
Fair, Polylog-Approximate Low-Cost Hierarchical
Clustering

Anonymous Author(s)
Affiliation
Address
email

Abstract

Research in fair machine learning, and particularly clustering, has been crucial in1

recent years given the many ethical controversies that modern intelligent systems2

have posed. Ahmadian et al. [2020] established the study of fairness in hierarchical3

clustering, a stronger, more structured variant of its well-known flat counterpart,4

though their proposed algorithm that optimizes for Dasgupta’s [2016] famous5

cost function was highly theoretical. Knittel et al. [2023] then proposed the6

first practical fair approximation for cost, however they were unable to break7

the polynomial-approximate barrier they posed as a hurdle of interest. We break8

this barrier, proposing the first truly polylogarithmic-approximate low-cost fair9

hierarchical clustering, thus greatly bridging the gap between the best fair and10

vanilla hierarchical clustering approximations.11

1 Introduction12

Clustering is a pervasive machine learning technique which has filled a vital niche in every day13

computer systems. Extending upon this, a hierarchical clustering is a recursively defined clustering14

where each cluster is partitioned into two or more clusters, and so on. This adds structure to flat15

clustering, giving an algorithm the ability to depict data similarity at different resolutions as well as16

an ancestral relationship between data points, as in the phylogenetic tree Kraskov et al. [2003].17

On top of computational biology, hierarchical clustering has found various uses across computer18

imaging [Chen et al., 2021b, Selvan et al., 2005], computer security [Chen et al., 2020, 2021a], natural19

language processing [Ramanath et al., 2013], and much more. Moreover, it can be applied to any20

flat clustering problem where the number of desired clusters is not given. Specifically, a hierarchical21

clustering can be viewed as a structure of clusterings at different resolutions that all agree with each22

other (i.e., two points clustered together in a higher resolution clustering will also be together in a23

lower resolution clustering). Generally, hierarchical clustering techniques are quite impactful on24

modern technology, and it is important to guarantee they are both effective and unharmful.25

Researchers have recognized the harmful biases unchecked machine learning programs pose. A26

few examples depicting racial discrimination include allocation of health care [Ledford, 2019],27

presentation of ads suggestive of arrest records [Sweeney, 2013], prediction of hiring success [Bogen28

and Rieke, 2018], and estimation of recidivism risk [Angwin et al., 2016]. A popular solution that29

has been extensively studied in the past decade is fair machine learning. Here, fairness concerns30

the mitigation of bias, particularly against protected classes. Most often, fairness is an additional31

constraint on the allowed solution space; we optimize for problems in light of this constraint. For32

instance, the notion of individual fairness introduced by the foundational work of Dwork et al. [2012]33

deems that an output must guarantee that any two individuals who are similar are classified similarly.34

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

Figure 1: A hierarchical clustering of news articles. Red articles are conservative, blue are liberal. On
the left is the optimal unfair hierarchy. We alter the hierarchy slightly on the right to achieve fairness.
Now, the user’s query for global warming will yield both liberal and conservative articles.

In line with previous work in clustering and hierarchical clustering, this paper utilizes the notion35

of group fairness, which enforces that different protected classes receive a proportionally similar36

distribution of classifications (in our case, cluster placement). Chierichetti et al. [2017] first introduced37

this as a constraint for the flat clustering problem, arguing that it mitigates a system’s disparate impact,38

or non-proportional impact on different demographics. This notion of fair clustering has been similarly39

leveraged and extended by a vast range of works in both flat [Ahmadian et al., 2019, Bera et al., 2019,40

Bercea et al., 2019] and hierarchical [Ahmadian et al., 2020, Knittel et al., 2023] clustering.41

To illustrate our fairness concept, consider the following application (Figure 1): a news database42

is structured as a hierarchical clustering of search terms, where a search term is associated with a43

cluster of news articles to output to the reader, and more specific search terms access finer-resolution44

clusters. When a user searches for a term, we simply identify the corresponding cluster and output45

the contained articles. However, as is, the system does not account for the political skew of articles.46

In Figure 1, we label conservative-leaning articles in red and liberal-leaning articles in blue. We can47

see that in this example, when the user searches for global warming articles, they will only see liberal48

articles. To resolve this, we add a group fairness constraint on our cluster: for example, require at49

least 1/3 of the articles in each cluster to be of each political skew. This guarantees (as depicted50

on the right) that the outputted articles will always be at least 1/3 liberal and 1/3 conservative, thus51

guaranteeing the user is exposed to a range of perspectives along this political axis. This notion of52

fairness, which we formally define in Definition 3, has been explored in the context of hierarchical53

clustering in both Ahmadian et al. [2020] and Knittel et al. [2023].54

This paper is concerned with approximations for fair low-cost (i.e., optimizing for Dasgupta [2016]’s55

famous cost metric) hierarchical clustering. This is perhaps the most natural and well-motivated56

metric for hierarchical clustering evaluation, however it is quite difficult to optimize for (the best being57

O(
√
log n)-approximations [Charikar and Chatziafratis, 2017, Dasgupta, 2016]; it hypothesized to58

not be O(1)-approximable [Charikar and Chatziafratis, 2017]). This appears to be even more difficult59

in the hierarchical clustering literature. The first work to attempt this problem, Ahmadian et al.60

[2020], achieved a highly impractical O(n5/6 log3/2 n)-approximation (not too far from the trivial61

O(n) upper bound), posing fair low-cost hierarchical clustering as a in interesting and inherently62

difficult problem. Knittel et al. [2023] greatly improved this to a near-polylog approximation factor63

of O(nδpolylog(n)), where δ can be arbitrarily close to 0, and parameterizes a trade-off between64

approximation factor and degree of fairness. Still, a true polylog approximation was left as an open65

problem, one which we solve in this paper.66

1.1 Our Contributions67

This work proposes the first polylogarithmic approximation for fair, low-cost hierarchical clustering.68

We leverage the work of Knittel et al. [2023] as a starting inspiration and create something much69

simpler, more direct, and better in both fairness and approximation. Like their algorithm, our70

algorithm starts with a low-cost unfair hierarchical clustering and then alters it with multiple well-71

defined and limited tree operators. This gives it a degree of explainability, in that the user can72

understand exactly the steps the algorithm took to achieve its result and why. In addition, our73

algorithm achieves both relative cluster balance (i.e., clusters who are children of the same cluster74

have similar size) and fairness, along with a parameterizeable trade-off between the two.75

2

On top of the benefits of Knittel et al. [2023]’s techniques, we propose a greatly simplified algorithm.76

They initially proposed an algorithm that required four tree operators, however, we only require two77

of the four, and we greatly simplify the more complicated operator. This makes the algorithm simpler78

to understand and more implementable. We show that even with this reduced functionality, we can79

cleverly achieve both a better approximation and degree of fairness:80

Theorem 1. When T is a γ-approximate low-cost vanilla hierarchical clustering over ℓ(V) = cℓn =81

O(n) vertices of each color ℓ ∈ [λ], MakeFair (Algorithm 2), for any constants ϵ, h, k with h >> kλ82

and n >> h, runs in O(n log n(h+ λ log n)) time and yields a hierarchy T ′ satisfying:83

1. T ′ is an O
(

(h−1)
ϵ + 1+ϵ

1−ϵk
λ
)

-approximation for cost.84

2. T ′ is fair for any parameters for all i ∈ [λ]: αi ≤ λi

n

(
1−ϵ

(1+ϵ)2

(
1− k(1+ϵ)

cih

))O(log(n))

and85

βi ≥ λi

n

(
1+ϵ

(1−ϵ)2

(
1 + 1−ϵ

cik

))O(log(n))

, where λi = cin.86

3. All internal nodes in T ′ are ϵ-relatively balanced.87

To put this in perspective, previously, the best approximation for fair hierarchical clustering previously88

was O(nδpolylog(n)), whereas the best unfair approximation is O(
√
log n). Our work greatly89

reduces this gap by providing a true O(polylog(n)) approximation. This can be achieved by setting90

k = O(1), h = O(log n), and ϵ = O(1/ log n) (note we assume λ = O(1) and the best current91

γ = O(
√
log n):92

Corollary 1. There is a hierarchical clustering algorithm which runs in O(n log2 n) time and yields93

a hierarchy T ′ satisfying: 1) T ′ is an O(log2(n))-approximation for cost, 2) T ′ is fair for any94

parameters for all i ∈ [λ]: αi = ai
λi

n and βi ≥ bi
λi

n where ai ∈ (0, 1) and bi > 1 are constants for95

all i ∈ [λ], and 3) All internal nodes in T ′ are O
(

1
logn

)
-relatively balanced.96

2 Preliminaries97

2.1 The Vanilla Problem98

Fair clustering literature refers to the original problem variant, without fairness, as the “vanilla”99

problem. We define the vanilla problem of finding a low-cost hierarchical clustering here using our100

specific notation.101

In this problem, we are given a complete graph G = (V,E,w) with a weight function w : E → R+102

is a measure of the similarity between datapoints. Note the data is encoded as a complete tree because103

we require knowledge of all point-point relationships. We must construct a hierarchical clustering,104

represented by its dendrogram, T , with root denoted root(T). T is a tree with vertices corresponding105

to all clusters of the hierarchical clustering. Leaves of T , denoted leaves(root(T)) correspond to the106

points in the dataset (i.e., singleton clusters). An internal node v corresponds to the cluster containing107

all leaf-data of the maximal subtree (i.e., contains all its descendants) rooted at v, T [v]. In addition,108

we let u ∧ v denote the lowest common ancestor of u and v in T .109

In order to define Dasgupta [2016]’s cost function, we use the same notational simplifications110

as Knittel et al. [2023]. For an edge e = (x, y) ∈ E, we say nT (e) = |leaves(T [x ∧ y])| is111

the size of the smallest cluster in the hierarchy containing e. Similarly, for a hierarchy node v,112

nT (vi) = |leaves(T [vi])| is the size of the corresponding cluster. This is sufficient to introduce the113

notion of cost.114

Definition 1 (Knittel et al. [2023]). The cost of e ∈ E in a graph G = (V,E,w) in a hierarchy T is115

costT (e) = w(e) · nT (e).116

Dasgupta’s cost function can then be written as a sum over the costs of all edges.117

Definition 2 (Dasgupta [2016]). The cost of a hierarchy T on graph G = (V,E,w) is:118

cost(T) =
∑
e∈E

costT (e)

3

Our algorithm begins by assuming we have some approximate vanilla hierarchy, T . That is, if OPT119

is the optimal hierarchy tree, then cost(T) ≤ α · cost(OPT) for some approximation factor α.120

According to Dasgupta [2016], we can transform this hierarchy to be binary without increasing cost.121

Our paper simply assumes our input is binary. We then produce a modified hierarchy T ′ which similar122

structure to T that guarantees fairness, i.e., cost(T ′) ≤ α′ · cost(OPT) for some approximation123

factor α′ ≥ α. Note this comparison is being made to the vanilla OPT , as we are unsure, at this time,124

how to classify the optimal fair hierarchy. Note that the binary assumption may not hold when we125

consider adding a fairness constraint.126

2.2 Fairness and Balance Constraints127

We consider the fairness constraints based off those introduced by Chierichetti et al. [2017] and128

extended by Bercea et al. [2019]. On a graph G with colored vertices, let ℓ(C) count the number of129

ℓ-colored points in cluster C.130

Definition 3 (Knittel et al. [2023]). Consider a graph G = (V,E,w) with vertices colored one of131

λ colors, and two vectors of parameters α, β ∈ (0, 1)λ with αℓ ≤ βℓ for all ℓ ∈ [λ]. A hierarchy T132

on G is fair if for any non-singleton cluster C in T and for every ℓ ∈ [λ], αℓ|C| ≤ ℓ(C) ≤ βℓ|C|.133

Additionally, any cluster with a leaf child has only leaf children.134

Effectively, we are given bounds αℓ and βℓ for each color ℓ. Every non-singleton cluster must have at135

least an αℓ fraction and at most a βℓ fraction of color ℓ. This guarantees proportional representational136

fairness of each color in each cluster.137

As an intermediate step in achieving fairness, we will create splits in our hierarchy that achieve138

relative balance in terms of subcluster size. Thus, the following definition will come in handy.139

Definition 4. In a hierarchy, a vertex v (corresponding to cluster C) with cv children is ϵ-relatively140

balanced if for every cluster {Ci}i∈[cv] that corresponds to a child of v, (1
cv
− ϵ)|C| ≤ |Ci| ≤141

(1
cv

+ ϵ)|C|.142

While this definition is quite similar to that from Knittel et al. [2023], it deviates in two ways: 1)143

we only define it on a single split as opposed to the entire hierarchy and 2) we allow splits to be144

non-binary. If we apply it to the entire hierarchy and constrain it to be binary, it is equivalent to the145

former definition.146

2.3 Tree Operators147

Figure 2: Our operators: sub-
tree deletion and insertion and
shallow tree folding.

Our work simplifies the work of Knittel et al. [2023]. In doing148

so, we follow the same framework, using tree operators to make149

well-defined and limited alterations to a given hierarchical clustering150

(Figure 2). In addition, our algorithm simplifies operator use in two151

ways: 1) we only utilize two of their four tree operators, and 2) we152

greatly simplified their most complicated operator and show that it153

can still be used to create a fair hierarchy.154

First off, we utilize the same subtree deletion and insertion operator.155

The main difference is how we use it, which will be discussed in156

Section 3. At a high level, this operator removes a subtree from one157

part of the hierarchy and reinserts it elsewhere, adding and removing parent vertices as necessary.158

Definition 5 (Knittel et al. [2023]). Consider a binary tree T with internal nodes u, some non-159

ancestor v, u’s sibling s, and v’s parent g. Subtree deletion at u removes T [u] from T and contracts160

s into its parent. Subtree insertion of T [u] at v inserts a new parent p between v and g and adds u161

as a second child of p. The operator del_ins(u, v) deletes u and inserts T [u] at v.162

The other operator we leverage is their tree folding operator, however we greatly simplify it. In the163

previous work, tree folding took two or more isomorphic trees and mapped the internal nodes to each164

other. Instead, we simply take two or more subtrees and merge their roots. The new root then directly165

splits into all children of the roots of all folded trees. In a way, this is an implementation of their166

folding operator but only at a single vertex in the tree topology. This is why we call it a shallow tree167

fold.168

4

Definition 6. Consider a set of subtrees T1, . . . , Tk of T such that all root(Ti) have the same parent169

p in T . A shallow tree folding of trees T1, . . . , Tk (shallow_fold(T1, . . . , Tk)) modifies T such that170

all T1, . . . , Tk are replaced by a single tree Tf whose root(T) is made a child of p, and T1, . . . , Tk171

make up the direct descendants of root(Tf).172

In addition, we assume the subtree Tf is then arbitrarily binarized [Dasgupta, 2016] after folding.173

Since our algorithm works top-bottom, creating balanced vertices as it goes, we don’t yet care about174

the fairness of the descendants of Tf . Moreover, we will then recursively call our algorithm on Tf to175

do precisely this.176

3 Main Algorithm177

In this section, we present our fair, low-cost, hierarchical clustering algorithm along with its analysis.178

Ultimately, we achieve the following (for a more intuitive explanation, see Section 1):179

Theorem 1. When T is a γ-approximate low-cost vanilla hierarchical clustering over ℓ(V) = cℓn =180

O(n) vertices of each color ℓ ∈ [λ], MakeFair (Algorithm 2), for any constants ϵ, h, k with h >> kλ181

and n >> h, runs in O(n log n(h+ λ log n)) time and yields a hierarchy T ′ satisfying:182

1. T ′ is an O
(

(h−1)
ϵ + 1+ϵ

1−ϵk
λ
)

-approximation for cost.183

2. T ′ is fair for any parameters for all i ∈ [λ]: αi ≤ λi

n

(
1−ϵ

(1+ϵ)2

(
1− k(1+ϵ)

cih

))O(log(n))

and184

βi ≥ λi

n

(
1+ϵ

(1−ϵ)2

(
1 + 1−ϵ

cik

))O(log(n))

, where λi = cin.185

3. All internal nodes in T ′ are ϵ-relatively balanced.186

The main idea of our algorithm is to leverage similar tree operators to that of Knittel et al. [2023],187

but greatly simplify their usage and apply them in a more direct, careful manner. Specifically, the188

previous work processes the tree four times: once to achieve 1/6-relative balance everywhere, next189

to achieve ϵ-relative balance, next to remove the bottom of the hierarchy, and finally to achieve190

fairness. The problem is that this causes proportional cost increases to grow in an exponential manner,191

particularly because the relative balance significantly degrades as you descend the hierarchy. Our192

solution is to instead do a single top to bottom pass of the tree, rebalancing and folding to achieve193

fairness as we go. We describe this in detail now.194

First, we assume our input is some given hierarchical clustering tree. Ideally, this will be a good195

approximation for the vanilla problem, but our results do work as a black box on top of any hierarchical196

clustering algorithm. Second, we apply SplitRoot in order to balance the root (Section 3.1). And197

finally, we apply shallow tree folding on the children of the root to achieve fairness (Section 3.2).198

This gives us the first layer of our output, and then we recurse.199

3.1 Root Splitting and Balancing200

SplitRoot is depicted in Algorithm 1. This fills the role of Knittel et al. [2023]’s Refine Rebalance201

Tree algorithm (and skips their Rebalance Tree algorithm), but it functions differently in that it only202

rebalances the root and it immediately splits the root into h children, according to our input parameter203

h.204

We start SplitRoot by adding dummy children to v until it has h children (recall we can assume205

the input is binary). A dummy or null child is just a placeholder for a child to be constructed, or206

alternatively simply a zero-sized tree (note: this does not add any leaves to the tree). None of these207

children will be left empty in the end. Next, we define vmax and vmin, the maximal subtrees rooted208

at children(root(T ′)) which have the most and fewest leaves, respectively.209

As long as the root is not ϵ-relatively balanced (which is equivalent to nT ′(vmax) or nT ′(vmin)210

deviating from the target n/h by over nϵ, as they are extreme points), we will attempt to rebalance.211

We define δ1 and δ2 to be the proportional deviation of nT ′(vmin) and nT ′(vmax) from the target212

size n/h respectively, and δ to be the minimum of the two. In effect, δ measures the maximum213

number of leaves we can move from the large subtree to the small subtree without causing nT ′(vmax)214

5

to dip below n/h or nT ′(vmin) to peak above n/h. This is important to guarantee our runtime: as215

an accounting scheme, we show that clusters monotonically approach size n/h, and thus we can216

quantify how fast our algorithm completes. We fully analyze this later, in Lemma 2.217

Algorithm 1 SplitRoot

Input: A binary hierarchy tree T of size n ≥ 1/2ϵ over a graph G = (V,E,w), with smaller cluster
always on the left, and parameters h ∈ [n] and ϵ ∈ (0,min(1/6, 1/h)).

Output: A hierarchical clustering T ′ with an ϵ-relatively balanced root that has k children.
1: Initialize T ′ = T
2: v = root(T ′)
3: Add null children to v until it has h children
4: Let vmin = argminv′∈children(v)nT ′(v′)

5: Let vmax = argmaxv′∈children(v)nT ′(v′)

6: while nT ′(vmax) > n(1/h+ ϵ) or nT ′(vmin) < n(1/h− ϵ) do
7: δ1 = 1/h− nT ′(vmin)/n
8: δ2 = nT ′(vmax)/n− 1/h
9: δ = min(δ1, δ2)

10: Let v = vmax

11:
12: while nT ′(v) > δn do
13: v ← rightT ′(v)
14: end while
15:
16: u← vmin

17: while nT ′(rightT ′(u)) ≥ nT ′(v) do
18: u← leftT ′(u)
19: end while
20: T ′ ← T ′.del_ins(u, v)
21: Reset vmin and vmax

22: end while
Now we must attempt exactly this: move a large subtree from vmax to vmin, though this subtree can218

have no more than δn leaves. To do this, we simply start at vmax and traverse down its right children219

(recall below vmax, the tree is still binary). We halt on the first child that is of size δn or smaller. We220

then remove it and find a place to reinsert it under vmin.221

The insertion spot is found similarly by descending down vmin’s left children until the right child222

of the current vertex has fewer leaves in its subtree than the tree we are inserting. Thus we have223

completed our insertion/deletion operation. We repeat until the tree is relatively balanced, as desired.224

We now analyze this part of the algorithm. The full proofs can be found in the appendix, but we give225

intuition here. To start, consider the tree we are deleting and reinserting, T ′[v]. Ideally, we want this226

to have many leaves, but no more than δn. We find that:227

Lemma 1. For a subtree T ′[v] that is deleted and reinserted in SplitRoot (Algorithm 1), ϵn/(2(h−228

1)) < nT (v) ≤ δn.229

The upper bound simply comes from our stopping condition in the first nested while loop: we ensure230

nT ′(v) ≤ δn before selecting it. The lower bound is slightly more complicated. Effectively, we start231

by noting that max(δ1, δ2) > ϵ, because otherwise the stopping condition for the outer loop would232

be met. Then, consider the total amount of “excess of large clusters”, or more precisely, the sum233

over all deviations from n/h of clusters larger than n/h (note if all clusters were n/h, it would be234

perfectly balanced). This total excess must be matched in the “deficiency of small clusters”, which235

is the sum of deviations of clusters smaller than n/h. Therefore, since there are at least h small or236

h large clusters, the largest deviation must be at most h times the smallest deviation, according to237

our accounting scheme. This allows us to bound δ ≥ ϵ/(h− 1). The tree that is inserted and deleted238

must have at least half this many leaves, since it is the larger child of a node with over δn leaves in its239

subtree. This gives our lower bound, showing we move at least a significant number of vertices each240

step.241

Next, we want to show the relative balance. Along with the analysis, we also get the runtime, which242

turns out to be near linear, assuming h≪ n.243

6

Lemma 2. SplitRoot (Algorithm 1) yields a hierarchy whose root is ϵ-relatively balanced with h244

children. In addition, it requires O(nh) time to halt.245

To see why this is true, it’s pretty obvious the root has h children, as this is set at the beginning and246

never changes. The runtime comes from our aforementioned accounting scheme: the total excess and247

deficiency is reduced by the number of leaves in the subtree we move at each step, which we showed248

in Lemma 1 is nϵ/(2(h− 1)) at least. This gives us a convergence time of O(h), and each step can249

be bounded by O(n) time as we search for our insertion and deletion spots. Finally, the balance250

comes from the fact that our stopping condition is equivalent to the root being relatively balanced.251

All that is left is to show the negative impact on the cost of edges that are separated by the algorithm.252

We bound it as follows:253

Lemma 3. In SplitRoot (Algorithm 1), for all e ∈ E that is separated:254

costT ′(e) ≤ n · w(e) ≤ 2(h− 1) · costT (e)/ϵ

Lemma 1 tells us that moved subtrees are at least of size ϵn/(2(h − 1)), which is a lower bound255

on the size of the smallest cluster containing any edge separated by the algorithm. This is because256

separated edges must have one endpoint in the deleted subtree and one outside, so their least common257

ancestor is an ancestor of the subtree. At worst, the final size of the smallest cluster containing such258

an edge is n, so the proportional increase is 2(h− 1)/ϵ at worst.259

3.2 Fair Tree Folding260

Next, we discuss how to achieve fairness by using MakeFair, as seen in Algorithm 2. This is our final261

recursive algorithm which utilizes SplitRoot. Assume we are given some hierarchical clustering.262

We start by running SplitRoot, to balance the split at the root and give it h children. Next we use a263

folding process similar to that of Knittel et al. [2023], but we use our shallow tree fold operator.264

More specifically, we first sort the children of the root by the proportional representation of the first265

color (say, red). Then, we do a shallow fold across various k-sized sets, defined as follows: according266

to our ordering over the children, partition the vertices into k contiguous chunks starting from the267

first vertex. For each i ∈ [h/k], we find the ith vertex in each chunk and fold them together. Notice268

that this is a k-wise fold since there are k chunks, and we end up with h/k vertices. This is repeated269

on each color. After this, we simply recurse on the children. If a child is too small to be balanced by270

SplitRoot, then we stop and give it a trivial topology (a root with many leaf-children).271

This completes our algorithm description. We now evaluate its runtime, degree of fairness, and272

approximation factor. To start, we show the degree of fairness achieved at the top level of the273

hierarchy.274

Lemma 4. MakeFair (Algorithm 2) yields a hierarchy such that all depth 1 vertices satisfy fairness275

under αi ≤ λi

n ·
1−ϵ

(1+ϵ)2

(
1− k(1+ϵ)

cih

)
and βi ≥ λi

n ·
1+ϵ

(1−ϵ)2

(
1 + 1−ϵ

cik

)
, where λi = cin.276

This proof is quite in depth, and most details are deferred to the appendix. At a high level, we are277

showing that the folding process guarantees a level of fairness. The parts in our partition are ordered278

by the density of the color (say, red). Since each final vertex is made by folding across one vertex279

in each part, meaning that the vertices have a relatively wide spread in terms of their density of red280

poitns. This means that red vertices are distributed relatively well across our final subtrees. This281

guarantees a degree of balance.282

The problem is that the degree of fairness still exhibits a compounding affect as we recurse. That is,283

since the first children are not perfectly balance, then in the next recursive step, the total data subset284

we are working on may now deviate from the true color proportions. This deviation is bounded by285

our result in Lemma 4, but it will increase proportionally at each step.286

Lemma 5. In MakeFair (Algorithm 2), let {λi}i∈[λ] be the proportion of each color and assume287

kλ << h. At any recursive call, the proportion of any color is (where λi = 1/ci for constant ci):288

λi

(
1− ϵ

(1 + ϵ)2

(
1− k(1 + ϵ)

cih

))O(log(n/h))

≤ λj
i ≤ λi

(
1 + ϵ

(1− ϵ)2

(
1 +

1− ϵ

cik

))O(log(n/h))

Also, the recursive depth is bounded above by O(log(n/h)).289

7

This fairly neatly comes from Lemma 4. Effectively, we increase the proportion of each color by290

the same factor each recursive step. All that is left to do is bound the recursive depth. Notice we291

start with n vertices. After splitting, our subtrees have size at most (1 + ϵ)n/h. After one fold, this292

is increased by a factor of k, and thus kλ after all folds. Interestingly, this doesn’t impact the final293

result significantly; it’s fairly similar to turning an n-sized tree into an n/h-sized tree, giving an294

O(log(n/h)) recursive depth. This will be sufficient to show our fairness.295

Algorithm 2 MakeFair

Input: A hierarchy tree T of size n ≥ 1/2ϵ over a graph G = (V,E,w) with vertices given one of
λ colors, and parameters h ∈ [n], k ∈ [h/(λ− 1)], and ϵ ∈ (0,min(1/6, 1/h)).

Output: A fair hierarchical clustering T ′.
1: T ′ = SplitRoot(T, h, ϵ)
2: h′ ← h
3: for each color ℓ ∈ [λ] do
4: Order {vi}i∈[h′] = children(root(T ′)) decreasing by ℓ(leaves(vi))

nT ′ (vi)

5: For all i ∈ [k], T ′ ← T ′.shallow_fold({T ′[vi+(j−1)k] : j ∈ [h′/k]})
6: h′ ← h′/k
7: end for
8: for each child vi of root(T ′) do
9: if n ≥ max(1/2ϵ, h) then

10: Replace T ′[vi]← MakeFair(T ′[vi], h, k, ϵ)
11: else
12: Replace T ′[vi] with a tree of root vi, leaves leaves(T ′[vi]), and depth 1.
13: end if
14: end for
Next, we evaluate the cost incurred at each stage in the hierarchy.296

Lemma 6. In MakeFair (Algorithm 2), for all e ∈ E that is separated before the recursive call:297

costT ′(e) ≤ O

(
2(h− 1)

ϵ
+

1 + ϵ

1− ϵ
kλ

)
costT (e)

As discussed before, the final cluster size should be (1 + ϵ)nkλ/h. Any separated edge must have a298

starting cluster size of at least (1− ϵ)n/h, as this is the size of the smallest cluster involved in tree299

folding. From this, it is simple to compute the proportional cost increase of a single recursive level.300

We must also account for the cost increase from the initial splitting, from Lemma 3.301

Another nice property of our method is that whenever an edge is separated, its endpoints’ least302

common ancester will no longer be involved in any further recursive step. This tells us:303

Lemma 7. In MakeFair (Algorithm 2), any edge e ∈ E is separated at only one level of recursion.304

Putting these two together pretty directly gives us our cost approximation.305

Lemma 8. In MakeFair (Algorithm 2), cost(T ′) ≤ O
(

2(h−1)
ϵ + 1+ϵ

1−ϵk
λ
)
cost(T).306

Finally, Theorem 1 comes directly from Lemmas 6 and 8.307

4 Simulations308

This section validates the theoretical guarantees of Algorithm 2. Specifically, we demonstrate that309

modifying an unfair hierarchical clustering using the presented procedure yields a fair hierarchy that310

incurs only a modest increase in cost.311

Datasets. We use two data sets, Census and Bank, from the UCI data repository Dua and Graff312

[2017]. Within each, we subsample only the features with numerical values. To compute the cost of a313

hierarchical clustering we set the similarity to be w(i, j) = 1
1+d(i,j) where d(i, j) is the Euclidean314

distance between points i and j. We color data based on binary (represented as blue and red) protected315

features: race for Census and marital status for Bank (both in line with the prior work of Ahmadian316

et al. [2020]). As a result, Census has a blue to red ratio of 1:7 while Bank has 1:3. We then subsample317

each color in each data set such that we retain (approximately) the data’s original balance. We use318

samples of size 512 for the balance experiments, and vary the sample sizes when assessing cost.319

8

Figure 3: Histogram of cluster balances after tree manipulation by Algorithm 2 on a subsample from
the Census dataset of size n = 512. The four panels depict: (A) cluster balances after applying the
(unfair) average-linkage algorithm, (B) the resultant cluster balances after running Algorithm 2 with
parameters (c, h, k, ε) = (8, 4, 2, 1/c · log2 n), (C) cluster balances after tuning c = 4, (D) cluster
balances after further tuning c = 2. The vertical red line on each plot indicates the balance of the
dataset itself.

For each experiment we conduct 10 independent replications (with different random seeds for the320

subsampling), and report the average results. We vary the parameters (c, h, k, ε) to experimentally321

assess their theoretical impact on the approximate guarantees of Section 3. Due to space constrains,322

we here present only the results for the Census dataset and defer the complimentary results on Bank323

to the appendix.324

Implementation. The Python code for the following experiments are available in the Supplementary325

Material. We start by running average-linkage, a popular hierarchical clustering algorithm. We then326

apply Algorithm 2 to modify this structure and induce a fair hierarchical clustering that exhibits a327

mild increase in the cost objective.328

Metrics. In our results we track the approximate cost objective increase as follows: Let G be our329

given graph, T be average-linkage’s output, and T ′ be Algorithm 2’s output. We then measure330

the ratio RATIOcost = costG(T
′)/costG(T). We additionally quantify the fairness that results331

from application of our algorithm by reporting the balances of each cluster in the final hierarchical332

clustering, where true fairness would match the color proportions of the underlying dataset.333

Results. We first demonstrate how our algorithm adapts an unfair hierarchy into one that achieves334

fair representation of the protected attributes as desired in the original problem formulation.335

In Figure 3, we depict the cluster balances of an unfair hierarchical clustering algorithm, namely336

“average-linkage”, and subsequently demonstrate that our algorithm effectively concentrates all337

clusters around the underlying data balance. In particular, we first apply the algorithm and then show338

how we the balance is further refined by tuning the parameters. The application of Algorithm 2339

dramatically improves the representation of the protected attributes in the final clustering and, as340

such, firmly resolves the problem of achieving fairness.341

Figure 4: Relative cost of the fair hierarchical
clustering resulting from Algorithm 2 com-
pared to the unfair clustering as a function of
the sample size n.

While reaching this fair partitioning of the data is the342

overall goal, we further demonstrate that, in modify-343

ing the unfair clustering, we only increase the cost344

approximation by a modest amount. Figure 4 illus-345

trates the change in relative cost as we increase the346

sample size n, the primary influence on our theoret-347

ical cost guarantees of Section 3. Specifically, we348

vary n in {128, 256, 512, 1024, 2048} and compute349

10 replications (on different random seeds) of the fair350

hierarchical clustering procedure. Figure 4 depicts351

the mean relative cost of these replications with stan-352

dard error bars. Notably, we see that the cost does353

increase with n as expected, but the increase relative354

to the unfair cost obtain by average linkage is only355

by a small multiplicative factor.356

As demonstrated through this experimentation, the357

simplistic procedure of Algorithm 2 not only ensures the desired fairness properties absent in358

conventional (unfair) clustering algorithms but accomplishes this feat with a negligible rise in the359

overall cost. These results further highlight the immense value of our work.360

9

References361

Sara Ahmadian, Alessandro Epasto, Ravi Kumar, and Mohammad Mahdian. Clustering without362

over-representation. In KDD, pages 267–275, 2019.363

Sara Ahmadian, Alessandro Epasto, Marina Knittel, Ravi Kumar, Mohammad Mahdian, Benjamin364

Moseley, Philip Pham, Sergei Vassilvitskii, and Yuyan Wang. Fair hierarchical clustering. In365

Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin,366

editors, Advances in Neural Information Processing Systems 33: Annual Conference on Neural367

Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.368

Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. Machine bias: There’s software used369

across the country to predict future criminals. and it’s biased against blacks. 2016.370

Solon Barocas, Moritz Hardt, and Arvind Narayanan. Fairness and Machine Learning. www.371

fairmlbook.org, 2019.372

Omer Ben-Porat, Fedor Sandomirskiy, and Moshe Tennenholtz. Protecting the protected group:373

Circumventing harmful fairness. In Thirty-Fifth AAAI Conference on Artificial Intelligence, pages374

5176–5184. AAAI Press, 2021.375

Suman Kalyan Bera, Deeparnab Chakrabarty, Nicolas Flores, and Maryam Negahbani. Fair algorithms376

for clustering. In NeurIPS, pages 4955–4966, 2019.377

Ioana O Bercea, Martin Groß, Samir Khuller, Aounon Kumar, Clemens Rösner, Daniel R Schmidt,378

and Melanie Schmidt. On the cost of essentially fair clusterings. In APPROX-RANDOM, pages379

18:1–18:22, 2019.380

M. Bogen and A. Rieke. Help wanted: An examination of hiring algorithms, equity, and bias.381

Technical report, Upturn, 2018.382

Brian Brubach, Darshan Chakrabarti, John P. Dickerson, Samir Khuller, Aravind Srinivasan, and383

Leonidas Tsepenekas. A pairwise fair and community-preserving approach to k-center cluster-384

ing. In Proceedings of the 37th International Conference on Machine Learning, volume 119 of385

Proceedings of Machine Learning Research, pages 1178–1189. PMLR, 2020.386

Moses Charikar and Vaggos Chatziafratis. Approximate hierarchical clustering via sparsest cut and387

spreading metrics. In SODA, pages 841–854, 2017.388

Junjie Chen, Shu Zhang, Xiaoting He, Qingwei Lin, Hongyu Zhang, Dan Hao, Yu Kang, Feng389

Gao, Zhangwei Xu, Yingnong Dang, and Dongmei Zhang. How incidental are the incidents?390

characterizing and prioritizing incidents for large-scale online service systems. Association for391

Computing Machinery, 2021a. ISBN 9781450367684.392

Junjie Chen, Shu Zhang, Xiaoting He, Qingwei Lin, Hongyu Zhang, Dan Hao, Yu Kang, Feng393

Gao, Zhangwei Xu, Yingnong Dang, and Dongmei Zhang. How incidental are the incidents?394

characterizing and prioritizing incidents for large-scale online service systems. Association for395

Computing Machinery, 2021b. ISBN 9781450367684.396

Yujun Chen, Xian Yang, Hang Dong, Xiaoting He, Hongyu Zhang, Qingwei Lin, Junjie Chen,397

Pu Zhao, Yu Kang, Feng Gao, Zhangwei Xu, and Dongmei Zhang. Identifying linked incidents398

in large-scale online service systems. Association for Computing Machinery, 2020. ISBN399

9781450370431.400

Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, and Sergei Vassilvitskii. Fair clustering through401

fairlets. In NIPS, pages 5029–5037, 2017.402

Vincent Cohen-Addad, Varun Kanade, Frederik Mallmann-Trenn, and Claire Mathieu. Hierarchical403

clustering: Objective functions and algorithms. In SODA, pages 378–397, 2018.404

Sanjoy Dasgupta. A cost function for similarity-based hierarchical clustering. In STOC, pages405

118–127, 2016.406

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://archive.ics.407

uci.edu/ml.408

10

www.fairmlbook.org
www.fairmlbook.org
www.fairmlbook.org
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard S. Zemel. Fairness409

through awareness. In Shafi Goldwasser, editor, Innovations in Theoretical Computer Science410

2012, Cambridge, MA, USA, January 8-10, 2012, pages 214–226. ACM, 2012.411

Marina Knittel, Max Springer, John P. Dickerson, and MohammadTaghi Hajiaghayi. Generalized412

reductions: Making any hierarchical clustering fair and balanced with low cost, 2023.413

Alexander Kraskov, Harald Stögbauer, Ralph G. Andrzejak, and Peter Grassberger. Hierarchical414

clustering using mutual information. CoRR, q-bio.QM/0311037, 2003.415

Heidi Ledford. Millions of black people affected by racial bias in healthcare algorithms. Nature,416

2019.417

Benjamin Moseley and Joshua Wang. Approximation bounds for hierarchical clustering: Average418

linkage, bisecting k-means, and local search. In NIPS, pages 3094–3103, 2017.419

Rohan Ramanath, Monojit Choudhury, and Kalika Bali. Entailment: An effective metric for compar-420

ing and evaluating hierarchical and non-hierarchical annotation schemes. In Stefanie Dipper, Maria421

Liakata, and Antonio Pareja-Lora, editors, Proceedings of the 7th Linguistic Annotation Workshop422

and Interoperability with Discourse, LAW-ID@ACL 2013, August 8-9, 2013, Sofia, Bulgaria, pages423

42–50. The Association for Computer Linguistics, 2013.424

AN Selvan, LM Cole, L Spackman, S Naylor, and Wright C. Hierarchical cluster analysis to aid425

diagnostic image data visualization of ms and other medical imaging modalities. In Molecular426

Biotechnology, 2005.427

Latanya Sweeney. Discrimination in online ad delivery. ACM Queue, 2013.428

11

A Limitations429

Fair machine learning strives to combat the limitations of vanilla machine learning by providing430

a means for bias mitigation for any desired quantifiable bias. However, fair research itself has its431

own limitations. First, “fairness” can be defined in a number of ways. For instance, Dwork et al.432

[2012] explores notions of fairness in classification problems, proposing a type of “individual fairness”433

which guarantees that similar individuals are treated similarly. This has been extended to clustering434

by only the work of Brubach et al. [2020]. Clustering has been predominantly viewed through the435

lens of “group fairness” which guarantees that different protected classes receive similar, proportional436

treatment. This was first proposed in clustering by Chierichetti et al. [2017] and expanded upon in437

many further works [Ahmadian et al., 2019, Bera et al., 2019, Bercea et al., 2019], including previous438

fair hierarchical clustering work [Ahmadian et al., 2020, Knittel et al., 2023] and this work. Not only439

is it inherently difficult to account for both of these simultaneously, in some sense these two notions440

are at odds: if we treat similar individuals similarly, it becomes much harder to impose a diverse441

range of treatments to individuals in each group, as they often are quite similar themselves. This442

illustrates the necessity of applying fair algorithms on a case by case basis, carefully considering443

what fair effect is most desirable.444

Second, bias mitigation through fair algorithmic techniques has been shown to cause harm in at least445

one application [Ben-Porat et al., 2021]. Thus, all fair machine learning techniques, including ours,446

should be used with great caution and consideration of all downstream effects. We defer the reader to447

Barocas et al. [2019] as well as the Fair Clustering Tutorial [AAAI 2023] for further perspectives on448

fair machine learning and its limitations.449

The main results of this paper are theoretical guarantees on algorithmic performance. Naturally, this450

provides additional limitations, predominantly in that the guarantees only hold under the assumptions451

clearly stated in this paper. For instance, our main algorithm requires that each color represents a452

constant fraction of the total data. This assumption is quite realistic and can be found throughout fair453

learning literature, but there are certain practical instances where our results may not be applicable.454

In addition, since our proofs only consider worst-case analysis, we do not know much about the455

average-case guarantees of our algorithms (other than they are strictly better than the worst case).456

We account for this through empirical evaluation, though this is inherently limited as tested data sets457

cannot represent all potential applications.458

Finally, our work focuses on the cost objective function. While cost is highly regarded by the459

hierarchical clustering community [Dasgupta, 2016], it may not be an appropriate metric for all460

applications. Moreover, it is sometimes viewed as impractical in that it is quite difficult to provide461

worst-case guarantees for [Charikar and Chatziafratis, 2017]. Future work might consider evaluating462

our algorithms using other objectives such as revenue Moseley and Wang [2017] or value Cohen-463

Addad et al. [2018] to see how they perform.464

B Proofs465

This section contains the formal proofs for all of our lemmas and theorems.466

Proof of Lemma 1. We start by comparing δ and ϵ at some iteration. Consider vmin and vmax at467

that iteration. Without loss of generality, say n/h− nT ′(vmin)/n ≤ nT ′(vmax)/n− n/h, implying468

δ = δ1 = n/h − nT ′(vmin)/n. Additionally, since the while loop executed, we know either469

nT ′(vmax) = n(1/h+ δ2) > n(1/h+ ϵ) or nT ′(vmin) = n(1/h− δ1) < n(1/h− ϵ). With a little470

algebraic simplification, this gives us that δ1 > ϵ or δ2 > ϵ. Since we said δ = δ1, δ1 must be the471

smaller, so we can safely assume δ2 > ϵ.472

Now, we know conservatively that δ2 < nT ′(vmax)/n ≤ 1. Since nT ′(vmin)/n has the largest473

deviation from 1/h of all of v′ ∈ children(root(T ′)) with nT ′(v′) ≤ n/h, this means that 1/h −474

nT ′(v′)/n ≤ δ1 for all v′ ∈ children(root(T ′)), in other words, nT ′(v′) ≥ n(1/h − δ1). Since475

children(root(T ′)) form a clustering of the data,
∑

v′∈children(root(T ′)) nT ′(v′) = n. In addition,476

because of our bound:477

12

https://www.fairclustering.com/

∑
v′∈children(root(T ′))

nT ′(v′) =
∑

v′∈children(root(T ′))\vmax

nT ′(v′) + nT ′(vmax)

≥ (h− 1) · n(1/h− δ1) + n/h+ nδ2
= n− n(h− 1)δ1 + nδ2

Recall our original value is n. Thus n ≥ n− n(h− 1)δ1 + nδ2. Finally, we get δ1 ≥ δ2/(h− 1).478

This means δ ≥ ϵ/(h− 1). A similar math can show the same result if δ2 is the smaller value. For an479

upper bound, we have that since the smallest cluster size is 0, δ ≤ δ1 ≤ 1/h.480

Let p be the parent of v. By the halting condition of the while loop on Line 13, we know nT ′(p) > δn,481

otherwise the loop would have halted earlier. Since v is the right child of p, it is the larger of two482

children, implying nT ′(v) ≥ nT ′(p)/2 > δn/2, which is just at least ϵ/(2(h− 1)) by our previous483

math. Finally, since the loop did halt on v, we know nT ′(v) ≤ δn.484

Proof of Lemma 2. First off, clearly the root has h children, because we give it h children and never485

change this.486

For the runtime, notice that we always decrease the number of leaves of the child with the max487

number of leaves. Let ntot =
∑

v′∈childrenv:nT ′ (v′)>1/h nT ′(v′)− n/h ≤ n. Note that the number488

of vertices in this summation is only ever reduced, since we swap at most δn vertices from the largest489

to the smallest vertex, implying the smallest vertex will never exceed n/h. Since vmax is necessarily490

involved in this sum (if not, then nT ′(vmax) = 1/h, implying all children are of equal size, meaning491

the algorithm already halted), and nT ′(vmax) is reduced by at least ϵn/(2(h− 1)) each iteration by492

Lemma 1, we require at most 2(h− 1) iterations of the while loop before we halt. In each iteration,493

we traverse down two subtrees to delete and insert, which takes at most O(n) time each, for a total of494

O(nh) time to complete the algorithm.495

Finally, assume for contradiction it is not ϵ-relatively balanced with respect to h children. This means496

that in the output, either: 1) some vertex has under (1/h− ϵ)n leaves in its subtree, or 2) some vertex497

has over (1/h + ϵ)n leaves in its subtree. In the first case, this means nT ′(vmin) < (1/h − ϵ)n,498

implying the while loop will continue to execute, contradicting that this is the resulting output. A499

similar argument holds in the second case. Thus, the root is ϵ-relatively balanced.500

Proof of Lemma 3. Consider an edge e = (x, y) that is separated when we delete and insert. This501

can only happen if, without loss of generality, x is in the deleted/inserted component and y is not.502

Recall v whose subtree is deleted and reinserted. By Lemma 1, nT (v) > ϵn/(2(h− 1)).503

Since x is a descendant of v and y is not, their lowest common ancestor v′ must be an ancestor of v.504

Thus nT (v
′) > nT (v) > ϵn/(2(h− 1)). Thus, costT (e) = nT (v

′) · w(e) ≥ nϵ · w(e)/(2(h− 1)).505

In the end, the maximum cost is costT ′(e) ≤ n ·w(e), therefore costT ′(e) ≤ 2(h−1)
ϵ . This concludes506

the proof.507

508

Proof of Lemma 4. For simplicity, assume kλ|h. Our algorithm first orders the depth 1 vertices509

decreasing by the fractional representation of the first color, say red. It then partitions it into parts of510

size h/k according to this order and folds all vertices of the same index in their part together. That511

is, k clusters are merged. We begin with h vertices, but after the (x− 1)th fold, we only have h/kx512

remaining. Let x be the iteration we are at in the folding process.513

Let f(i, j) denote the ith index in the jth partition of V , i.e., f(i, j) = jh/k + i. Then for every514

i ∈ [h/k], we create a new vertex ui by folding vf(i,j) together for all j ∈ k. Let ri denote the515

number of red vertices in ui. For any i:516

ri/nT ′(ui) =
1

nT ′(ui)

∑
j∈[k]

red(vf(i,j)) ≤
1

nT ′(ui)
red(vf(1,1)) +

1

nT ′(ui)

∑
j∈{2,...,k}

red(vf(i,j))

13

Note that if we perfectly balanced all cluster sizes at n/h, then red(vf(1,1)) ≤ n/h = nT ′(ui)/k517

would hold. However, vf(1,1) may be a factor of at most 1 + ϵ larger and nT ′(ui) may be a factor of518

at least 1− ϵ smaller. This means that our first term simplifies to 1+ϵ
k(1−ϵ) .519

For our second term, we note that red(vf(i,j))/nT (vf(i,j)) ≤ red(vf(i,j−1))/nT (vf(i,j−1)). Since520

we have relative balance, all nT values are within a factor of 1+ϵ
1−ϵ of each other. This means521

red(vf(i,j)) ≤ 1+ϵ
1−ϵred(vf(i′,j−1)) for all i′ ∈ [h/k]. We can also take this as an average, as522

in, red(vf(i,j)) ≤ k(1+ϵ)
h(1−ϵ)

∑
i′∈[h/k] red(vf(i′,j−1)). Conservatively, this results in the summation523 ∑

j∈{2,...,h/k}
∑

i′∈[k] red(vf ′,j−1)). Here, we are practically counting (actually slightly undercount-524

ing) the total number of reds, which we call R. Plugging all of this in:525

ri/nT ′(ui) ≤
1 + ϵ

k(1− ϵ)
+

(1 + ϵ)

n(1− ϵ)2
R =

R

n
· 1 + ϵ

(1− ϵ)2

(
1 +

1− ϵ

cRk

)
Where since R = O(n), we let cR be the constant satisfying R ≥ cRn.526

All that is left is to consider the lower bound. We can apply similar simplifications as before, but now527

we reverse the bound.528

ri/nT ′(ui) =
1

nT ′(ui)

∑
j∈[k]

red(vf(i,j)) ≥
1− ϵ

nh(1 + ϵ)2

∑
j∈[k−1]

∑
i′∈[k]

red(vf(i′,j+1))

Again, we are undercounting R in the nested summations, though it is more problematic in the lower529

bound. Our missing terms are
∑

i′∈[k] red(vf(i′,1)). We can only bound this by the total size of the530

first partition, which is at most (1 + ϵ)kn/h.531

ri/nT ′(ui) ≥
1− ϵ

n(1 + ϵ)2
(R− (1 + ϵ)kn/h) =

R

n
· 1− ϵ

(1 + ϵ)2

(
1− k(1 + ϵ)

cRh

)
Marina: still need to account for the latter colors!532

533

Proof of Lemma 5. We prove this inductively, saying at the jth level of recursion,534

λi

(
1−ϵ

(1+ϵ)2

(
1− k(1+ϵ)

cih

))j

≤ λj
i ≤ λi

(
1+ϵ

(1−ϵ)2

(
1 + 1−ϵ

cik

))j

. This is obviously true in the535

base call to the algorithm, since λ′
i = λi. Assume this holds for level j.536

In level j + 1, any instance of the problem is really a subproblem on the hierarchy induced on a537

cluster from the jth level of recursion. In that level of recursion, the number of vertices of color i, our538

induction shows that λi

(
1−ϵ

(1+ϵ)2

(
1− k(1+ϵ)

cih

))j

≤ λj
i ≤ λi

(
1+ϵ

(1−ϵ)2

(
1 + 1−ϵ

cik

))j

. By Lemma 4,539

we can bound how much worse this gets by an additional multiplicative factor, yielding the desired540

inductive proof.541

All that is left is to show the depth. At any recursive level, we begin with clusters of size of at most542

(1 + ϵ)n/h after balancing. We fold k vertices together at most λ times, for a total size of at most543

(1 + ϵ)nkλ/h. This means after the jth iteration, we have n((1 + ϵ)kλ/h)j vertices left. Once we544

have only h vertices left, we will certainly stop. With a little simple arithmetic, we find this occurs545

when j ≤ log(n/h)
log(h/((1+ϵ)kλ))

= O(log(n/h)) as long as h ≥ (1 + ϵ)kλ. This is the maximum number546

of iterations we require. Plugging this into our inductive finding gives the complete proof.547

Proof of Lemma 6. We already know that an edge e may be separated by SplitRoot, and if so, it548

incurs a cost of 2(h − 1)/ϵ. If this occurs, note that we already consider the worst case scenario:549

when costT ′(e) = n · w(e). Therefore, if an edge is involved in separation in MakeFair, the cost550

increase estimate cannot get worse.551

14

We now consider an edge e that is separated in MakeFair. It is not too hard to see that the cluster552

containing e must have been one of the depth 1 clusters, because otherwise e would not be affected by553

the algorithm. Therefore, nT (e) ≥ (1− ϵ)n/h (again, assuming it was not affected by the balancing).554

In the end, the max cluster size e belongs to will be (1+ ϵ)nkλ/h, thus incurring a total cost increase555

of 1+ϵ
1−ϵk

λ.556

Proof of Lemma 7. This is not too hard to see. If an edge e is separated in a recursive level, that557

means the new worst-case ancestor is either the root at that level of recursion or the next. In the558

former case, e is not involved in any further trees in the recursive process. In the latter case, it is559

contained in the root of one more recursive process. As this is already the most costly way to cluster560

e in the subproblem, it cannot be further separated.561

Proof of Lemma 8. This simply follows from Lemmas 6 and 7. The former shows the cost of562

separating an edge at a recursive level, and the latter says that this happens at most once to each563

edge.564

Proof of Theorem 1. Relative balance holds because we create relative balance in SplitRoot. While565

we do fold these nodes together, merging nodes does not break relative balance. Our approximation566

factor is proved in Lemma 8. Lemma 5 gives us a bound on the proportion of each color in each567

recursive level, which in effect also tells us the actual fairness of each cluster in the hierarchy (i.e., by568

looking at the proportion of a certain color when we recurse on a cluster’s subtree). This yields the569

desired fairness guarantee.570

Finally, we showed the runtime for SplitRoot is O(n′h) in Lemma 2, where n′ is the current tree size.571

In MakeFair, we require simple iteration and sorting to process the colors, and folding is a pretty572

simple process. Thus the first for loop only requires O(n′ log n′) time per execution for a total of573

O(λn′ log n′) time. At any recursive level, a node is involved in at most one recursive instance. This574

means that the total time to execute a single recursive level is O(n(h+ λ log n)). Finally, Lemma 5575

also tells us the recursive depth is bounded by O(log(n/h)) = O(log n). Thus the total runtime is576

O(n log n(h+ λ log n)).577

15

C Additional Experiments578

We here demonstrate how our algorithm adapts an unfair hierarchy into one that achieves fair579

representation of the protected attributes on the Bank dataset through a complimentary simulation to580

that of Section ??581

Figure 5: Histogram of cluster balances after tree manipulation by Algorithm 2 on a subsample from
the Bank dataset of size n = 512. The four panels depict: (A) cluster balances after applying the
(unfair) average-linkage algorithm, (B) the resultant cluster balances after running Algorithm 2 with
parameters (c, h, k, ε) = (8, 4, 2, 1/c · log2 n), (C) cluster balances after tuning c = 4, (D) cluster
balances after further tuning c = 2. The vertical red line on each plot indicates the balance of the
dataset itself.

16

	Introduction
	Our Contributions

	Preliminaries
	The Vanilla Problem
	Fairness and Balance Constraints
	Tree Operators

	Main Algorithm
	Root Splitting and Balancing
	Fair Tree Folding

	Simulations
	Limitations
	Proofs
	Additional Experiments

