A Resource scaling for quantum backpropagation methods

What comprises classical memory and time complexity, is purposely left vague. The details depend on the constituent types of operations needed to compute a function and its gradients, as well as the memory access model available. But, details aside, backpropagation merely refers to gradient computation in a particular manner, and, any reasonably successful implementation of it incurs a constant overhead in relative complexity, as captured by Equations (1) and (2). With this in mind, we elaborate on the operational definition of quantum backpropagation scaling in terms of memory. Thereafter, we explain the failure of various current gradient methods to achieve backpropagation scaling.

A. 1 Memory complexity of the function

Recall the function of interest $F(\theta)=F(\theta)=\operatorname{tr}[\rho(\theta) O]$, where O is an observable and $\rho(\theta)$ is a parameterized quantum state built from M parameters, acting either on an unknown initial state ρ or simplified initial state $\rho=|0\rangle\langle 0|$. Classifying the memory used to compute the function as a combination of n qubits, plus storage for each of the M parameters with appropriate precision, δ, implies

$$
\begin{equation*}
\operatorname{MEMORY}(F(\theta))=\tilde{O}(n+M \log (1 / \delta)) \tag{10}
\end{equation*}
$$

To derive the computational cost, assume unit cost access to any element of the circuit family $\left\{U_{j}\right\}$. If an incoherent measurement scheme is used, measuring O and estimating $F(\theta)$ to an acceptable fixed precision, ε, on repeated preparations of $\rho(\theta)$ incurs a cost that scales as $\operatorname{TIME}(F(\theta))=\tilde{O}\left(\frac{M}{\varepsilon^{k}}\right)$, for some integer k. This sets the scene for the computational requirements of computing $F^{\prime}(\theta)$, which should, importantly, be achieved with a modest space overhead to truly replicate backpropagation.

A. 2 Current gradient methods

Replicating classical backpropagation efficiency in a quantum setting requires more effort, which we elaborate on next by discussing how and why current gradient methods fail to achieve this efficiency. For further illustration, Figure 2 provides a hypothetical comparison between the popular gradient method - the parameter-shift rule - and true quantum backpropagation. The plot incorporates assumptions about time to compute native quantum operations taken from Babbush et al. [2021].

A.2.1 Naive sampling

The gradient of the function $F(\theta)$ expressed in Equation (4) also takes a simpler form using the parameter-shift rule and properties of Pauli generators [Mitarai et al., 2018, Schuld et al., 2019]

$$
\begin{equation*}
\left[F^{\prime}(\theta)\right]_{\theta_{k}}=F\left(\theta+\frac{\pi}{2} \hat{\theta}_{k}\right) \tag{11}
\end{equation*}
$$

where $\hat{\theta}_{k}$ is a unit vector along the $k^{\text {th }}$ direction of θ. Thus far, sampling schemes constructed to estimate (11), perform a destructive measurement that typically only retrieves a partial amount of information for one component of the gradient. As a result, reducing the infinity norm error in the gradient such that we expect $\left\|F^{\prime}(\theta)-\hat{F}^{\prime}(\theta)\right\|_{\infty} \leq \varepsilon$ with reasonable probability, has a cost that scales like converging each component, i.e.

$$
\begin{align*}
\operatorname{TIME}\left(F^{\prime}(\theta)\right) & \propto M \log M \operatorname{TIME}(F(\theta)) \tag{12}\\
& =\tilde{O}\left(M^{2} / \varepsilon^{2}\right) \tag{13}
\end{align*}
$$

While this quadratic dependence on the number of parameters may not seem problematic, a linear dependence was the necessary catalyst in the age of modern deep learning, with overparameterized networks that perform exceedingly well on practical tasks.

A.2.2 Fast gradient algorithm

A method put forth by Jordan [2005] numerically estimates the gradient of a classical black-box function at a given point, using a quantum computer. The algorithm impressively requires a single black-box query to estimate the full gradient with a desired precision, whilst satisfying the memory

Figure 2: Quantum backpropagation scaling. The parameter-shift rule is plotted alongside true quantum backpropagation scaling. On the x-axis is time in number of seconds required to compute a single estimate of the gradient in log scale, with common time points stated explicitly. On the y-axis is the number of parameters, also in log scale, that may be optimized using each method, for a given amount of time. We make simple assumptions, motivated from the work in Babbush et al. [2021]. Namely, we assume a minimum system size of $n=100$ qubits. Further, assuming a favourable time of $10 \mu \mathrm{~s}$ to compute one parameterised operation (which is 1 order of magnitude less than the time to compute one Toffoli gate), the time for one primitive is lower bounded by $100 \times 10 \mu s=T_{q}$. Scaling in time is then roughly $M^{2} \cdot T_{q}$ for the parameter-shift rule and $M \cdot \operatorname{polylog}(M) \cdot T_{q}$ for quantum backpropagation. Furthermore, $\varepsilon=O(1)$.
requirement in (2). We elaborate on the connection between this approach and backpropagation on a quantum computer when the function considered is classical and reversible, in Appendix B.1. But, as shown by Gilyén et al. [2019], when parameters are considered to be rotation angles like those in variational circuits, a different query model needs to be applied and the original single-query advantage becomes unattainable. With the appropriate query model, the known bounds imply a computational cost of $\tilde{O}\left(M \sqrt{M} / \varepsilon^{2}\right)$ using amplitude estimation, and, in a high precision regime, $\tilde{O}(M \sqrt{M} / \varepsilon)$ is worst-case optimal even with commuting Pauli operators [Huggins et al., 2021]. This worst-case bound was proved in a setting where operators commute, indicating that commutativity need not be helpful in other settings.

A.2.3 Simultaneous perturbation stochastic approximation (SPSA) algorithm

A few studies have investigated the use of the simultaneous perturbation stochastic approximation (SPSA) algorithm to optimize parameterized quantum circuits [Benedetti et al., 2019, Hoffmann and Brown, 2022, Gacon et al., 2021]. It is argued that SPSA is computationally efficient since its requires two function evaluations to estimate the gradient, irrespective of M. This seemingly satisfies the scaling we require, however, the approximation of the gradient has limited accuracy which affects the number of optimization steps needed for SPSA to converge to a minimum. As M increases, the variance of the gradient estimate increases and, thus, to counteract this, a smaller learning rate must be used - increasing the number of optimization steps - or more samples are needed to estimate the gradient with an appropriate accuracy at every step. In either case, one cannot escape a dependence on M, which indirectly affects the number of function evaluations needed to estimate gradients or perform gradient-based optimization adequately. More formally, the gradient estimator for component j of a function, given by SPSA, is

$$
\begin{equation*}
\bar{F}^{\prime}(\theta)_{j}=\frac{F(\theta+c \Delta)-F(\theta-c \Delta)}{2 c \Delta_{j}} \tag{14}
\end{equation*}
$$

where c is a step size constant and $\Delta \in \mathbb{R}^{M}$ is a size M random variable with independent, zero-mean, bounded second moments, and bounded inverse moments, i.e. $\mathbb{E}\left(|\Delta|_{j}^{-1}\right)$ is uniformly bounded for all
j. A common choice for Δ is a Bernoulli random variable with equal probabilities of being +1 or -1 for every entry.

Consider a special case, F, for pedagogical purposes such that the gradient at the point θ is a constant g along all coordinates, the function is nearly linear at the point examined, and the number of coordinates M is large in a central limit theorem sense. We then have, $F^{\prime}(\theta)_{j}=g$ for all j, and $F(\theta+c \Delta) \approx F(\theta)+c F^{\prime}(\theta)^{T} \Delta=F(\theta)+c g \overrightarrow{1}^{T} \Delta \approx F(\theta)+\mathcal{N}(0, c g M)$. On a quantum computer, the estimator will be constructed by taking independent measurements of $F(\theta \pm c \Delta)$ and then rescaling the sample mean by $1 / 2 c \Delta_{j}$. We then see that the variance of an individual term in this case is given by

$$
\begin{equation*}
\operatorname{Var}\left[\bar{F}^{\prime}(\theta)_{j}\right]=\frac{F(\theta)}{c}+g M \tag{15}
\end{equation*}
$$

As such the number of samples required to reach a precision ϵ with high probability in even a single gradient component scales as

$$
\begin{equation*}
N_{s}=\frac{F(\theta) / c+g M}{\epsilon^{2}} \tag{16}
\end{equation*}
$$

which clearly increases linearly with the number of components M, and does not achieve the desired scaling despite the estimator being constructed from only two function calls. It is also worth noting that the estimates for each component of the gradient are highly correlated across the vector, which can lead to larger errors than would be otherwise expected under alternative norms. This is intuitively expected, as it should not generally be possible to determine M independent random variables from a single value without increasing the precision of the estimates at least proportionately. We note in passing that generally to obtain an unbiased estimator one must also take c to be on the order of ϵ, but this dependence can be improved with higher order formulas to ϵ^{-k} for some $k>1$ [Spall, 2000], but this is not central to our study.

B Classical backpropagation in quantum circuits

In order to frame the discussion, it is worth considering a number of closely related setups as they would appear if performed on a quantum computer. In particular, in similar notation and cost models, its interesting to consider how classical backpropagation would look in a quantum circuit for a deterministic classical function and perhaps the closer classical analog, classical parameterized Markov processes on the space of probabilistic bits.

B. 1 Classical functions

First we will look at an entirely classical function using reversible arithmetic for the purposes of analogy, using a simplified function but with simple generalizations available. This will be helpful for setting the stage in terms of notation and scaling, and also help make a connection with the gradient algorithm of Jordan [2005]. Consider a classical function f that depends on some set of parameters $x \in \mathbb{R}^{M}$ via more elementary functions f_{i}. For this example, we assume a simple dependency graph for the overall function $f: \mathbb{R}^{M} \rightarrow \mathbb{R}$ is the simple composition of elementary functions, $f=f_{N} \circ f_{N-1} \circ \ldots \circ f_{1}$. Given this structure, we denote a set of intermediate variables z_{i}, such that $z_{i}=x_{i}$ for $i \in[1, M]$ and $z_{i}=f_{i}\left(z_{\alpha(i)}\right)$ for $i \in[M+1, n]$ where $\alpha(i)$ is the subset of variables needed to evaluate f_{i}, noting that we are implicitly including a trivial set of elementary functions f_{i} that are simply the identity operation. We also assume that no z_{i} depends on itself, each z_{i} appears exactly once, and derivatives of the elementary operations are readily available, that is a simple function for evaluating $f_{i}^{\prime}(z)$ is available for any input z.

Given these definitions, we are ready to describe the algorithm for obtaining the gradient $\nabla_{x} f(x)$. We consider a universal precision δ for all parameters and function values, such that classical numbers use $O(\log (1 / \delta))$ qubits for their representation. For initialization, we store each of the parameters x_{i} in their own quantum register $\left\rangle_{x}\right.$ to run the circuit fully within the quantum computer. In the first step, we run the function evaluation in the so-called forward pass and store the intermediate values z_{i} each in their own quantum register $\left\rangle_{z}\right.$ using the elementary implementations of f_{i} as reversible circuits. Taking now an additional set of auxiliary registers, $\left\rangle_{\lambda}\right.$ with the same size as the intermediate variables, we assign $\lambda_{n}=1$, and compute the backwards pass according to reversible
implementations of $\lambda_{j}=\sum_{i \in \beta(j)} \partial z_{j} f_{i}\left(z_{\alpha(i)}\right)$ where $\beta(i)$ is the outgoing nodes for intermediate variables z_{i}. In the final step, we may simply read off the λ register to find $\nabla_{x} f(x)=\lambda_{1: M}$.
Considering a general auxiliary register $\left\rangle_{A}\right.$, these steps may be written in quantum form as

$$
\begin{equation*}
|x\rangle_{x}|0\rangle_{z}|0\rangle_{\lambda}|0\rangle_{A} \rightarrow^{\text {Forward }}|x\rangle_{x}|z\rangle_{z}|0\rangle_{\lambda}\left|r_{f}\right\rangle_{A} \rightarrow^{\text {Backward }}|x\rangle_{x}|z\rangle_{z}|\lambda\rangle_{\lambda}\left|r_{b}\right\rangle_{A} \tag{17}
\end{equation*}
$$

where r_{f} and r_{b} denote the state of the arithmetic trash register after the forward and backwards pass respectively. Given our precision specification, the size of each of the x register is $\tilde{O}(M)$ and the size of the z and λ registers are $\tilde{O}(N)$. This representation is a bit wasteful in that as the backwards pass proceeds one can overwrite the intermediate values z with λ when they are no longer needed, but writing it this way clarifies the steps. If we assume a typical setup where the number of free parameters is roughly on par with the number of elementary functions, then we see that the total storage for the primary registers is $\tilde{O}(M)$ and similar for the ancillary register. Similarly, the amount of computation required in both the forward and backwards pass is $\tilde{O}(M)$, or approximately twice the cost of evaluating the function in the forward direction, meeting the scaling requirements of backpropagation with some small overhead for maintaining reversibility.
It is useful to compare some aspects of this approach to the quantum algorithm of Jordan for evaluating gradients of classical functions using a single black box function query [Jordan, 2005]. Considering only the computation, if we approximate the forward pass and backwards pass to each be the same cost as one black box function query, then up to log factors in precision of evaluation this method is a constant factor of two more expensive. Said another way, there is no quantum advantage in evaluating the gradient when one has white box access to the classical function implementation and it satisfies the simple dependencies requirements. In terms of storage requirements, the algorithm of Jordan requires the same x register, but makes no use of the intermediate variable registers such as z or λ (which can be combined in real implementations to be approximately the size of the x register). This use of intermediate storage is sometimes characterized as a form of dynamic programming, where the storage of intermediate variables reduces overall computational complexity. Moreover, this version takes advantage of analytical gradients of the subfunctions which can be evaluated to high precision more easily than depending on the finite difference formulations of gradient algorithms as in Jordan's technique.
So in summary, both a quantum implementation of classical backpropagation and Jordan's technique have a computational cost that is constant in the number of parameters if our cost model considers overall function evaluations as the cost model. This represents an exponential improvement over naive finite difference computations or symbolic evaluation of derivatives one element at a time. The backpropagation technique utilizes an extra storage register and knowledge of the problem structure, as is common in dynamic programming, while Jordan's algorithm needs only black-box queries. Both of the techniques assume bitwise access to the oracle as a classical function.

B. 2 Classical parameterized Markov chains

In the previous section, the comparison of classical backpropagation and Jordan's algorithm made use of bitwise access to a classical, deterministic function. The case of a classical function encoded in bits helps frame the discussion in not only scaling but also the sense in which classical parameterized functions are perhaps not the best analog for parameterized quantum circuits. A key aspect of this difference was highlighted in Gilyén et al. [2019] by showing that in the black box setting, it was more appropriate to consider current parameterized quantum circuits as a phase or amplitude oracle, in which case they prove a lower bound of at least $M^{1 / 2}$ calls to the black box (in contrast to $O(1)$), ruling out the desired backpropagation scaling except for special cases. This contrast motivates asking whether the intuitive origin of this lower bound is related more to the black box nature of the access, the quantum nature of the parameterization, or merely the probabilistic features of the parameterization. Here we show that a classical analog to parameterized quantum circuits, namely parameterized Markov processes do indeed allow the analog of classical backpropagation which helps highlight that the difficulty in achieving constant scaling is due to the quantum nature of the problem.
To draw an analogy between quantum and probabilistic classical states for our purposes, we will introduce a small number of analogous concepts that are considered in greater depth by Baez and Biamonte [2012]. A parameterized quantum state $|\psi(\theta)\rangle$ is an L^{2} normalized state such that
$\int_{S} d s|\psi(s ; \theta)|^{2}=1$, that is often formulated as a parameterized quantum circuit acting on a known initial state as $|\psi(\theta)\rangle=U(\theta)|0\rangle$ where U is a unitary transformation. In contrast, a parameterized classical probability vector $\mid \psi(\theta))$ is a positive L^{1} normalized probability vector such that $\int_{S} d s \psi(s ; \theta)=1$, that may be formulated as a parameterized classical circuit acting on a known reference state as $\mid \psi(\theta))=U(\theta) \mid 0)$ where U is a left-stochastic operation in this case. As a connection between the two, one may consider classical transformations as the set of transformations restricted to the diagonal of a quantum density matrix, and note that it is always possible to represent a classical probability process as a quantum process, albeit non-uniquely, but the converse is of course not true in general.

The corresponding analog of expected values of Hermitian operators on quantum states will be expected values with diagonal operators O. Such operators are well defined for expected values on both classical and quantum states and are identical when the quantum populations are equal to the classical probabilities. In setting up for the computation of gradients with respect to the parameter vectors, we will consider objective functions defined by the same observable O and a sequence of operations that each depend on a single parameter. That is, the corresponding classical and quantum objectives with these assumptions may be concisely defined by

$$
\begin{align*}
& f(\theta)=\int_{S} d s O(s)\left|\left(\prod_{i} U_{i}\left(\theta_{i}\right) \psi^{0}\right)(s)\right|^{2}=\langle O\rangle_{U(\theta) \psi^{0}} \tag{18}\\
& f(\theta)_{c}=\int_{S} d s O(s)\left(\prod_{i} U_{i}\left(\theta_{i}\right) \psi_{c}^{0}\right)(s)=\langle O\rangle_{U(\theta) \psi_{c}^{0}} \tag{19}
\end{align*}
$$

Our question here will be if the restriction to parameterized classical stochastic processes allows the desired scaling in determining gradients of an expected value with the given parameters. The evaluation of gradients with respect to parameters in quantum circuits relies largely on the fact that anti-Hermitian operators generate unitary evolutions, and we may exploit that relationship to determine gradients as expected values explicitly. There is a direct analogy to this for general stochastic operators, in that they are generated by so-called infinitesimal stochastic operators, defined by $\sum_{i} H_{i j}=0$. With this definition, in finite dimensions they characterize the family of Markov semi-groups via exponentiation as $U(t)=\exp (H t)$. For our purposes, it suffices that this yields a well defined operator for evaluation of single parameter derivatives.

In order to properly compare the two settings, we need to make clear a number of assumptions on the operators U_{i} and corresponding operators H_{i} that mirror assumptions in the quantum case, allowing efficient implementation. To begin, we assume each $U_{i}\left(\theta_{i}\right)$ is a simple operation, analogous to a quantum gate or Pauli operator, such that it is defined as a tensor product on a classical probabilistic bit space, and evaluating the transition probability between two basis states is efficient to do at high precision. In general, the basis could change between steps and the process could remain efficient, however for simplicity we consider the standard computational basis here. Moreover, we assume that the operation that generates the U_{i}, which we denote H_{i} is simple to evaluate between basis states, and has a bounded norm $\left\|H_{i}\right\|=1$, so that parameters θ_{i} have consistent and reasonable scales. Similarly, we will restrict ourselves to observables O with reasonable norms, i.e. $\|O\|=1$.

With these assumptions, we investigate derivatives of a classical stochastic process under different sampling schemes. Let's imagine we have a stochastic process U, much like a variational circuit, which we write as

$$
\begin{equation*}
U(\theta)=\prod_{i} U_{i}\left(\theta_{i}\right) \tag{20}
\end{equation*}
$$

where each U_{i} is a stochastic process with a corresponding generator H_{i}, such that

$$
\begin{align*}
U_{i}\left(\theta_{i}\right) & =\exp \left(\theta_{i} H_{i}\right) \tag{21}\\
\partial_{\theta_{i}} U_{i}\left(\theta_{i}\right) & =H_{i} U_{i}\left(\theta_{i}\right) \tag{22}
\end{align*}
$$

We will be sampling the expected value of some observable O which is a diagonal matrix in our construction, and so the function value we are interested in optimizing, given a initial probability distribution ψ_{0} can be written in a number of ways, but some are

$$
\begin{align*}
f(\theta) & =\langle O\rangle_{U(\theta) \psi_{0}} \tag{23}\\
& =\int O U(\theta) \psi_{0} \tag{24}
\end{align*}
$$

Now if we take the gradient of this function with respect to the parameters, we find

$$
\begin{align*}
\partial_{\theta_{i}} f(\theta) & =\partial_{\theta_{i}}\langle O\rangle_{U(\theta) \psi_{0}} \tag{25}\\
& =\int O \prod_{j<i} U_{j} \partial_{\theta_{i}} U_{i} \prod_{k>i} U_{k} \psi_{0} \tag{26}\\
& =\int O \prod_{j<i} U_{j} H_{i} U_{i} \prod_{k>i} U_{k} \psi_{0} \tag{27}
\end{align*}
$$

Using this construction, one can store the trajectory and lean on a path-integral formalism to use a single sampling process to take independent samples of all the gradient components with each stochastic sample that is taken. One way to write this is to borrow the path-integral like formalism using resolutions of the identity as

$$
\begin{align*}
f(\theta) & =\int O \prod_{j} U_{j} \psi_{0} \tag{28}\\
& \left.=\sum_{i_{1}, \ldots, i_{N}} \int O \mid i_{N}\right)\left(i_{N}\left|U_{N}\right| i_{N-1}\right)\left(i_{N-1} \mid U_{N-1} \ldots\left(i_{1} \mid \psi_{0}\right.\right. \\
& =\sum_{i_{1}, \ldots, i_{N}} p\left(i_{1}, \ldots, i_{N}\right) O\left(i_{N}\right)
\end{align*}
$$

where we use $p\left(i_{1}, \ldots, i_{N}\right)$ to represent the probability of a particular configuration that was sampled, and similarly $O\left(i_{N}\right)$ for the value of the final configuration. We assume that for each individual configuration it is possible to compute the transition probability between individual configurations, e.g. $\left(i_{N}\left|U_{N}\right| i_{N-1}\right)$ which is typically true in the classical case as well. As a result, for a given path, we use re-weighting to make that path produce an unbiased sample for the gradient component we are interested in as well. In particular, writing the same for the shifted gradient estimator for component j merely requires substituting the relevant matrix element

$$
\begin{equation*}
\left(i_{j}\left|U_{j}\right| i_{j-1}\right) \rightarrow\left(i_{j}\left|H_{j} U_{j}\right| i_{j-1}\right) \tag{29}
\end{equation*}
$$

hence we can estimate the gradient using samples re-weighted by

$$
\begin{equation*}
\partial_{\theta_{j}} f(\theta)=\sum_{i_{1}, \ldots, i_{N}} p\left(i_{1}, \ldots, i_{N}\right)\left(\frac{\left(i_{j}\left|H_{j} U_{j}\right| i_{j-1}\right)}{\left(i_{j}\left|U_{j}\right| i_{j-1}\right)}\right) O\left(i_{N}\right) \tag{30}
\end{equation*}
$$

where the weighting factors we also assume to be efficiently computable by construction of the elementary operations U_{i}, which is analogous to the quantum generators typically used as well, defined as simple operations lifted into large spaces by tensor products. This suggests the following procedure for efficiently estimating gradients with respect to parameters in the classical analog of quantum variational circuits.

1. Draw a sample from ψ^{0} and store this configuration as $\left.\mid i_{i}\right)$, which may be represnted efficiently as a classical bit string.
2. For each elementary operation U_{i}, sample the next classical configuration with probability determined by U_{i}, and store the configuration as $\left.\mid i_{j}\right)$.
3. Upon reaching the final configuration, evaluate $O\left(i_{N}\right)$ from the definition of O to determine the value of the objective.
4. Using the stored path, $\left.\left\{\mid i_{j}\right)\right\}$, for each elementary step, sample $\left(\frac{\left(i_{j}\left|H_{j} U_{j}\right| i_{j-1}\right)}{\left(i_{j}\left|U_{j}\right| i_{j-1}\right)}\right) O\left(i_{N}\right)$ and store the value in a vector to be used in a running average that determines the gradient.
5. Repeat this procedure until the uncertainty in the estimate for each gradient component is as low as desired.

It is easy to see from the above procedure that the variance in the estimate of each individual gradient component does not have an explicit dependence on the number of elementary steps. This can be seen from Equation (30), which only has an explicit dependence on 3 points in the chain. Alternatively, from our assumptions designed to mirror the case of quantum circuits, we know the variance of
these estimators is controlled by the value of the product $\left(i_{j}\left|H_{j} U_{j}\right| i_{j-1}\right) O\left(i_{N}\right) \leq 1$, independent of the number of parameters or steps in the sampling process. It may appear that the quantity estimated could be unbounded, but if we move the denominator into p, the result is again a probability distribution multiplied only by values determined by the numerator here. As a result, analogous to backpropagation in the bitwise function case, by storing the intermediate configurations $\left\{\left|i_{j}\right|\right\}$ at a cost memory of $O(M)$, we see that evaluating the gradient requires a number of samples that is independent of M.

From this, we see that indeed the desired scaling is possible in the case of the analogous classical parameterized stochastic processes on tensor product spaces. The formulation as a sum over paths also allows us to make connection to the gentle measurement results in the main text, in that we are always promised to be in a computational basis state, making it possible to do a gentle measurement at intermediate steps with unit probability. This division allows us to help identify the origin of challenges in achieving backpropagation scaling as a problem with quantum measurement collapse and the inability to read out intermediate states while continuing a computation, rather than the probabilistic formulation of the problem. In addition, one may make the classical generators H_{i} non-commutative with each other and suffer no additional difficulties in estimating the gradient components, unlike in the quantum case. It remains an interesting question to better understand the performance separation on practical tasks between quantum variational methods and this type of classical analog, given the advantage in trainability of the classical construction.

C Polynomial complexity circuits

It is reasonable to ask if we can first rule out backpropagation when only given access to single copies of a state. A useful tool to rule out the possibility of certain tasks is information-theoretic bounds, however, we show here that these are not sufficient to rule out quantum backpropagation scaling on single copies as the task remains information-theoretically viable under the assumption of a polynomial length variational circuit, thanks to classical shadows. On the other hand, standard computational arguments illustrate the difficulty in acheiving the desired scaling.

C. 1 Information-efficiency with classical shadows

The idea behind classical shadows is to create a classical representation of a state ρ, that allows one to affordably estimate other properties of interest, like expectation values of observables [Huang et al., 2020]. In general, the number of samples, N, needed to predict say, $\operatorname{Tr}\left[E_{1} \rho\right], \ldots, \operatorname{Tr}\left[E_{K} \rho\right]$ within additive error ε, with high probability is

$$
N=\Omega\left(\log (K) \max _{i}\left\|E_{i}\right\|_{\text {shadow }} / \epsilon^{2}\right)
$$

where $\left\|E_{i}\right\|_{\text {shadow }}$ is a norm influenced by the particular measurement primitive chosen to implement the classical shadow scheme. While general quantum states can be hard to determine, the additional constraint of a state being generated by a polynomial complexity variational circuit allows us to strengthen our statements.
Definition 15 (Polynomial complexity circuit). We say a circuit is a polynomial complexity circuit if it is composed from a fixed gate set G that may be applied between any two qubits with a maximum number of gates scaling polynomially in n, the number of qubits. Additionally, we will call it a polynomial complexity parameterized circuit if each gate in the elementary set is defined by a bounded number of parameters.

With this at hand, we have the following.
Proposition 16 (Information-efficiency of polynomial complexity circuits). Let $\rho=|\psi\rangle\langle\psi|$ be the density matrix of a pure state generated from a quantum circuit of polynomial complexity built from a gate set of size G applied between any two qubits, with at most $p(n)$ total gates, where $p(n)$ is a polynomial in the number of qubits, n. With these definitions, there are at most $K=(n G)^{2 p(n)}$ of these circuits. Then, ρ can be explicitly determined using $\Omega\left(\log (K) / \varepsilon^{2}\right)=\Omega\left(2 p(n) \log (n G) / \varepsilon^{2}\right)$ single-copy measurements and a classical search procedure.

Proof. Given that $|\psi\rangle$ is generated from a polynomial complexity circuit, denote the possible states created by such a circuit as $\left|\phi_{i}\right\rangle$. With the above definitions it is easy to see that the total number of
possible states that can be generated by a single step is $n^{2} G$, and hence with $p(n)$ possible choices, the total number of states is $K=(n G)^{2 p(n)}$. If the underlying set of operations used to generate the state is unknown, it is still possible to cover the space of two-qubit operations to diamond distance error ϵ with a number of operations scaling polynomially in $1 / \epsilon$ and $p(n)$ [Caro et al., 2022]. If we denote this number of extended operations as G^{\prime}, then the argument proceeds as before in terms of asymptotic scaling by replacing G with G^{\prime}. Performing Clifford classical shadows with $E_{i}=\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right|$ for $i=1, \ldots, K$, one can estimate the fidelity, i.e. $\operatorname{Tr}\left[E_{i}|\psi\rangle\langle\psi|\right]$, for all i within additive error ε using $\Omega\left(\log (K) / \varepsilon^{2}\right)$ single copies of $|\psi\rangle$. Since $|\psi\rangle$ is generated by one of the K circuits, searching for an E_{i} that provides the maximum fidelity, allows one to find $\operatorname{Tr}\left[E_{i}|\psi\rangle\langle\psi|\right]=1$, with high probability, and thus, explicitly determine $|\psi\rangle$, and a circuit that generated it by using classical simulation of the family of circuits, that will generally scale both exponentially in n and K.

With this knowledge, one may proceed to compute expectation values classically to determine gradients or indeed any desired expected value or feature of the state. Whilst this procedure allows us to determine $|\psi\rangle$ and a circuit for creating it, executing it incurs quantum hardware costs dominated by the Clifford circuits needed for the classical shadow protocol - which are of polynomial depth, but contain entangling gates which are limiting in practice. Even more concerning, is the classical cost of post-processing. Obtaining the maximum fidelity involves storing $K=(n+p(n))^{O(p(n))}$ values and searching over them, which can be expensive. Additionally, the final computation of the expectation values needed for backpropagation, requires knowing and storing M exponentially large matrices, over and above the cost to compute the expectation values. And so, backpropagation scaling remains untenable with this implementation.

C. 2 Computational hardness on polynomial complexity circuits

The result and algorithm (a brute force search) used in Proposition 16 demonstrate the informationtheoretic efficiency of determining almost anything one would want to know about a state if we are guaranteed that it is both a pure state and generated by a polynomial complexity circuit. The classical computational procedure is clearly inefficient, but this begs the question of whether an efficient procedure might exist in general, especially given the existence of an efficient procedure for special cases. Here we argue that no efficient procedure can exist in the most general case, unless it is possible to efficiently clone pseudo-random quantum states.
Proposition 17 (Computational hardness of polynomial complexity circuits). Under standard cryptographic assumptions, no efficient computational procedure exists to identify a pure state of polynomial complexity to trace distance ε.

Proof. A pseudo-random quantum state is defined to be a pure state of polynomial complexity that no efficient computational algorithm given a polynomial number of copies of the state can distinguish from the Haar random state. Using the procedure described in Proposition 16, a circuit that can recreate the state to trace distance ϵ can be found using a polynomial number copies of the state. If the procedure that finds this circuit is also computationally efficient, then the state can be cloned efficiently, violating the no-cloning theorem for pseudo-random states shown in Ji et al. [2018], which merely rests upon standard cryptographic assumptions.

This result demonstrates that even if we know a state is a pure state generated from a polynomial complexity circuit, it is computationally infeasible to identify it under cryptographic assumptions despite the information-theoretic efficiency. This suggests that there are states and observables for which the backpropagation problem could remain challenging, and that the most effective strategies must make use of known structure in the observables and states to achieve computational efficiency in analogy to known special cases.

D Shadow tomography protocol for gradients

For much of this manuscript it has been assumed that one has complete white-box access to the input state $\rho=|\psi(\theta)\rangle\langle\psi(\theta)|$. In a more traditional quantum setting, however, this may not be the case. One may be given access to unknown quantum states, or partially unknown states, and tasked to process them for some machine learning task. In such an instance, the input states are usually referred to as
quantum data, and insights pertaining to this model set up can be found in Huang et al. [2021]. In this section, we discuss some details around this model type, which we call a quantum neural network and is defined in Definition (8).

D. 1 Gradients as observables

Before presenting our algorithm for performing quantum backpropagation, we begin with the following remark on quantum neural networks which allows us to exploit a shadow tomography procedure.
Remark 18 (Gradient of a quantum neural network). The $k^{\text {th }}$ gradient component of the quantum neural network may be expressed as

$$
\begin{aligned}
\partial_{\theta_{k}} \operatorname{QNN}_{\vec{\theta}}(|\varphi\rangle) & =2 \operatorname{Re}\langle 0|\langle\varphi| \mathcal{U}^{\dagger}(\vec{\theta}) Z_{0} \partial_{\theta_{k}} \mathcal{U}(\vec{\theta})|0\rangle|\varphi\rangle \\
& =2 \operatorname{Re}\left\langle\Phi_{k} \mid \Psi_{k}\right\rangle
\end{aligned}
$$

where

$$
\begin{aligned}
\left|\Psi_{k}\right\rangle & =\left(i P_{k}\right) e^{i \theta_{k} P_{k}} U_{k} \ldots e^{i \theta_{1} P_{1}} U_{1}|0\rangle|\varphi\rangle \\
& =e^{i\left(\theta_{k}+\frac{\pi}{2}\right) P_{k}} U_{k} \ldots e^{i \theta_{1} P_{1}} U_{1}|0\rangle|\varphi\rangle \\
\left|\Phi_{k}\right\rangle & =U_{k+1}^{\dagger} e^{-i \theta_{k+1} P_{k+1}} \ldots U_{M}^{\dagger} e^{-i \theta_{M} P_{M}} Z_{0} e^{i \theta_{M} P_{M}} U_{M} \ldots e^{i \theta_{1} P_{1}} U_{1}|0\rangle|\varphi\rangle
\end{aligned}
$$

If one defines

$$
\begin{aligned}
& \mathcal{U}_{k}^{(\Psi)}=e^{i\left(\theta_{k}+\frac{\pi}{2}\right) P_{k}} U_{k} \ldots e^{i \theta_{1} P_{1}} U_{1} \\
& \mathcal{U}_{k}^{(\Phi)}=U_{k+1}^{\dagger} e^{-i \theta_{k+1} P_{k+1}} \ldots U_{M}^{\dagger} e^{-i \theta_{M} P_{M}} Z_{0} e^{i \theta_{M} P_{M}} U_{M} \ldots e^{i \theta_{1} P_{1}} U_{1}
\end{aligned}
$$

then, given a copy of $|\varphi\rangle$, one may attach an ancilla qubit labelled $*$ in the $|+\rangle$ state (in addition to the output qubit 0). In doing so, consider applying control $-\mathcal{U}_{k}^{(\Psi)}$ conditional on the ancilla being $|0\rangle$, and control $-\mathcal{U}_{k}^{(\Phi)}$ conditional on the ancilla being $|1\rangle$. This produces the state

$$
\frac{1}{\sqrt{2}}\left(|0\rangle\left|\Psi_{k}\right\rangle+|1\rangle\left|\Phi_{k}\right\rangle\right) .
$$

Measuring X on the ancilla qubit, the expectation is

$$
\begin{aligned}
\frac{1}{2}\left(\langle 0|\left\langle\Psi_{k}\right|+\langle 1|\left\langle\Phi_{k}\right|\right) X_{*}\left(|0\rangle\left|\Psi_{k}\right\rangle+|1\rangle\left|\Phi_{k}\right\rangle\right) & =\operatorname{Re}\left\langle\Phi_{k} \mid \Psi_{k}\right\rangle \\
& =\frac{1}{2} \partial_{\theta_{k}} \operatorname{QNN}_{\vec{\theta}}(|\varphi\rangle)
\end{aligned}
$$

This implicitly gives an operator on $|+\rangle|0\rangle|\varphi\rangle$ whose expectation value is $\frac{1}{2} \partial_{\theta_{k}} \mathrm{QNN}_{\vec{\theta}}(|\varphi\rangle)$. Moreover, we can implement this measurement with $O(M)$ quantum operations.

D. 2 Proof of Theorem 9

In order to prove Theorem 9, we need to discuss and modify two concepts: online learning and threshold search [Aaronson et al., 2018, Bădescu and O'Donnell, 2021].

D.2.1 Online learning of quantum states

As in Aaronson et al. [2018], suppose we have access to a stream $\left(E_{1}, b_{1}\right), \ldots,\left(E_{M}, b_{M}\right)$ where each $b_{k}=\langle\psi| E_{k}|\psi\rangle$. We want to compute hypothesis states $\omega_{1}, \ldots, \omega_{M}$, which are mixed states stored in classical memory, such that

- ω_{k} depends only on $\left(E_{1}, b_{1}\right), \ldots,\left(E_{k-1}, b_{k-1}\right)$ (the online condition)
- $\left.\left|\operatorname{Tr}\left(E_{k} \omega_{k}\right)-\langle\psi| E_{k}\right| \psi\right\rangle \mid>\varepsilon$ for as few k as possible

One may produce the following theorem.
Theorem 19. [Aaronson et al., 2018, Theorem 1] In the above setting, there is an explicit strategy for outputting hypothesis states $\omega_{1}, \ldots, \omega_{M}$ such that $\left.\left|\operatorname{Tr}\left(E_{k} \omega_{k}\right)-\langle\psi| E_{k}\right| \psi\right\rangle \mid>\varepsilon$ for at most $O\left(\frac{n}{\varepsilon^{2}}\right)$ values of k. This holds even if the measurements b_{k} are noisy, and only satisfy $\left.\left|b_{k}-\langle\psi| E_{k}\right| \psi\right\rangle \left\lvert\, \leq \frac{\varepsilon}{3}\right.$

Two remarks are in order: first, the problem setup and algorithm presented in Theorem 19 are both completely classical. Second, this theorem says nothing about computational runtime. Implementation of the algorithm in Theorem 19 using techniques from convex optimization will require runtime polynomial in the dimension of the Hilbert space poly $\left(2^{n}\right)$.

D.2.2 Quantum Threshold Search

Bădescu and O'Donnell [2021] promote online learning to a shadow tomography protocol using a procedure which they call threshold search. This gives an improved version of the quantum private multiplicative weights algorithm proposed in Aaronson and Rothblum [2019]. The difference between the online learning setting from the previous section and general shadow tomography, is that in practice, we are typically not given the expectation values $\left\{b_{k}\right\}$ and must measure them ourselves. This is where threshold search comes in handy. Suppose we possess some copies $|\psi\rangle{ }^{\otimes m}$ of a quantum state and are given a stream $\left(E_{1}, a_{1}\right), \ldots,\left(E_{M}, a_{M}\right)$ where each a_{k} is supposed to be a guess such that $a_{k} \approx\langle\psi| E_{k}|\psi\rangle$. Threshold search is a subroutine which, given only logarithmically many copies of the state, can check in an online fashion whether there is an a_{k} which errs by more than ε. More formally, we have the following theorem.
Theorem 20. [Bădescu and O'Donnell, 2021, Lemma 5.2] Given m copies of an n-qubit quantum state $|\psi\rangle^{\otimes m}, M$ observables $-1 \leq E_{1}, \ldots, E_{M} \leq 1$, and guesses a_{1}, \ldots, a_{M}, there is an algorithm which outputs either

$$
\text { - } \left.\left|a_{k}-\langle\psi| E_{k}\right| \psi\right\rangle \mid \leq \varepsilon \forall k \text {. }
$$

- Or $\left.\left|a_{k}-\langle\psi| E_{k}\right| \psi\right\rangle \left\lvert\,>\frac{3}{4} \varepsilon\right.$ when in fact $\left.\left|b_{k}-\langle\psi| E_{k}\right| \psi\right\rangle \left\lvert\, \leq \frac{1}{4} \varepsilon\right.$ for a particular k and value
b_{k}.

It does so using number of copies only

$$
m=O\left(\frac{\log ^{2} M}{\varepsilon^{2}}\right)
$$

Furthermore, the algorithm is online in the sense that:

- The algorithm is initially given only M and ε. It then selects m and obtains $|\psi\rangle^{\otimes m}$.
- Next, observable/threshold pairs $\left(E_{1}, a_{1}\right),\left(E_{2}, a_{2}\right), \ldots$ are presented to the algorithm in sequence. When each $\left(E_{k}, a_{k}\right)$ is presented, the algorithm must either 'pass', or else halt and output $\left.\left|a_{k}-\langle\psi| E_{k}\right| \psi\right\rangle \left\lvert\,>\frac{3}{4} \varepsilon\right.$.
- If the algorithm passes on all $\left(E_{k}, a_{k}\right)$ pairs, then it ends by outputting $\left.\left|a_{k}-\langle\psi| E_{k}\right| \psi\right\rangle \mid \leq$ $\varepsilon \forall k$

We stress that this subroutine requires quantum memory and multi-copy measurements, and uses gentle measurements in an essential way. One is able to check whether or not a_{k} is inside the threshold without greatly disturbing the copies of the quantum state. We are now ready to state the full shadow tomography protocol from Bădescu and O'Donnell [2021]. The idea is to run the online learning algorithm from Theorem 19 in parallel with threshold search, and Bădescu and O'Donnell [2021, Theorem 1.4] tells us that this algorithm succeeds in outputting estimates $\left.\left|b_{k}-\langle\psi| E_{k}\right| \psi\right\rangle \mid \leq \varepsilon$ with high probability.

When applying Algorithm 1 to the observables corresponding to gradients described in Appendix D.1, we can exploit that the observables are related sequentially. In between each round k, we rotate both, the states stored in quantum memory and the classical online learner, so that implementing the measurement of the next gradient only requires runtime independent of M. Since these rotations are unitary and do not reduce the quality of any approximations, the same proof as Bădescu and O'Donnell [2021, Theorem 1.4] will apply. This establishes Theorem 9.

By Bădescu and O'Donnell [2021, Theorem 1.4], this algorithm obtains estimates $\mid b_{k}-$ $\left.\frac{1}{2} \partial_{\theta_{k}} \operatorname{QNN}_{\vec{\theta}}(|\varphi\rangle) \right\rvert\, \leq \varepsilon$ for each k by taking the number of copies to be

$$
m=O\left(\frac{n \log ^{2} M}{\varepsilon^{4}}\right)
$$

```
Algorithm 1 Online and gentle shadow tomography
Input: \(m\) copies of the unknown input state \(|\psi\rangle^{\otimes m}\), in \(m\) registers each with \(n\) qubits.
Output: Estimates \(b_{k} \approx\langle\psi| E_{k}|\psi\rangle\)
1. Set \(R=O\left(\frac{n}{\varepsilon^{2}}\right)\) and \(m_{0}=O\left(\frac{\log ^{2} M}{\varepsilon^{2}}\right)\). We need \(R\) batches, each with \(m_{0}\) copies, so \(m=R m_{0}\) copies in total. This gives in total
\[
m=O\left(\frac{n \log ^{2} M}{\varepsilon^{4}}\right)
\]
2. Initialize the online learner \(\omega_{1}\) according to the online learning algorithm.
3. Start with the first batch of copies \(|\psi\rangle^{\otimes m_{0}}\).
4. For each \(k=1, \ldots, M\) :
(a) Use the online learner to predict \(a_{k}=\operatorname{Tr}\left(E_{k} \omega_{k}\right)\).
(b) Use threshold search to check \(\left.\left|a_{k}-\langle\psi| E_{k}\right| \psi\right\rangle \mid\).
(c) If threshold search passes \(\left.\left|a_{k}-\langle\psi| E_{k}\right| \psi\right\rangle \mid \leq \varepsilon\),
i. Output estimate \(b_{k} \leftarrow a_{k}\).
ii. Leave the online learner unchanged \(\omega_{k+1} \leftarrow \omega_{k}\).
(d) If threshold search concludes \(\left.\left|a_{k}-\langle\psi| E_{k}\right| \psi\right\rangle \left\lvert\,>\frac{3}{4} \varepsilon\right.\) and in fact \(\left.\left|b_{k}-\langle\psi| E_{k}\right| \psi\right\rangle \left\lvert\, \leq \frac{1}{4} \varepsilon\right.\),
i. Output estimate \(b_{k}\).
ii. Update online learner with \(b_{k} \approx\langle\psi| E_{k}|\psi\rangle\) to get \(\omega_{k+1}\).
iii. Discard the current batch and move onto a fresh batch \(|\psi\rangle^{\otimes m_{0}}\).
```

Moreover, the required number of quantum operations is

$$
O(m M)=O\left(\frac{n M \log ^{2} M}{\varepsilon^{4}}\right)
$$

This is quasi-linear in M. With naive storage of the entire density matrix of the hypothesis state ω_{k}, the classical cost is

$$
M \cdot 2^{O(n)}
$$

Which is also linear in M, but unfortunately exponential in the input size n. We present the full algorithm for gradient estimation using online shadow tomography with threshold search in Algorithm 2.

```
Algorithm 2 Shadow tomography protocol for gradients of a quantum neural network
Input: \(m\) copies of the unknown input state \(|\varphi\rangle^{\otimes m}\) in \(m\) registers each with \(n\) qubits.
Output: Estimates \(b_{k} \approx \frac{1}{2} \partial_{\theta_{k}} \mathrm{QNN}_{\vec{\theta}}(|\varphi\rangle)\) for \(k=1, \ldots, M\)
```

1. Set $R=O\left(\frac{n}{\varepsilon^{2}}\right)$ and $m_{0}=O\left(\frac{\log ^{2} M}{\varepsilon^{2}}\right)$. We need R batches, each with m_{0} copies, so $m=R m_{0}$ copies in total. This gives

$$
m=O\left(\frac{n \log ^{2} M}{\varepsilon^{4}}\right)
$$

2. Define for each $k=1, \ldots, M$

$$
\left|\psi_{k}\right\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle\left|\Psi_{k}\right\rangle+|1\rangle\left|\Phi_{k}\right\rangle\right)
$$

and recall from Remark 18 that

$$
\left\langle\psi_{k}\right| X_{*}\left|\psi_{k}\right\rangle=\frac{1}{2} \partial_{\theta_{k}} \mathrm{QNN}_{\vec{\theta}}(|\varphi\rangle)
$$

3. Attach the output qubit and an ancilla qubit in the $|+\rangle$ state to each register. Label the output qubit 0 and the ancilla qubit *.
4. To each register, do the following:
(a) Apply control- $\mathcal{U}_{1}^{(\Psi)}$ conditional on the ancilla being $|0\rangle$. This requires $O(1)$ quantum operations.
(b) Apply control- $\mathcal{U}_{1}^{(\Phi)}$ conditional on the ancilla being $|1\rangle$. This requires $O(M)$ quantum operations. This step is analogous to the initial forward pass in classical backpropagation.
(c) This produces the state $\left|\psi_{1}\right\rangle^{\otimes m}$.
5. Initialize the online learner ω_{1} according to the online learning algorithm.
6. Start with the first batch of copies $\left|\psi_{1}\right\rangle^{\otimes m_{0}}$
7. For $k=1, \ldots, M$, do the following. This loop is analogous to the backward pass in classical backpropagation.
(a) Use the online learner to predict $a_{k}=\operatorname{Tr}\left(X_{*} \omega_{k}\right)$.
(b) Use threshold search to check $\left.\left|a_{k}-\left\langle\psi_{k}\right| X_{*}\right| \psi_{k}\right\rangle \mid$. This takes time independent of M.
(c) If threshold search passes $\left.\left|a_{k}-\left\langle\psi_{k}\right| X_{*}\right| \psi_{k}\right\rangle \mid \leq \varepsilon$,
i. Output estimate $b_{k} \leftarrow a_{k}$.
ii. Leave the online learner unchanged $\omega_{k+1} \leftarrow \omega_{k}$.
(d) If threshold search concludes $\left.\left|a_{k}-\left\langle\psi_{k}\right| X_{*}\right| \psi_{k}\right\rangle \left\lvert\,>\frac{3}{4} \varepsilon\right.$ and in fact $\left.\left|b_{k}-\left\langle\psi_{k}\right| X_{*}\right| \psi_{k}\right\rangle \mid \leq$ $\frac{1}{4} \varepsilon$,
i. Output estimate b_{k}.
ii. Update online learner with $b_{k} \approx\left\langle\psi_{k}\right| X_{*}\left|\psi_{k}\right\rangle$ to get ω_{k+1}.
iii. Discard the current batch and move onto a fresh batch.
(e) To each register in the current batch and the unused batches, do the following:
i. Apply control- $\left(e^{i\left(\theta_{k+1}+\frac{\pi}{2}\right) P_{k+1}} U_{k+1} e^{-i \frac{\pi}{2} P_{k}}\right)$ conditional on the ancilla being $|0\rangle$. This implements $\mathcal{U}_{k+1}^{(\Psi)}\left(\mathcal{U}_{k}^{(\Psi)}\right)^{-1}$, and only requires $O(1)$ quantum operations.
ii. Apply control- $e^{i \theta_{k+1} P_{k+1}} U_{k+1}$ conditional on the ancilla being $|1\rangle$. This implements $\mathcal{U}_{k+1}^{(\Phi)}\left(\mathcal{U}_{k}^{(\Phi)}\right)^{-1}$, and only requires $O(1)$ quantum operations.
iii. This produces in each batch (a noisy approximation to) the state $\left|\psi_{k+1}\right\rangle^{\otimes m_{0}}$.
(f) Also apply the rotations in Step (e) to the hypothesis state ω_{k+1} in classical memory. The online learner now approximates $\left|\psi_{k+1}\right\rangle\left\langle\psi_{k+1}\right|$.

E Fully gentle gradient estimation

In this section, we motivate for a need to perform sequential and gentle measurements to individual gradient states, as opposed to superpositions of them. Thereafter, we discuss general strategies based on gentle measurements alone, performed on single and multiple copies.

E. 1 Considering individual gradient states

While we briefly motivated the need for a sequential reuse of information in measurements in the main text, here we further motivate such a construction as a necessary, but perhaps not sufficient condition for our purposes. Given that one can create a superposition over all the potential gradient components at a cost that only requires a single function call, it is natural to ask if this ability gives us any headway in achieving our goals. Consider exploiting the superposition over all gradient states

$$
\begin{equation*}
|\Psi\rangle=\sum_{k=1}^{M} c_{k}\left|A_{k}\right\rangle \prod_{j \in A} U_{j}|0\rangle=\sum_{k=1}^{M} c_{k}\left|A_{k}\right\rangle\left|\psi_{k}\right\rangle, \tag{31}
\end{equation*}
$$

using at most $c M$ calls to the family $\left\{U_{j}\right\}$ and some ancillary qubits $\left|A_{k}\right\rangle$ associated with the $k^{\text {th }}$ gradient state. ${ }^{2}$ Creating such a superposition weakens our ability to extract each gradient component's signal upon measurement, and thus, requires more samples to distinguish between gradient components with a desired precision. From a cost perspective, it remains optimal or equivalent to consider gradient states $\left|\psi_{k}\right\rangle$ individually. To make this more concrete, consider a state discrimination task, with the following lemma at hand.
Lemma 21 (Optimal two-state discrimination). Any quantum algorithm that distinguishes two states ρ_{1} and ρ_{2} using a single copy of each state with probability at least 0.9 requires

$$
\begin{equation*}
\frac{1}{2}+\frac{1}{2}\left\|\rho_{1}-\rho_{2}\right\|_{\mathrm{tr}} \geq 0.9 \tag{32}
\end{equation*}
$$

Now we may proceed to the state discrimination task, where it is clear a superposition is not helpful.
Proposition 22. Consider the two-state discrimination task for two scenarios. First, given $\left|\psi_{m}\right\rangle$ and $\left|\phi_{m}\right\rangle$, where $\left\langle\psi_{m} \mid \phi_{m}\right\rangle=0$, there is a measurement strategy that can distinguish the states with a single measurement. Second, given the states

$$
\begin{equation*}
|\Psi\rangle=\frac{1}{\sqrt{M}} \sum_{k=1}^{M}\left|A_{k}\right\rangle\left|\psi_{k}\right\rangle, \tag{33}
\end{equation*}
$$

and

$$
\begin{equation*}
|\Phi\rangle=\frac{1}{\sqrt{M}} \sum_{k=1}^{M}\left|A_{k}\right\rangle\left|\phi_{k}\right\rangle \tag{34}
\end{equation*}
$$

where $\left|\psi_{k}\right\rangle=\left|\phi_{k}\right\rangle$ for every k except the $m^{\text {th }}$ component and $\left\langle\psi_{m} \mid \phi_{m}\right\rangle=0$ as before, then $\Omega(M)$ copies are required by any strategy aiming to discriminate $|\Psi\rangle$ from $|\Phi\rangle$ with reasonably high success probability.

Proof. The first scenario follows straightforwardly from Lemma (21) since there is no overlap between $\left|\psi_{m}\right\rangle$ and $\left|\phi_{m}\right\rangle$ - hence, their trace distance is 1 and Equation (32) always holds. For states in uniform superposition over all M components, the overlap is $1-1 / M$ which is close to unity for large M, indicating the difficulty of the task when the states mostly overlap. Given access to N copies of $|\Psi\rangle$ and $|\Phi\rangle$, to discriminate with probability at least 0.9 requires

$$
\begin{equation*}
\frac{1}{2}+\frac{1}{2} \sqrt{1-|\langle\Psi \mid \Phi\rangle|^{2 N}} \geq 0.9 \tag{35}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\left(1-\frac{1}{M}\right)^{2 N} \leq 0.36 \tag{36}
\end{equation*}
$$

implying that $N=\Omega(M)$ in order to discriminate successfully with the desired probability.

[^0]From Proposition (22), we have the immediate corollary.
Corollary 23. It is either optimal or equivalent in cost to consider gradient states individually, as opposed to a superposition over them all.

Proof. Replacing the uniform superposition in Equations (33) and (34) to the more general, $|\Psi\rangle=$ $\sum_{k=1}^{M} c_{k}\left|A_{k}\right\rangle\left|\psi_{k}\right\rangle$ and $|\Phi\rangle=\sum_{k=1}^{M} c_{k}\left|A_{k}\right\rangle\left|\phi_{k}\right\rangle$, the number of samples needed to discriminate the $m^{\text {th }}$ component scales as $N \sim 1 / c_{m}^{2}$. Since $c_{m}^{2} \in[0,1]$, it is clear that $c_{m}^{2}=1$ is optimal. If there are M components, then $c_{m}^{2} \sim 1 / M$ and hence, $N \sim M$. Assuming the superposition state $|\Psi\rangle$ incurs a cost proportional to M, the number of samples required to differentiate between components in the wave function will imply an overall cost that scales as M^{2}.

E. 2 A case for sequential and gentle measurement

Whilst the cost equivalence presented in Corollary 23 implies no benefit from a superposition of gradient states, it also suggests that, if one is to obtain backpropagation scaling, individual gradient states must be utilized in a more resource efficient manner. Drawing inspiration from backpropagation, if one could instead use the state $\left|\psi_{k}\right\rangle$ to make a measurement, then update it to $\left|\psi_{k+1}\right\rangle$ without substantially disturbing it, it would then be possible to perform all of the measurements at an overall cost scaling like $O(M)$. We illustrate such a benefit by means of an example using fictitious non-destructive measurements in Algorithm 3.

```
Algorithm 3 Gradient estimation with a modified, non-destructive swap test
Input: Three registers initialized to \(|+\rangle|0\rangle|0\rangle\)
Output: Gradient vector estimate for \(F(\theta)\)
```

 1. Apply \(U(\theta)=U_{M} \ldots U_{1}\) to the second register, controlled on the first being 0 . Cost \(\sim M\).
 2. Apply $O U(\theta)$ to the third register, conditional on the first being 1 . Cost $\sim M$ and the state becomes
where $\left|\psi_{M}\right\rangle=U_{M} \ldots U_{1}|0\rangle$ and $|\lambda\rangle=O U_{M} \ldots U_{1}|0\rangle$. By assumption, all U_{j} and O are hermitian and unitary.
3. For k in $\{M, M-1, \ldots, 1\}$:
(a) Apply and update $\left|\psi_{k}\right\rangle=-i P_{k}\left|\psi_{k}\right\rangle$ conditioned on ancilla being 0 . Cost ~ 1.
(b) Perform a non-destructive swap test on the state

$$
\frac{1}{\sqrt{2}}\left(|0\rangle\left|\psi_{k}\right\rangle|0\rangle+|1\rangle|0\rangle|\lambda\rangle\right)
$$

to estimate $\left[F^{\prime}(\theta)\right]_{\theta_{k}}=-2 \operatorname{Im}\left\langle\lambda \mid \psi_{k}\right\rangle$ with no damage to the state. Cost ~ 1.
(c) If $k>1$ apply and update $|\lambda\rangle=U_{k}^{\dagger}|\lambda\rangle$ conditional on ancilla being 1 . Cost ~ 1.
(d) If $k>1$ apply and update $\left|\psi_{k-1}\right\rangle=U_{k}^{\dagger}\left(i P_{k}\right)\left|\psi_{k}\right\rangle$ conditional on ancilla being 0 . Cost ~ 1.

The procedure naturally breaks down in a real quantum computer at Step (3b) due to the reliance on non-destructive measurements. Substituting these for gentle measurements, which are only partially non-destructive but, at least, theoretically possible, one may still aspire to exploit the structure of the problem and achieve backpropagation scaling as in Algorithm 3.

E. 3 Gentle measurement on single copies

The need to reuse a state enough times to extract every gradient component, imposes constraints on the gentleness of measurements made. While the use of multiple copies may enhance the ability to leverage gentle measurements, it is straightforward to see why this approach would not work in general, when given access to a single copy of ρ. Using a scheme like the modified swap test in

Algorithm 3, implies that each measurement must be on average $1 / M$-gentle in order to reuse the state M times to extract each gradient component without damaging the state to the point that at least one observable on the state is completely wrong. Enforcing such a constraint, leads to measurements that are trivial - i.e. they barely depend on ρ and cannot yield enough information about gradients. We recap some useful lemmas whose proofs can be found in Aaronson and Rothblum [2019] to make this more concrete.
Lemma 24 (Additivity of damage). Let ρ be some mixed state and let $S_{1}, S_{2}, \ldots, S_{M}$ be general quantum operations. Suppose for all j, we have

$$
\left\|S_{j}(\rho)-\rho\right\|_{\mathrm{tr}} \leq \alpha_{j}
$$

then

$$
\left\|S_{M}\left(S_{M-1}\left(\ldots S_{1}(\rho)\right)\right)-\rho\right\|_{\mathrm{tr}} \leq \alpha_{1}+\ldots+\alpha_{M}
$$

Lemma 25 (Trivial measurement). Given a measurement M and parameter $\eta \geq 0$, suppose that for every two orthogonal pure states $|\psi\rangle$ and $|\phi\rangle$, and every possible outcome y of M, we have

$$
\operatorname{Pr}[M(|\psi\rangle) \text { outputs } y] \leq e^{\eta} \operatorname{Pr}[M(|\phi\rangle) \text { outputs } y] .
$$

Then M is η-trivial. Further, let $E_{1}+\ldots+E_{k}=I$ be the POVM elements of M. Assume without loss of generality that the outcome y corresponds to the element $E=E_{1}$. Then,

$$
\langle\psi| E|\psi\rangle \leq e^{\eta}\langle\phi| E|\phi\rangle,
$$

holds for all states, not just all orthogonal $|\psi\rangle,|\phi\rangle$.
Lemma 26 (Triviality lemma). Suppose a measurement is α-gentle on all states. Then the measurement is $\ln \left(\frac{1+4 \alpha}{1-4 \alpha}\right)$-trivial -so in particular, $O(\alpha)$-trivial, provided $\alpha \leq \frac{1}{4.01}$.

Equipped with these lemmas, we proceed to demonstrate the difficulty of gentle gradient estimation with single-copy access to a pure state.
Theorem 27. A sequence of M measurements on a single-copy pure state that is $1 / M$-gentle at every step to extract every gradient component, will be trivial.

Proof. Choose a circuit such that gradient state differs substantially, i.e. $\|\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|-\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right| \|_{\text {tr }}=1$ for all measurements. In other words, there is a unitary that must be applied to advance from gradient component i to j, otherwise there will be a measurement that produces the incorrect result if no such unitary is applied. Fix $\{\Lambda, \mathbb{I}-\Lambda\}$ as the POVM elements of a gentle measurement. Assume without loss of generality that the outcome of measuring the gradient component with respect to a given state corresponds to the element $\Lambda=A^{\dagger} A$, and

$$
\begin{equation*}
\|S(\rho)-\rho\|_{\operatorname{tr}} \leq \alpha \tag{37}
\end{equation*}
$$

where

$$
S(\rho)=\frac{A \rho A^{\dagger}}{\operatorname{Tr}[\Lambda \rho]}
$$

Using a single copy of $\rho=|\psi\rangle\langle\psi|$ to extract all M gradient components, requires advancing the state after measuring gently at each step, and thus, each measurement step must be on average $1 / M$-gentle to ensure

$$
\begin{equation*}
\left\|S\left(U_{M} S\left(U_{M-1} \ldots S\left(U_{2} S\left(U_{1} \rho U_{1}^{\dagger}\right) U_{2}^{\dagger}\right) \ldots U_{M-1}^{\dagger}\right) U_{M}^{\dagger}\right)-\rho_{M}\right\|_{\mathrm{tr}}<1 \tag{38}
\end{equation*}
$$

where ρ_{M} is the density matrix representation of the advanced gradient state $\left|\psi_{M}\right\rangle=U_{M} \ldots U_{2} U_{1}|\psi\rangle$. If we allowed for any more damage at a particular step, we could eventually reach a point where subsequent measurements yield incorrect results, as the cumulative damage to the state may exceed 1. While the gentleness could be distributed across each gradient component in different ways, from the above lemma, we see that the more gentle the operator, the more trivial it becomes. Hence, if we had $(M-1) 0$-gentle measurements, they would be infinitely trivial and provide no information with 1 informative measurement. Hence, the least trivial set of measurements that achieve an average of $1 / M$ gentleness would be to have each measurement be $1 / M$ gentle. By Lemma (26), then each measurement will be $O(1 / M)$-trivial, which implies

$$
\operatorname{Tr}\left[\Lambda \rho_{i}\right] \leq e^{1 / M} \operatorname{Tr}\left[\Lambda \rho_{i+1}\right]
$$

for any two gradient states ρ_{i}, ρ_{i+1}. As M increases, the estimates for all gradient components will converge. Therefore, the measurement operator has an exponentially vanishing dependence on the input states themselves and hence, provides little-to-no information about the gradient components.

E. 4 Multiple copies and non-collapsing measurements

Non-adaptive, non-collapsing measurements are, by assumption, measurements that do not disturb the state of a quantum system at all. Under this assumption, the complexity class, non-adaptive Collapsefree Quantum Polynomial time (naCQP) was introduced. With this ability, searching through an unstructured M-element list can be performed in $\tilde{O}\left(M^{\frac{1}{3}}\right)$ time, which is faster than the optimal lower bound of $O\left(M^{\frac{1}{2}}\right)$ given by Grover's search algorithm [Grover, 1996]. Importantly, time complexity in naCQP is measured as the number of oracle queries plus the number of non-collapsing measurements. This definition is considered more fitting, since any task in naCQP allows for exponentially many non-collapsing measurements to be made and should thus, be accounted for.
Interestingly, one may still violate Grover's bound by allowing for approximately non-collapsing measurements. First, note that

$$
\left\|\rho-\rho^{\prime}\right\|_{\mathrm{tr}}=0
$$

for non-collapsing measurements, where ρ^{\prime} is the normalized state after measurement. In the approximately non-collapsing regime, assume that a measurement operator can be applied to a tensor product of the state ρ such that

$$
\left\|\rho^{\otimes m}-\rho^{\otimes m}\right\|_{\mathrm{tr}} \leq \alpha
$$

As $\alpha \rightarrow 0$, we recover the non-collapsing measurement regime. In the gradient setting, approximately non-collapsing measurements are merely gentle measurements. This leads to the following.
Proposition 28. A sufficiently gentle measurement used for gradient extraction can solve an unstructured search problem in $\tilde{O}\left(M^{\frac{1}{3}}\right)$ time.

Proof. Reformulating the gentle gradient task as a search problem, let $M=2^{n}$. Consider the state

$$
\begin{equation*}
\sin ((2 i+1) \theta)|x\rangle|1\rangle+\cos ((2 i+1) \theta) \sum_{y \in\{0,1\}^{n}, y \neq x} 2^{-\frac{M-1}{2}}|y\rangle|0\rangle \tag{39}
\end{equation*}
$$

after applying $i=M^{\frac{1}{3}}$ Grover iterations, where $|x\rangle$ is the marked state. The probability of measuring the marked state is $|\sin ((2 i+1) \theta)|^{2} \approx 1 / M^{\frac{1}{3}}$. Suppose we can create the state $|\psi\rangle^{\otimes m}$, where $m=O(\log (M))$ by using $M^{\frac{1}{3}} \log (M)$ Grover queries. By having access to multiple copies of $|\psi\rangle$, assume that one may implement a $1 / M$-gentle measurement on the copies as required for gradient estimation. Then, the probability of observing the marked state after a single gentle measurement is $\log (M) / M^{\frac{1}{3}}$. By performing $M^{\frac{1}{3}}$ gentle measurements on the $\log (M)$ copies, the probability of obtaining the marked state at least once is greater than $1-e^{-\log (M)}=1-\frac{1}{M}$, using only $\tilde{O}\left(M^{\frac{1}{3}}\right)$ Grover oracle queries and $O\left(M^{\frac{1}{3}}\right)$ partially non-collapsing measurements, and thus, runs in time $\tilde{O}\left(M^{\frac{1}{3}}\right)$.

[^0]: ${ }^{2} c$ is some small constant

