 and ternary quantization
(W2/A8). Finally, the plain lines show REx (with sparsity at 10%) also in W4/A4 and ternary quantization. The
numbers in the symbols stands for the expansion order. REx, and a fortiori the sparse version, enables better
trade-offs.

method from [37]. In order to leverage the existing efficient implementations of the convolutional
layers and fully-connected layers in CUDA, we propose to implement the expanded layer using a
single kernel rather than K kernels. This is achieved by concatenating the kernels along the output
dimension. Consequently, the challenge of efficiently splitting the computations to fully leverage
the target device computational power is left to the inference engine. In practice, this results in both
better performance and less work in order to adapt the method to existing engines such as OpenVino
[38] and TensorRT [39]. We detail the implementation and overhead of the addition of the residual
computations in Appendix E. Furthermore, we evaluate the latency overhead of REx in Appendix F.
In the following section, we demonstrate the ability of REx to find good accuracy vs speed trade-offs.

4.2 Flexible Quantization

Figure 2 shows different trade-offs enabled by REx on different bit-widths for an EfficientNet-B0
on ImageNet. First, the baseline quantization with the baseline quantization operator from [5] (as
depicted by the circles of different colors, one for each bit width) offers no trade-off possibility given
a specific bit-width and usually performs poorly below int8 quantization (e.g. barely reaching 20.29%
top1 accuracy in W6/A8 quantization). REx, however, in the same setup, offers several trade-offs for
each specific bit-width (e.g. int4 and ternary on Figure 2) and supporting hardware. Furthermore,
the sparse expansion enables finding more potential trade-offs (by varying the budget and expansion
order) for every bit-width. Those trade-offs are generally more interesting than comparable ones
obtained using the baseline method, which empirically confirms the theoretical results (Appendix
C). Furthermore, Figure 2 shows that using higher order, sparse residues allows to find even better
trade-offs, as, in this case, e.g. in W2/A8 we reach full-precision accuracy at order 10 with 10%
sparse residues. This shows that the process converges fast with respect to the sparsity rates. All in
all, these results demonstrate the flexibility of REx to find good accuracy v.s. speed trade-offs, given
a budget of total bit operations (BOPs) to fit. In the following section, we evaluate the ability of REx
to outperform existing quantization methods in terms of equal bops.

4.3 Main Results

4.3.1 Experiments on Computer Vision Models

In order to highlight the benefits of residual quantization errors expansions as a stand alone improve-
ment upon existing methods with equal BOPs, we compare REx using the naive quantization operator
from [5] on a variety of reference benchmarks. First, in Table 1, we report the performance on three
different computer vision networks between state-of-the-art methods in W6/A6 quantization and
REx using a sparse expansion at order K = 2 using 50% of a 4 bit representation in order to get a
similar total number of bit operations (150% of 4 bits ⇡ 6 bits). For all networks, REx significantly
outperforms recent state-of-the-art data-free quantization methods at equal BOPs. Furthermore, we
confirm these results on object detection and image segmentation as shown in Figure 3. We can

6

Table 1: Comparison at equal BOPs with existing methods in W6/A6 and REx with W4/A6 +50% of one 4 bit
residue.

DNN method year bits Accuracy

ResNet 50 (76.15)

DFQ [14] ICCV’19 W6/A6 71.36
ZeroQ [17] CVPR’20 W6/A6 72.93
DSG [18] CVPR’21 W6/A6 74.07

GDFQ [40] ECCV’20 W6/A6 74.59
SQuant [19] ICLR’22 W6/A6 75.95
SPIQ [26] WACV’23 W6/A6 75.98

REx - 150% ⇥W4/A6 76.01

MobNet v2 (71.80)

DFQ [14] ICCV’19 W6/A6 45.84
SQuant [19] ICLR’22 W6/A6 61.87
SPIQ [26] WACV’23 W6/A6 63.24

REx - 150% ⇥W4/A6 64.20

EffNet B0 (77.10)
DFQ [14] ICCV’19 W6/A6 43.08
SPIQ [26] ICLR’22 W6/A6 54.51

REx - 150% ⇥W4/A6 57.63

Figure 3: (left) Mean intersection over union (mIoU) of a Deeplab V3+ with MobileNet V2 backbone on
CityScapes for semantic segmentation. (right) Mean average precision (mAP) of a SSD with MobileNet V2
backbone on Pascal VOC for object detection. We add the performance of a data-free quantization solution,
DFQ [14] for comparison.

observe that REx can maintain the full precision accuracy while dividing by 3.23 the number of bit
operations required to run an inference.

4.3.2 Experiments on NLP

In Table 2, we perform a similar experiment on NLP using Bert [4]. We can observe the generalization
of our results from ConvNets to Transformers, REx can find better accuracy per bits trade-offs as
compared to four references including non-uniform quantization [41]. Bert is a pre-trained model
with 86 million parameters which is now considered a medium sized model. Both the full-precision
and quantized models can fit on a single middle range GPU. However, recent state-of-the-art models,
such as OPT [42], are so large that they need multiple gpus just to be loaded on memory. These
models ought to be compressed for sustainable usage. In the following section, we generalize the
performance of REx to extreme model sizes.

4.3.3 Application to Handling Outliers in LLMs

A known pitfall [43] for quantization on LLMs, comes from the presence of extreme outliers among
their weight values. These outliers stretch out the weight values range and increase the scaling factor
in Equation 1, which, in turn, causes smaller weights to be rounded abruptly to zero. Worse, as
suggested in [43], this phenomenon seems to occur more as the model size increases and might
appear as a major problem for future work in large DNN quantization. In order to overcome this
challenge, we adapt REx to only quantize the outliers in a residue using binary values (W1/A16)
while the remaining weights are quantized in int4 (W4/A16). As a result, the overhead from REx
is limited to a binary expansion with over 99.8% sparsity. As listed in Table 3, our evaluation on
common sense reasoning tasks demonstrates that REx provides a significant improvement over other

7

Table 2: GLUE task quantized in W4/A8. We consider the BERT transformer architecture [4] and provide the
original performance from the article (original) of BERT on GLUE as well as our reproduced results (reproduced).
REx is applied to the weights with 3 bits + 33% sparse expansion.

task original reproduced
CoLA 49.23 47.90
SST-2 91.97 92.32
MRPC 89.47/85.29 89.32/85.41
STS-B 83.95/83.70 84.01/83.87
QQP 88.40/84.31 90.77/84.65

MNLI 80.61/81.08 80.54/80.71
QNLI 87.46 91.47
RTE 61.73 61.82

WNLI 45.07 43.76

uniform [5] log [41] SQuant [19] SPIQ [26] REx
45.60 45.67 46.88 46.23 47.02
91.81 91.53 91.09 91.01 91.88

88.24/84.49 86.54/82.69 88.78/85.24 88.78/85.06 88.71/85.12
83.89/83.85 84.01/83.81 83.80/83.65 83.49/83.47 83.92/83.85
89.56/83.65 90.30/84.04 90.34/84.32 90.30/84.21 90.50/84.35
78.96/79.13 78.96/79.71 78.35/79.56 78.52/79.86 79.03/79.96

89.36 89.52 90.08 89.64 90.08
60.96 60.46 60.21 60.21 61.20
39.06 42.19 42.56 42.12 42.63

Table 3: Evaluation on Common sense reasoning benchmarks for OPT-13B [42] LLM quantized in W4/A16.
For each quantization operator DFQ [14], SQuant [19] and PowerQuant [44], we share performance with and
without REx (noted with check marks). We also provide the original full-precision (FP) performance.

FP DFQ [14] SQuant [19] PowerQuant [44]
Use REx - 7 3 7 3 7 3

HellaSwag 52.43 49.25 50.14 49.23 50.21 51.29 50.98
OpenBookQA 27.20 25.80 25.40 25.40 26.20 25.80 27.80

ARC-E 61.91 59.93 61.91 59.97 61.95 60.82 60.52
ARC-C 32.94 30.2 32.42 30.12 32.34 31.57 32.94

Winogrande 65.04 64.56 64.72 64.48 64.88 64.88 65.04
PiQA 76.88 75.84 76.17 75.84 76.30 75.90 76.93
BoolQ 65.90 54.71 65.54 54.28 65.38 70.43 69.45

Average Score 54.61 51.47 53.76 51.33 53.91 54.38 54.81

Table 4: Upper bound U (see theorem B.1 and B.2) over the maximum error as compared to the corresponding
empirical measurement Uempirical of that error for a VGG 16 [45] trained on ImageNet. The closer the upper
bound U to the value Uempirical the better.

weights bit-width expansion order K sparsity U Uempirical
8 1 7 0.12 0.05
8 4 7 1.99 ⇥10�7 1.78 ⇥10�7

8 2 50% 0.06 0.05
8 4 50% 1.17 ⇥10�7 0.65 ⇥10�7

quantization operators at virtually no cost. Hence, REx appears as a ready-to-use solution to the
outlier problem for quantization of LLMs.

4.4 Empirical Validation of the Theoretical Bounds

Having shown the interest of REx for quantizing various architectures for computer vision and
NLP tasks, we now empirically confirm its mathematical guarantees. In Table 4, we validate the
proposed upper bound U in Equation 4 on the maximum error on the predictions on a VGG-16
[45] trained on ImageNet. The tightness of the provided theoretical results can be estimated from
the gap between our estimation and the empirical maximum error Uempirical from quantization on
the predictions, which is measured as the infinite norm between the full-precision and quantized
logits. We observe that a naïve 8-bits quantization (i.e. no expansion) leads to an upper bound
U = 0.12, while we observe Uempirical = 0.05. The norms of the logits is equal to 0.3423. Therefore,
the proposed upper bound is relatively tight and significantly lower than the logits magnitude: in such
a case, due to overconfidence, the error shouldn’t affect the classification. The proposed upper bound
is even tighter for larger values of K, and becomes lower and lower (for both the theoretical and
corresponding empirical maximum errors) when introducing sparsity. This further demonstrates the
good properties of the proposed expansion approximation in REx in addition to the relevance of its
theoretical guarantees, which are critical in data-free quantization.

8

Table 5: We report the different trade-offs achieved with REx expanding over different proposed quantization
operators in W4/A4 as compared to their performance in W8/A8, on a MobileNet V2.

method W4/A4 W4+ 25%/A4 W4+ 50%/A4 W4+ 75%/A4 W6/A6 W8/A8
naive [5] 0.1 53.11 64.20 71.61 51.47 70.92

SQuant [19] 4.23 58.64 67.43 71.74 60.19 71.68
SPIQ [26] 5.81 59.37 68.82 71.79 63.24 71.79

AdaRound [46] 56.17 61.30 69.80 71.77 68.71 71.75
BrecQ [47] 66.57 70.94 71.28 71.76 70.45 71.76

4.5 Flexibility with respect to the Quantization Operator

Most recent approaches for data-free quantization focus on designing better quantization operators.
Interestingly, as we already hinted on large language models, our approach is agnostic to the choice
of the quantization operator and can thus be combined with these approaches without bells and
whistles. In Table 5, we report the possible trade-offs achievable with REx combined with recent
approaches focusing on the quantization operator on MobileNet V2. The different trade-offs are
sorted in ascending order in terms of added overhead operations, e.g. W4+ 25% leads to less operations
than W4+ 50%. First, when used with SQuant [19], REx achieves full-precision accuracy in W4/A4
with only 75% overhead, even outperforming W8/A8 quantization. SPIQ [26], can also be adapted
with REx in order to achieve good accuracy using only 4 bits representation as it benefits from finer
weight quantization. This explains the slightly higher accuracies than SQuant using 25% and 50%
sparsity. Finally, with AdaRound [46] and BrecQ [47], two PTQ techniques, we observe similar
results as expected. In particular, BrecQ which already achieves decent accuracy in W4/A4 with a
5.23 points accuracy drop gets closer to the original accuracy (0.86 point accuracy drop) using a
quarter of the expansion. Those results demonstrate REx versatility.

5 Conclusion

In this work, we proposed a novel data-free quantization method, dubbed REx, that consists in an
expansion of residual quantization errors. Furthermore, we proposed a group-sparse version of the
residual expansion that allows to find the best accuracy v.s. speed trade-offs. We demonstrated
the exponential convergence of the quantized weights obtained through the different expansion
methods towards the full-precision model. These theoretical guarantees are crucial in the context
of data-free quantization where we cannot empirically measure the accuracy degradation in an
industrial application context. As such, REx allows to find superior trade-offs for several bit-
width representations, which allows better flexibility and adaptability to specific hardwares. In
particular, we showed the added value of REx through extensive empirical validation. It appears that
REx significantly outperforms recent data-free quantization methods on a wide range of ConvNet
architectures applied to image classification, object detection, semantic segmentation as well as
transformers architectures on GLUE text classification. Furthermore, we showed that REx allows to
efficiently handle outliers within the weight distributions, a well-known pitfall when attempting to
quantize LLMs, using a single binary residual to account for outliers. Lastly, the ideas presented in
this paper are orthogonal to most recent approaches focusing on improving the quantization operator,
and hence can straightforwardly be combined with those approaches.

5.1 Limitations:

The residual expansion method introduced in this paper does not adapt to the inter-layer importance
and runtime cost discrepancies. An interesting future work would thus consist in applying more
expansion orders on the most important layers w.r.t. the model accuracy, as well as using fewer orders
for the most computationally expensive layers.

Acknowledgments: This work has been supported by the french National Association for Research
and Technology (ANRT), the company Datakalab (CIFRE convention C20/1396) and by the French
National Agency (ANR) (FacIL, project ANR-17-CE33-0002). This work was granted access to the
HPC resources of IDRIS under the allocation 2022-AD011013384 made by GENCI.

9

References
[1] Kaiming He, Xiangyu Zhang, et al. Deep residual learning for image recognition. In CVPR, pages 770–778,

2016.

[2] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and
Alexander C Berg. Ssd: Single shot multibox detector. In ECCV, pages 21–37. Springer, 2016.

[3] Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethinking atrous convolution
for semantic image segmentation. arXiv preprint arXiv:1706.05587, 2017.

[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[5] Raghuraman Krishnamoorthi. Quantizing deep convolutional networks for efficient inference: A whitepaper.
arXiv preprint arXiv:1806.08342, 2018.

[6] Matthieu Courbariaux, Itay Hubara, et al. Binarized neural networks: Training deep neural networks with
weights and activations constrained to+ 1 or-1. NeurIPS, 2016.

[7] Shuang Wu, Guoqi Li, Feng Chen, and Luping Shi. Training and inference with integers in deep neural
networks. ICLR, 2018.

[8] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig
Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for efficient integer-
arithmetic-only inference. In CVPR, pages 2704–2713, 2018.

[9] Jan Achterhold, Jan Mathias Koehler, Anke Schmeink, and Tim Genewein. Variational network quantiza-
tion. In ICLR, 2018.

[10] Christos Louizos, Matthias Reisser, Tijmen Blankevoort, Efstratios Gavves, and Max Welling. Relaxed
quantization for discretized neural networks. ICLR, 2018.

[11] Tao Sheng, Chen Feng, Shaojie Zhuo, Xiaopeng Zhang, Liang Shen, and Mickey Aleksic. A quantization-
friendly separable convolution for mobilenets. In 2018 1st Workshop on Energy Efficient Machine Learning

and Cognitive Computing for Embedded Applications (EMC2), pages 14–18. IEEE, 2018.

[12] Kanghyun Choi, Hye Yoon Lee, Deokki Hong, Joonsang Yu, Noseong Park, Youngsok Kim, and Jinho Lee.
It’s all in the teacher: Zero-shot quantization brought closer to the teacher. In CVPR, pages 8311–8321,
2022.

[13] Yunshan Zhong, Mingbao Lin, Gongrui Nan, Jianzhuang Liu, Baochang Zhang, Yonghong Tian, and
Rongrong Ji. Intraq: Learning synthetic images with intra-class heterogeneity for zero-shot network
quantization. In CVPR, pages 12339–12348, 2022.

[14] Markus Nagel, Mart van Baalen, et al. Data-free quantization through weight equalization and bias
correction. In ICCV, pages 1325–1334, 2019.

[15] Eldad Meller, Alexander Finkelstein, Uri Almog, and Mark Grobman. Same, same but different: Re-
covering neural network quantization error through weight factorization. In ICML, pages 4486–4495,
2019.

[16] Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Chris De Sa, and Zhiru Zhang. Improving neural network
quantization without retraining using outlier channel splitting. In ICML, pages 7543–7552, 2019.

[17] Yaohui Cai, Zhewei Yao, Zhen Dong, Amir Gholami, Michael W Mahoney, and Kurt Keutzer. Zeroq: A
novel zero shot quantization framework. In CVPR, pages 13169–13178, 2020.

[18] Xiangguo Zhang, Haotong Qin, Yifu Ding, Ruihao Gong, Qinghua Yan, Renshuai Tao, Yuhang Li, Fengwei
Yu, and Xianglong Liu. Diversifying sample generation for accurate data-free quantization. In CVPR,
pages 15658–15667, 2021.

[19] Guo Cong et al. Squant: On-the-fly data-free quantization via diagonal hessian approximation. ICLR,
2022.

[20] Nvidia. Nvidia a100 tensor core gpu architecture. web tech report (https://images.nvidia.
com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-
whitepaper.pdf), 2021.

[21] Majid Rabbani. Jpeg2000: Image compression fundamentals, standards and practice. Journal of Electronic

Imaging, 11(2):286, 2002.

[22] Stephane G Mallat. A theory for multiresolution signal decomposition: the wavelet representation. In
Fundamental Papers in Wavelet Theory, pages 494–513. Princeton University Press, 2009.

[23] Karen Ullrich, Edward Meeds, and Max Welling. Soft weight-sharing for neural network compression.
ICLR, 2017.

10

[24] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-net: Training low
bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint arXiv:1606.06160,
2016.

[25] Sangyun Oh, Hyeonuk Sim, Sugil Lee, and Jongeun Lee. Automated log-scale quantization for low-cost
deep neural networks. In CVPR, pages 742–751, 2021.

[26] Edouard Yvinec, Arnaud Dapogny, Matthieu Cord, and Kevin Bailly. Spiq: Data-free per-channel static
input quantization. WACV, 2023.

[27] Yuhang Li, Feng Zhu, Ruihao Gong, Mingzhu Shen, Xin Dong, Fengwei Yu, Shaoqing Lu, and Shi Gu.
Mixmix: All you need for data-free compression are feature and data mixing. In ICCV, pages 4410–4419,
2021.

[28] Boyuan Feng, Yuke Wang, Tong Geng, Ang Li, and Yufei Ding. Apnn-tc: Accelerating arbitrary precision
neural networks on ampere gpu tensor cores. In Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis, pages 1–13, 2021.
[29] Cliff Robinson. Untether.ai boqueria 1458 risc-v core ai accelerator, Aug 2022.
[30] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer. A survey

of quantization methods for efficient neural network inference. arXiv preprint arXiv:2103.13630, 2021.
[31] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional neural

networks for resource efficient inference. arXiv preprint arXiv:1611.06440, 2016.
[32] Edouard Yvinec, Arnaud Dapogny, Matthieu Cord, and Kevin Bailly. Red: Looking for redundancies for

data-free structured compression of deep neural networks. NeurIPS, 2021.
[33] J. Deng, W. Dong, et al. ImageNet: A Large-Scale Hierarchical Image Database. In CVPR, 2009.
[34] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The

PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results. http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html, 2012.

[35] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson,
Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban scene understanding.
In CVPR, pages 3213–3223, 2016.

[36] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. GLUE:
A multi-task benchmark and analysis platform for natural language understanding. In Proceedings of

the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages
353–355. Association for Computational Linguistics, 2018.

[37] Edouard Yvinec, Arnaud Dapogny, and Kevin Bailly. To fold or not to fold: a necessary and sufficient
condition on batch-normalization layers folding. IJCAI, 2022.

[38] Intel. Intel® distribution of openvino™ toolkit. Intel, 2022.
[39] Nvidia. Nvidia distribution of tensorrt toolkit. Nvidia, 2022.
[40] Shoukai Xu, Haokun Li, Bohan Zhuang, Jing Liu, Jiezhang Cao, Chuangrun Liang, and Mingkui Tan.

Generative low-bitwidth data free quantization. In ECCV, pages 1–17. Springer, 2020.
[41] Daisuke Miyashita, Edward H Lee, and Boris Murmann. Convolutional neural networks using logarithmic

data representation. arXiv preprint arXiv:1603.01025, 2016.
[42] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher

Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068, 2022.

[43] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm. int8 (): 8-bit matrix multiplication
for transformers at scale. arXiv preprint arXiv:2208.07339, 2022.

[44] Edouard Yvinec, Arnaud Dapogny, Matthieu Cord, and Kevin Bailly. Powerquant: Automorphism search
for non-uniform quantization. In ICLR, 2023.

[45] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recogni-
tion. BMVC 2014, 2014.

[46] Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen Blankevoort. Up or
down? adaptive rounding for post-training quantization. In ICML, pages 7197–7206. PMLR, 2020.

[47] Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang, Fengwei Yu, Wei Wang, and Shi Gu.
Brecq: Pushing the limit of post-training quantization by block reconstruction. NeurIPS, 2021.

[48] Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint

arXiv:1905.10044, 2019.

11

[49] Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical common-
sense in natural language. In AAAI, volume 34, pages 7432–7439, 2020.

[50] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

[51] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adversarial
winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

[52] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge. arXiv preprint

arXiv:1803.05457, 2018.
[53] Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct electricity?

a new dataset for open book question answering. arXiv preprint arXiv:1809.02789, 2018.
[54] Mark Sandler, Andrew Howard, et al. Mobilenetv2: Inverted residuals and linear bottlenecks. In CVPR,

pages 4510–4520, 2018.
[55] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam. Encoder-decoder

with atrous separable convolution for semantic image segmentation. In ECCV, pages 801–818, 2018.
[56] Erica Klarreich. Multiplication hits the speed limit. Communications of the ACM, 63(1):11–13, 2019.

12

