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1 More Examples of Multi-Modal 3D Shape Retrieval1

In Figures 1 and 2, we showcase more examples of multi-modal 3D shape retrieval.2

Figure 1: Image-input 3D shape retrieval. In each triplet, we present the input image and two 3D
shapes retrieved using OpenShape embeddings from the Objaverse [2] dataset. Input images are from
unsplash.com.

Figure 2: Point cloud-input 3D shape retrieval. In each triplet, we present the input point cloud and
two 3D shapes retrieved using OpenShape embeddings from the Objaverse [2] dataset.
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2 More Examples of Shape-Conditioned Multimodal Generation3

In Figure 3 and Figure 4, we showcase more examples of point cloud captioning and point cloud-4

conditioned image generation.5

Figure 3: Point cloud captioning. In each row, we show the input point clouds on the left and the
generated captions on the right.

Figure 4: Point cloud-conditioned image generation. Each row shows three examples (input point
clouds and generated images).
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3 Details on Raw Text Generation and Filtering6

3.1 Raw Text Generation7

We leverage the metadata from the four datasets to generate the raw texts. Although the original8

datasets may contain numerous attributes for each shape, we carefully choose the most informative9

ones to compose the text, ensuring its quality and relevance.10

Objaverse:We utilize the name associated with each shape to serve as the text.11

ShapeNetCore: For each shape, we generate three types of texts: (a) the name, (b) the category12

name (with a total of 55 categories), and (c) the concatenation of the sub-category names (with a13

total of 336 sub-categories), separated by commas.14

3DFuture: For each shape, we generate two types of texts: (a) the category, and (b) the concatena-15

tion of category, style, theme, and material, separated by commas.16

ABO: For each shape, we generate two types of texts: (a) the item_name, and (b) the product_type.17

In this way, we generate one or more raw texts for each shape.18

3.2 Raw Text Filtering19

We employ GPT-4 [4] to filter out uninformative raw texts. To accomplish this, we divide all the raw20

texts into batches, each containing 256 entries, and process each batch independently using GPT-4.21

Here is an example illustrating the prompt we used and the corresponding response generated by22

GPT-4.23

I am analyzing a 3D dataset with various text descriptions for the 3D models.
However, many of these texts are inaccurate or uninformative, and therefore,
not suitable as descriptions for 3D models. I need your help to identify such
incorrect texts. Specifically, if a text primarily consists of irrelevant or unin-
formative content, such as timestamps, model numbers, incomprehensible
descriptions, random filenames (e.g., "my project"), random characters, etc.,
please respond with "N". If a text contains a clear noun (or noun phrase)
that could potentially describe a 3D object, please respond with "Y". You
will find a list of texts below, and each line contains a three-digit ID and
associated text. For each text, please respond with "Y" or "N", following the
ID number (e.g., "001 Y" or "002 N"). Please evaluate all 256 texts.
000 New project ( 19 )
001 3December - Chemestry
002 Fake Brand Soda Can
003 Spartan Shild
004 Apple3d
005 Landmine
006 FaunveinB-S
007 FIGURA 5
008 Sphero Blue
009 Sofa
010 Maddox
011 A3 Complete
012 Suspension Bridge
013 Maung
014 Captain-americas-shield
015 sphorb4
......

000 N
001 Y
002 Y
003 Y
004 Y
005 Y
006 N
007 N
008 Y
009 Y
010 N
011 N
012 Y
013 N
014 Y
015 N
......

24

Afterward, we combine all the responses to create the final filtering results, effectively removing25

approximately 30% of the raw texts.26
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4 Details on the Backbone Scaling Experiment27

In Figure 4 of the main paper, we investigate the performance and scalability of various backbones28

when scaling up their model sizes. For this experiment, we employ a default resolution of 10,00029

points for input point clouds, a batch size of 200, and conduct the experiment on a single A100 GPU.30

In general, if instructions are given in the original paper of a backbone, we scale up the model as31

instructed. Otherwise, we scale up the model by expanding width or depth (i.e., stacking blocks or32

layers). Specifically, we scale up each backbone as follow:33

PointBERT [13] The scaling parameters are shown in Table 1. We scaled PointBERT to 72.1M34

parameters beyond the 32.3M version reported in Figure 4 of the main paper. However, at this scale,35

the model dramatically overfits on the training data and performs worse on all benchmarks than the36

32.3M version.37

Table 1: Hyperparameters for scaling up PointBERT [13].

# Parameters # Layers Width # Heads MLP Dim # Patches Patch Embed Dim

5.1M 6 256 4 1024 64 96
13.3M 6 512 8 1024 64 128
32.3M 12 512 8 1536 384 256
72.1M 12 768 12 2304 512 256

SparseConv [1] The smallest version (5.3M parameters) of the model is adapted from the38

MinkowskiFCNN model by adjusting the width of the final convolution and linear layers. The39

remaining three models are adaptations of MinkowskiResNet, each varying in the number of basic40

ResNet blocks used. See Table 2 for the specific scaling parameters.41

Table 2: Hyperparameters for scaling up SparseConv [1].

# Parameters # Convolution Layers # Linear Layers

5.3M 7 4
29.0M 18 3
33.7M 26 3
41.3M 42 3

PointNeXt [7] PointNeXt is proposed as a scalable version of PointNet++ [6], and includes42

S/B/L/XL variants in the original paper. We simply adopt these official configurations.43

DGCNN [10] and PointNet [5] For these two backbones without a hierarchical structure, we44

increase the width of each layer proportionally to scale up to 4xPointNet and 2xDGCNN before we45

hit the GPU memory limit. As the models operate completely on dense points, it is impractical to use46

the default 10k-point resolution. We thus reduce the input resolution for the two backbones, resulting47

in 1k points for DGCNN and 4k points for PointNet.48

5 Details on Training and Evaluation49

Training Details We freeze the CLIP text and image encoders and train the 3D encoder and two50

projection heads on our ensembled dataset using the cross-modal contrastive loss. We train the51

model on a single A100 GPU with a batch size of 200. Since we precache the text and image CLIP52

embeddings of all shapes, the training is greatly accelerated and takes about 300 A100 hours for53

convergence. We utilize an exponential learning rate schedule, and employ an range test to find the54

initial learning rate. For 32.3M version of PointBERT, we utilize a learning rate of 5e− 4; for 72.1M55

version of PointBERT, we utilize a learning rate of 4e− 4; and for other models, we utilize a learning56

rate of 1e− 3. For hard-negative mining, the number of seed shapes s is set to 40, and the number of57

neighbors m is set to 5 per shape, and the threshold δ is set to 0.1.58
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Fine-tuning CLIP Text and Image Encoders? After training OpenShape-PointBERT, we con-59

ducted experiments to unfreeze and finetune the CLIP text encoder for a single epoch. However, the60

results obtained did not demonstrate any noticeable improvement on the benchmarks. Moreover,61

we observed that finetuning the CLIP text encoder could potentially undermine the generalization62

capabilities of CLIP and hinder the integration of OpenShape embeddings into existing CLIP-based63

models. As a result, we choose to freeze the CLIP encoders throughout the entire training process.64

Evaluation Details We evaluated all baselines using their publicly released pretrained checkpoints.65

Additionally, we retrained ULIP [12] on our ensembled training shapes using their official code base66

and backbone networks. Note that the retrained ULIP model utilized the original raw texts from the67

four datasets during training (prompt engineering is also applied), rather than our filtered and enriched68

texts. For ModelNet40 [11], the evaluation is conducted on the test split with 2,468 shapes. Regarding69

ScanObjectNN [9], we follow ULIP [12] to evaluate on the OBJ_ONLY version, which contains70

581 test shapes. For Objaverse-LVIS [2], the input is 10,000 sampled points with point colors. For71

ModelNet40 [11], the input is 10,000 sampled points without color. For ScanObjectNN [9], we utilize72

the official 2,048 points without color as input. All methods use the same input during evaluation.73

The forward inference time on an A100 GPU for a 10,000-point point cloud is approximately 0.9ms74

for OpenShape-SparseConv and 3.8ms for OpenShape-PointBERT.75

6 Details on Shape-Conditioned Multimodal Generation76

Point Cloud Captioning CLIPCap [3] utilizes a 10-token prefix generated from CLIP image77

embeddings to enable GPT-2 for captioning. In order to align with the off-the-shelf CLIPCap model,78

we trained a variant of OpenShape-PointBERT that employs CLIP ViT-B/32 embeddings instead79

of OpenCLIP ViT-G/14 used in other experiments. Consequently, we directly input the point cloud80

encoding, without normalization, into CLIPCap for captioning.81

Point Cloud Conditioned Image Generation We take the Stable Diffusion v2.1 unCLIP model [8]82

for image generation and replace the CLIP image condition encoder with our OpenShape encoder to83

perform image generation conditioned on point clouds (and optionally text prompts). The unCLIP84

model takes CLIP ViT-L/14 embeddings without normalization as input. To match the embedding85

space, we trained a variant of OpenShape-PointBERT with CLIP ViT-L/14 embeddings. Additionally,86

we noticed a significant mismatching of scales (L2-norm of embedding vectors) between ViT-L/1487

image embeddings and OpenShape embeddings. To mitigate this issue, we perform a re-normalization88

on OpenShape embeddings to a L2-norm of 1
2

√
768, which is our observed mean L2-norm of ViT-89

L/14 image embeddings. We use 50 diffusion steps. The guidance scale can be tuned freely.90
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