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Abstract

While 3D human body modeling has received much attention in computer vision,
modeling the acoustic equivalent, i.e. modeling 3D spatial audio produced by body
motion and speech, has fallen short in the community. To close this gap, we present
a model that can generate accurate 3D spatial audio for full human bodies. The
system consumes, as input, audio signals from headset microphones and body
pose, and produces, as output, a 3D sound field surrounding the transmitter’s
body, from which spatial audio can be rendered at any arbitrary position in the 3D
space. We collect a first-of-its-kind multimodal dataset of human bodies, recorded
with multiple cameras and a spherical array of 345 microphones. In an empirical
evaluation, we demonstrate that our model can produce accurate body-induced
sound fields when trained with a suitable loss. Dataset and code are available
online.1

1 Introduction

Throughout all of our history, humans have been at the center of the stories we tell: starting from early
cave paintings, over ancient tales and books, to modern media such as movies, TV series, computer
games, or, more recently, virtual and augmented realities. Not surprisingly, digital representations
of the human body have therefore long been a research topic in our community Guan et al. [2009],
Loper et al. [2015], Kanazawa et al. [2018]. With the rise of computer-generated imagery in the film
industry and the availability of powerful computing on consumer devices, visual representations of
3D human bodies have seen great advances recently, leading to extremely lifelike and photorealistic
body models Bagautdinov et al. [2021], Zheng et al. [2023].

However, while the visual representation of human bodies has made steady progress, its acoustic
counterpart has been largely neglected. Yet, human sensing is intrinsically multi-modal, and visual
and acoustic components are intertwined in our perception of the world around us. Correctly modeling
3D sound that matches the visual scene is essential to the feeling of presence and immersion in a
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Figure 1: System Overview. The model consumes audio from microphones on a headset and body
pose and encodes them into latent audio and pose embeddings. An audio decoder that is conditioned
on a target microphone position then generates an audio signal as it would sound from the given
target position. Note that the decoder can only render target microphones that lie on a sphere around
the transmitter as this is the capture setup for the training data. In order to model the full sound field
at any arbitrary position, we predict the signal at N = (K + 1)2 microphone positions on a sphere
surrounding the body and compute the K-th order ambisonic sound field from these signals.

3D environment Hendrix and Barfield [1996]. In this work, we propose a method to close this gap
between the visual and acoustic representation of the human body. We demonstrate that accurate 3D
spatial sound can be generated from head-mounted microphones and human body pose.

In particular, we consider an AR/VR telepresence scenario where people interact as full-body avatars.
In this setting, available inputs include egocentric audio data from the head-mounted microphones (it
is common for headsets to employ microphone arrays), as well as body pose used to drive the avatar,
obtained either using external sensors or from the headset itself (the current generation of headsets
are able to track the upper body / hands). The goal is to model the user-generated sound field so that
it be correctly rendered at arbitrary positions in the virtual space.

Existing approaches to sound spatialization, both in traditional signal processing Savioja et al. [1999]
and in neural sound modeling Richard et al. [2021, 2022], operate under the strict assumption that the
sound to be spatialized has a known location and is also recorded at this location, without interference
through other sounds. These assumptions are in stark contrast with the task we address in this work.
First, the location of the sound is unknown, i.e., a finger snap could come from the right hand as
well as the left hand. Second, the sound can not be recorded at the location where it is produced. In
particular, the microphones are typically head-mounted (as in an AR/VR device), such that finger
snaps or footsteps are not recorded at the location of their origin. Third, it is usually not possible to
record a clean signal for each sound source separately. Body sounds like footsteps or hand-produced
sounds often co-occur with speech and are therefore superimposed in the recorded signal.

To overcome these challenges, we train a multi-modal network that leverages body pose to disam-
biguate the origin of different sounds and generate the correctly spatialized signal. Our method
consumes, as input, audio from seven head-mounted microphones and body pose. As output, the
sound field surrounding the body is produced. In other words, our method is able to synthesize 3D
spatial sound produced by the human body from only head-mounted microphones and body pose, as
shown in Figure 1.

Our major contributions are (1) a novel method that allows rendering of accurate 3D sound fields for
human bodies using head-mounted microphones and body pose as input, (2) an extensive empirical
evaluation demonstrating the importance of body pose and of a well-designed loss, and (3) a first-of-
its-kind dataset of multi-view human body data paired with spatial audio recordings from an array
with 345 microphones. We recommend watching the supplemental video before reading the paper.

2 Related Work

Audio-Visual Learning. In our physical world, audio and video are implicitly and strongly connected.
By exploiting the multi-modal correlations, plenty of self-supervised learning methods are proposed
for representation learning and significantly outperform those approaches learning from a single
modality Owens et al. [2016], Korbar et al. [2018], Alwassel et al. [2020], Tian et al. [2020], Xiao et al.
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[2020], Patrick et al. [2021], Morgado et al. [2020, 2021a,b]. Besides, such a close cross-modality
correlation is also shown to boost the performance in audio-visual navigation Chen et al. [2020,
2021], Gan et al. [2020, 2022], speech enhancement Owens and Efros [2018], Yang et al. [2022],
audio source localization Qian et al. [2020], Hu et al. [2020], Tian et al. [2021], Jiang et al. [2022],
Mo and Morgado [2022] and separation Afouras et al. [2018], Ephrat et al. [2018], Zhao et al. [2018],
Gao et al. [2018], Gao and Grauman [2021]. Among these works, the most related papers to ours
focus on audio-driven gesture synthesis Ginosar et al. [2019], Lee et al. [2019], Ahuja et al. [2020],
Yoon et al. [2020], which aims to generate a smooth sequence of the human skeleton coherent with
the given audio. While Ginosar et al. [2019], Ahuja et al. [2020], Yoon et al. [2020] focus on the
translation from speech to conversational gestures based on the cross-modal relationships, Lee et al.
[2019] explore a synthesis-by-analysis learning framework to generate a dancing sequence from the
input music. Different from them, we are interested in the opposite direction, i.e., reconstructing the
3D sound field around the human from the corresponding body pose.

Visually-guided Audio Spatialization. Visually-guided audio spatialization is to transform monaural
audio into 3D spatial audio under the guidance of visual information. There is an increasing number of
data-driven methods for this task, where crucial spatial information is obtained from the corresponding
videos. Morgado et al. [2018], Li et al. [2018] and Huang et al. [2019] leverage 360� videos
to generate the binaural audio and concurrently show the capability of localizing the active sound
sources. Besides, Gao and Grauman [2019] regards the mixture of left and right channels as pseudo
mono audio and utilizes the visual features to predict the left-right difference with a learnable U-Net.
After that, a line of papers Lu et al. [2019], Yang et al. [2020], Zhou et al. [2020], Garg et al. [2021],
Xu et al. [2021] follow a similar framework and achieve better spatialization quality with different
novel ideas. However, these methods fail to model time delays and reverberation effects, making the
binaural audio less realistic. As for this problem, Richard et al. [2021] propose to spatialize speech
with a WaveNet van den Oord et al. [2016] conditioned on the source and listener positions explicitly.
Despite the remarkable progress in audio spatialization, these approaches are all limited to binaural
audio or first-order ambisonics and thus fail to recover the whole sound field. In contrast, our method
strives to generate the whole 3D sound field by using the corresponding 3D human body pose.

3 Dataset

Figure 2: Capture stage with five body-tracking cameras
and 345 microphones on a sphere around the participant.

Setting. In this work we focus on mod-
eling speech and body generated sounds
considering an AR/VR telepresence sce-
nario. In general, it is desiderable to model
these sounds in an anechoic environment,
i.e., without acoustics of a specific room,
which allows to add arbitrary room rever-
berations using traditional signal process-
ing methods (e.g., convolution with room
impulse responses). For this reason we col-
lect the dataset in an anechoic chamber. We
note that the user’s real environment can
be noisy and reverberant, which could af-
fect the input audio signals from the head-
mounted microphones. There is a huge
corpus of research around denoising and
dereverberation and we are not addressing
these problems in this paper.

Data capture. We capture a corpus of paired audio-visual data in an anechoic chamber with 5 Kinects
for body tracking and 345 microphones arranged on a sphere around the center of the capture stage.
The cameras capture at 30 frames per second and audio is recorded at 48kHz. The Kinects and 345
microphones are co-calibrated such that they share the same world coordinate system. During the
capture, the participants are standing in the center of the stage while wearing a head-mounted device
with seven microphones to gather input audio.

In total, we collect 4.4h of human body sounds and speech from eight different participants. We
capture each participant in three different settings: standing and wearing light clothes like a T-Shirt
that does not produce a lot of noise while moving; wearing heavy clothes like jackets or coats that
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produce audible noise while moving; and sitting in light clothing. For each setting, participants
are instructed to perform a variety of body sounds such as clapping, snapping, tapping their body,
footsteps, or scratching themselves, as well as speaking. The full capture script can be found in the
supplemental material. Overall, 50% of the data are non-speech body sounds and 50% are speech.
Note that handling both kinds of data poses an additional challenge for our approach: speech is
typically a dense and structured signal, while body sounds are sparse, impulsive, and contain rich
high-frequency components.

Data processing. We extract body poses from each camera using OpenPose Cao et al. [2017] and
obtain 3D keypoints via triangulation of the poses from the five camera views. The audio signals from
all microphones (345 microphones on the spherical array and seven head-mounted microphones) and
the Kinects are time-synchronized using an IRIG time code. Technical details about audio-visual
time synchronization can be found in the supplemental material.

4 Pose-Guided 3D Spatial Audio Generation

Producing full 3D sound fields inherently requires multimodal learning from both audio input and
pose input, as neither modality alone carries the full spatial sound information. We formalize the
problem and describe the system outlined in Figure 1, with a focus on network architecture and loss
that enable effective learning from the information-deficient input data.

4.1 Problem Formulation

Let a1:T = (a1, . . . , aT ) be an audio signal of length T captured by the head-mounted microphones,
where T indicates the number of samples, and each at 2 RCin represents the value of the waveform
at time t for each of the Cin input channels. Let further p1:S = (p1, . . . , pS) be the temporal stream
of body pose, where each ps 2 RJ⇥3 represents the 3D coordinates of each of the J body joints at
the visual frame s. Note that audio signals a1:T and pose data p1:S are of the same duration, but
sampled at a different rate. In this work, audio is sampled at 48kHz and pose at 30 fps, so there is one
new pose frame for every 1,600 audio samples.

Ideally, we would like to learn a transfer function T that maps from the head-mounted microphone
signals and body pose directly to the audio signal s1:T at any arbitrary coordinate (x, y, z) in the 3D
space,

s1:T (x, y, z) = T
�
x, y, z,a1:T ,p1:S

�
. (1)

However, it is in practice impossible to densely populate a 3D space with microphones and record
the necessary training data. Instead, our capture stage is a spherical microphone array and data can
only be measured on the surface of this sphere, i.e. at microphone positions defined by their polar
coordinates (r, ✓, �). Since the radius r is the same for every point on the sphere, a microphone
position is uniquely defined by its azimuth ✓ and elevation �.2 Leveraging the recordings of the
microphones on the sphere as supervision, we model a transfer function

s1:T (✓i, �i) = T
�
✓i, �i,a1:T ,p1:S

�
(2)

that maps from input audio a1:T and body pose p1:S to the signal recorded by microphone i which is
located at (✓i, �i) on the sphere.

In order to render sound at an arbitrary position (x, y, z) in 3D space, we predict s1:T (✓,�) for
all microphone positions (✓i, �i) on the sphere, and encode them into harmonic sound field coeffi-
cients Samarasinghe and Abhayapala [2012], from which the signal s1:T can then be rendered at any
arbitrary spatial position (x, y, z), see Section 4.4 for details.

4.2 Network Architecture

In this section, we describe how we implement the transfer function defined in Equation (2). At the
core of the model are an audio encoder and a pose encoder which project both input modalities onto
a latent space, followed by an audio decoder that has a WaveNet van den Oord et al. [2016] like

2This is true for a perfectly spherical microphone array. In practice, the microphones are mounted imperfectly
and slight deviations from the surface of the sphere occur, which we neglect here.
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architecture and generates the target sound s1:T at a given microphone position (✓i, �i). The model
architecture is outlined in Figure 3.

As training data, we use recordings from the capture stage described in Section 3, where we have
fully synchronized and paired data of headset input, body pose, and target microphones. In other
words, our training data are tuples (a1:T ,p1:S , s1:T (✓i, �i)) for each microphone position (✓i, �i) on
the spherical array.

Audio Encoder. Acoustic propagation through space at the speed of sound causes a time delay
between the emitting sound source (e.g., a hand), the recording head-mounted microphones, and the
actual target microphone on the spherical microphone array. It has been found beneficial to apply
time-warping, i.e., to shift the input signal by this delay, before feeding it into a network Richard et al.
[2021]. In our case, as sound might emerge from various locations on the body, we create a copy of
the input signal for multiple body joints and shift the input as if it originated from each of these joints.
We then concatenate all these shifted input copies along the channel axis and feed them into a linear
projection layer to obtain the audio encoding fa that contains information about the time-delayed
audio signal from all possible origins, see the supplemental material for details.

Pose Encoder. While a person is making some sound, their body poses p1:S give strong cues when
and where the sound is emitted. Additionally, sound interacts with the body and propagates differently
through space depending on body pose. Hence, the signal s1:T at a target microphone position (✓i, �i)
depends on the body pose at that time. For the input pose sequence p1:S , the 3D coordinates of each
body joint are first encoded to latent features and the temporal relation is aggregated via two layers of
temporal convolutions with kernel size 5. Then, we concatenate all body joint features and use an
MLP to fuse them into a compact pose feature fp.

Target Microphone Position. In addition to audio and pose encodings, the decoder depends on the
position (✓i, �i) of the target microphone. We first map the microphone location into a continuous
Cartesian space

(x, y, z) =
�
cos(✓i) sin(�i), sin(✓i) sin(�i), cos(�i)

�

and project it to a higher-dimensional embedding using a learnable, fully-connected layer.

Pose encoding and target microphone position encoding are then concatenated into a conditioning
feature vector fc which is upsampled to 48kHz and, together with the warped input audio, passed to
the audio decoder.

Audio Decoder. Following prior works van den Oord et al. [2016], Richard et al. [2021], we stack
M WaveNet-like spatial audio generation blocks as illustrated in Figure 3, in which the input audio
features fa are transformed into the desired output signal s1:T (✓i, �i) under the guidance of the
conditioning pose and position features fc. Each block is a gated network combining information
from audio and conditioning features. In the j-th block, the audio feature f j

a passes through a dilated
Conv1D layer and is added to conditioning features processed by Conv1D layers in both filter and
gate branches, which are then integrated after the tanh and sigmoid activation functions:

z = tanh(W j
f ⇤ f j

a + V j
f ⇤ fc) � �(W j

g ⇤ f j
a + V j

g ⇤ fc), (3)
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where ⇤ denotes a convolution operator, � indicates element-wise multiplication, � is a sigmoid
function, j is the index of the decoder block, f and g denote filter and gate, respectively, and W , V
are both learnable convolution filters. A ReLU activation is applied to z which is then processed by
two separated Conv1D layers. One layer predicts the residual audio feature to update f j

a to f j+1
a for

the next generation block, and another is responsible for producing the output audio feature f j
out. All

output features f1,...,M
out from M blocks are average pooled and then decoded to raw audio waves

ŝ1:T (�i, ✓i) via two Conv1D layers. Finally, for training, the predicted audio is compared with the
ground-truth recordings s1:T (�i, ✓i) using loss functions L (see Section 4.3).

4.3 Loss Function

Figure 4: Illustration of the shift-`2 loss computation.

Optimizing for correct spatialization of
body sounds is challenging due to both the
nature of the task (correct spatialization
requires correct time alignment), and the
nature of the signals we are dealing with
(a mix of dense and structured speech with
sparse, impulsive sounds such as clapping
and snapping). To avoid speech distortions,
a loss on the amplitude spectrogram is gen-
erally preferred. On the other hand, such
loss is unable to achieve accurate temporal
alignment. Alternatively, the time domain
`2 loss has been successfully used for neu-
ral synthesis of binaural speech Richard
et al. [2021]. However, in our experiments we found that `2 tends to highly attenuate impulsive
sounds. One issue is that small shifts of impulsive signals cause big spikes in `2 error in combination
with the fact that available information is not sufficient for a perfect sample-level alignment (body
keypoints give only a rough indication of a possible origin of sound). To address this issue we propose
a variation of `2 that is more forgiving to small shift offsets. The loss, referred here a shift-`2, is
computed over sliding windows with higher penalty applied to higher offsets.

We start by dividing the estimated signal â(t) into N segments of size L as illustrated in Figure 4.
For each segment n, we compute a weighed `2 error against a sliding window from a reference signal
a(t), with sliding offset ⌧ going from �L and L. The error is computed as

`(n)
2 (⌧) =

1

L

LX

t=1

�����
â(nL + t) � a(nL + t + ⌧)p

�a min(�a, �â) + �

�����

2

, (4)

where � indicates the standard deviation of the signal, and � is small value used to avoid numerical
issues. The result is a set of 2L+1 values L(n)

2 =
h
`(n)
2 (�L), . . . , `(n)

2 (0), . . . , `(n)
2 (L)

i
representing

`2 errors normalized by the signals energy and computed over a set of shift offsets. After penalizing
larger offsets by using a window function W = ↵ (1 � [w(�L), . . . , w(0), . . . , w(L)]), with w(⌧)
denoting the Blackman window of length 2L + 1, and ↵ being the penalty coefficient, we select the
minimum value as min

h
(L(n)

2 + 1)(W + 1) � 1
i
. By design this value can be 0 only if the `2 error

is 0 at shift ⌧ = 0. Finally, the loss value is obtained by averaging the results of each of N segments

shift-`2 =
1

N

N�1X

n=0

min
h
(L(n)

2 + 1)(W + 1) � 1
i

. (5)

We use L = 128, ↵ = 100 , � = 0.001. To reduce the distortions of speech data, we combine shift-`2
with a multiscale STFT loss Yamamoto et al. [2021] computed for window sizes of 256, 128, 64, 32.

4.4 Sound Field Rendering
Given the audio signals at each microphone and the knowledge of microphone locations, we encode
the 3D sound field in the form of harmonic sound field coefficients following Samarasinghe and
Abhayapala [2012]. The maximum harmonic order K is limited by the number of microphones N as
K = b

p
Nc � 1. For our system with 345 microphones this allows sound field encoding up to 17-th

harmonic order. More details can be found in the supplemental material.
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Table 1: The role of body pose is critical to solving the task. Both, on speech and non-speech signals,
we see significant improvements when the model has access to the full body pose as opposed to no
pose or headpose only.

non-speech speech

pose information SDR " amplitude # phase # SDR " amplitude # phase #
no pose 2.518 0.823 0.464 6.682 9.007 1.362
headpose only 2.848 0.809 0.461 9.264 7.093 1.190
full body pose 3.004 0.784 0.454 9.580 7.059 1.184
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<latexit sha1_base64="MlaPAxvqSDi6532MtkZGELPh5LE=">AAAB9XicbVDJSgNBEO2JW4xb1KOXxiB4CjPidgx68RjBLJDE0NOpJE16uofuGjUM+Q8vHhTx6r9482/sLAdNfFDweK+KqnphLIVF3//2MkvLK6tr2fXcxubW9k5+d69qdWI4VLiW2tRDZkEKBRUUKKEeG2BRKKEWDq7Hfu0BjBVa3eEwhlbEekp0BWfopPsmwhOmStNYWxi18wW/6E9AF0kwIwUyQ7md/2p2NE8iUMgls7YR+DG2UmZQcAmjXDOxEDM+YD1oOKpYBLaVTq4e0SOndGhXG1cK6UT9PZGyyNphFLrOiGHfzntj8T+vkWD3spUKFScIik8XdRNJUdNxBLQjDHCUQ0cYN8LdSnmfGcbRBZVzIQTzLy+S6kkxOC+e3Z4WSlezOLLkgBySYxKQC1IiN6RMKoQTQ57JK3nzHr0X7937mLZmvNnMPvkD7/MHBMWS3Q==</latexit>no pose

<latexit sha1_base64="dm8TQyQtqxjjSdFHaddVKO/YtaE=">AAAB/XicbVDJSgNBEO1xjXGLy81LYxA8hRlxOwa9eIxgFkhC6OlUkiY93UN3jRiH4K948aCIV//Dm39jZzlo4oOCx3tVVNULYyks+v63t7C4tLyymlnLrm9sbm3ndnYrVieGQ5lrqU0tZBakUFBGgRJqsQEWhRKqYf965FfvwVih1R0OYmhGrKtER3CGTmrl9hsID5j2gLVjbYFqJQfDVi7vF/wx6DwJpiRPpii1cl+NtuZJBAq5ZNbWAz/GZsoMCi5hmG0kFmLG+6wLdUcVi8A20/H1Q3rklDbtaONKIR2rvydSFlk7iELXGTHs2VlvJP7n1RPsXDZToeIEQfHJok4iKWo6ioK2hQGOcuAI40a4WynvMcM4usCyLoRg9uV5UjkpBOeFs9vTfPFqGkeGHJBDckwCckGK5IaUSJlw8kieySt58568F+/d+5i0LnjTmT3yB97nD0DblcE=</latexit>

headpose only

<latexit sha1_base64="bNjFEReCHwg4h1yldH5jm+TT6js=">AAAB/nicbVDJSgNBEO2JW4xbVDx5aQyCpzAjbsegF48RzALJEHp6KkmTnumhu0YMQ8Bf8eJBEa9+hzf/xs5y0MQHBY/3qqiqFyRSGHTdbye3tLyyupZfL2xsbm3vFHf36kalmkONK6l0M2AGpIihhgIlNBMNLAokNILBzdhvPIA2QsX3OEzAj1gvFl3BGVqpUzxoIzxi1k2lpIEKhzRRBkadYsktuxPQReLNSInMUO0Uv9qh4mkEMXLJjGl5boJ+xjQKLmFUaKcGEsYHrActS2MWgfGzyfkjemyVkHaVthUjnai/JzIWGTOMAtsZMeybeW8s/ue1Uuxe+ZmIkxQh5tNF9lOKio6zoKHQwFEOLWFcC3sr5X2mGUebWMGG4M2/vEjqp2Xvonx+d1aqXM/iyJNDckROiEcuSYXckiqpEU4y8kxeyZvz5Lw4787HtDXnzGb2yR84nz+wyJX4</latexit>

full body pose

Figure 5: Without pose, the audio signal always originates from the center of the 3D space. With
only headpose, the model always predicts the head as the sound source location. Only when provided
full body pose, the model is able to correctly localize the sound source.

Given the encoded harmonic sound field coefficients �nm(⌧, f), where ⌧ and f are, respectively,
time and frequency bins, the sound pressure at any point x = (r, ✓, �) in space3 can be decoded as
Williams [1999]

p(x, t) = iSTFT

 
KX

n=0

nX

m=�n

�nm(⌧, f)hn(kr)Ynm(✓,�)

!
, (6)

where k = 2⇡f/vsound is the wave number, vsound is the speed of sound; Ynm(✓,�) represents the
spherical harmonic of order n and degree m (angular spatial component), and hn(kr) is nth-order
spherical Hankel function (radial spatial component).

5 Experiments

Dataset. All the experiments are conducted on our collected dataset. We cut the recordings into
clips of one second in length without overlapping, resulting in 15,822 clips in total. The dataset
is partitioned into train/validation/test sets of 12,285/1,776/1,761 clips, respectively. The test set
consists of 961 non-speech clips and 800 speech clips. To the best of our knowledge, this is the first

3we use polar coordinates here instead of Cartesian coordinates for simpler notation in Equation (6).
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Table 2: Besides pose, multiple head-mounted microphones provide a source of spatial information.
Increasing the number of microphones from one to seven leads to substantial improvements in output
quality. Note that all experiments here use full body pose.

non-speech speech

# input mics SDR " amplitude # phase # SDR " amplitude # phase #
1 0.848 0.849 0.478 8.259 7.956 1.235
3 2.338 0.812 0.458 9.526 7.276 1.199
7 3.004 0.784 0.454 9.580 7.059 1.184

<latexit sha1_base64="0iQvt41iBjAeGHBTMRejIPpHPaw=">AAAB/HicbVDLSsNAFJ3UV62vaJduBovgqiTia1l047KCfUAbymQyaYdOJmHmRgyh/oobF4q49UPc+TdO2yy09cCFwzn3cu89fiK4Bsf5tkorq2vrG+XNytb2zu6evX/Q1nGqKGvRWMSq6xPNBJesBRwE6yaKkcgXrOOPb6Z+54EpzWN5D1nCvIgMJQ85JWCkgV3tA3uEfKjiVAYYVAqjycCuOXVnBrxM3ILUUIHmwP7qBzFNIyaBCqJ1z3US8HKigFPBJpV+qllC6JgMWc9QSSKmvXx2/AQfGyXAYaxMScAz9fdETiKts8g3nRGBkV70puJ/Xi+F8MrLuUxSYJLOF4WpwBDjaRI44IpREJkhhCpubsV0RBShYPKqmBDcxZeXSfu07l7Uz+/Oao3rIo4yOkRH6AS56BI10C1qohaiKEPP6BW9WU/Wi/VufcxbS1YxU0V/YH3+AKxQlXI=</latexit>

ground truth

<latexit sha1_base64="McJzhsuXMazVOc1oYSjH2jvfTn4=">AAAB83icbVDLSgNBEJyNrxhfUY9eBoPgKeyKr2PQi8cI5gHZJcxOOsmQ2dllplcMS37DiwdFvPoz3vwbJ8keNLGgoajqprsrTKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqDg0ey1i3Q2ZACgUNFCihnWhgUSihFY5up37rEbQRsXrAcQJBxAZK9AVnaCXfR3jCTIvBECfdcsWtujPQZeLlpEJy1LvlL78X8zQChVwyYzqem2CQMY2CS5iU/NRAwviIDaBjqWIRmCCb3TyhJ1bp0X6sbSmkM/X3RMYiY8ZRaDsjhkOz6E3F/7xOiv3rIBMqSREUny/qp5JiTKcB0J7QwFGOLWFcC3sr5UOmGUcbU8mG4C2+vEyaZ1Xvsnpxf16p3eRxFMkROSanxCNXpEbuSJ00CCcJeSav5M1JnRfn3fmYtxacfOaQ/IHz+QPN5JIz</latexit>

right
<latexit sha1_base64="WYqCsgTIEiFyJ+tq+Qcp48dypK0=">AAAB8nicbVDLSgNBEJyNrxhfUY9eBoPgKeyKr2PQi8cI5gHJEmYnvcmQ2Z1lplcMSz7DiwdFvPo13vwbJ8keNLGgoajqprsrSKQw6LrfTmFldW19o7hZ2tre2d0r7x80jUo1hwZXUul2wAxIEUMDBUpoJxpYFEhoBaPbqd96BG2Eih9wnIAfsUEsQsEZWqnTRXjCTEKIk1654lbdGegy8XJSITnqvfJXt694GkGMXDJjOp6boJ8xjYJLmJS6qYGE8REbQMfSmEVg/Gx28oSeWKVPQ6VtxUhn6u+JjEXGjKPAdkYMh2bRm4r/eZ0Uw2s/E3GSIsR8vihMJUVFp//TvtDAUY4tYVwLeyvlQ6YZR5tSyYbgLb68TJpnVe+yenF/Xqnd5HEUyRE5JqfEI1ekRu5InTQIJ4o8k1fy5qDz4rw7H/PWgpPPHJI/cD5/APW9kbY=</latexit>

left
<latexit sha1_base64="A7i7e+C2zVW2AanT5WGvWKAt6YQ=">AAAB83icbVDJSgNBEO2JW4xb1KOXxiB4CjPidgx68RjBLJAZQk+nJmnS0zN014hhyG948aCIV3/Gm39jZzlo4oOCx3tVVNULUykMuu63U1hZXVvfKG6WtrZ3dvfK+wdNk2SaQ4MnMtHtkBmQQkEDBUpopxpYHEpohcPbid96BG1Eoh5wlEIQs74SkeAMreT7CE+YRzpROO6WK27VnYIuE29OKmSOerf85fcSnsWgkEtmTMdzUwxyplFwCeOSnxlIGR+yPnQsVSwGE+TTm8f0xCo9GiXalkI6VX9P5Cw2ZhSHtjNmODCL3kT8z+tkGF0HuVBphqD4bFGUSYoJnQRAe0IDRzmyhHEt7K2UD5hmHG1MJRuCt/jyMmmeVb3L6sX9eaV2M4+jSI7IMTklHrkiNXJH6qRBOEnJM3klb07mvDjvzsesteDMZw7JHzifP96ckj4=</latexit>

front
<latexit sha1_base64="QezwT63wQ7kzQRbDYadEYIQmxC4=">AAAB9XicbVC7TgMxEPSFVwivACWNRYREQ3SHeJURNJRBIg8pOSKf40us+OyTvQeEU/6DhgKEaPkXOv4GJ7kCEkZaaTSzq92dIBbcgOt+O7mFxaXllfxqYW19Y3OruL1TNyrRlNWoEko3A2KY4JLVgINgzVgzEgWCNYLB1dhv3DNtuJK3MIyZH5Ge5CGnBKx01wb2COmTUtERl6NOseSW3QnwPPEyUkIZqp3iV7uraBIxCVQQY1qeG4OfEg2cCjYqtBPDYkIHpMdalkoSMeOnk6tH+MAqXRwqbUsCnqi/J1ISGTOMAtsZEeibWW8s/ue1Eggv/JTLOAEm6XRRmAgMCo8jwF2uGQUxtIRQze2tmPaJJhRsUAUbgjf78jypH5e9s/LpzUmpcpnFkUd7aB8dIg+dowq6RlVUQxRp9Ixe0Zvz4Lw4787HtDXnZDO76A+czx8lm5Ly</latexit>

zoom-in

<latexit sha1_base64="D4IsjxHLH8gDC6/JHs+cDz2xok0=">AAAB+3icbVDLSsNAFJ3UV62vWJduBovgqiTia1l047KCfUAbymQ6aYfOJGHmRlpCfsWNC0Xc+iPu/BunaRbaeuDC4Zx7ufcePxZcg+N8W6W19Y3NrfJ2ZWd3b//APqy2dZQoylo0EpHq+kQzwUPWAg6CdWPFiPQF6/iTu7nfeWJK8yh8hFnMPElGIQ84JWCkgV3tA5tC6mIexglgyWk2sGtO3cmBV4lbkBoq0BzYX/1hRBPJQqCCaN1znRi8lCjgVLCs0k80iwmdkBHrGRoSybSX5rdn+NQoQxxEylQIOFd/T6REaj2TvumUBMZ62ZuL/3m9BIIbL83fYiFdLAoSgSHC8yDwkCtGQcwMIVRxcyumY6IIBRNXxYTgLr+8StrndfeqfvlwUWvcFnGU0TE6QWfIRdeoge5RE7UQRVP0jF7Rm5VZL9a79bFoLVnFzBH6A+vzB+P3lFw=</latexit>

1 input mic

<latexit sha1_base64="HPqUsPzJBukZhQd6O+QEstf5/uc=">AAAB/HicbVBNS8NAEN34WetXtEcvi0XwVBJR67HoxWMF+wFtKJvtpl26m4TdiRhC/StePCji1R/izX/jNs1BWx8MPN6bYWaeHwuuwXG+rZXVtfWNzdJWeXtnd2/fPjhs6yhRlLVoJCLV9YlmgoesBRwE68aKEekL1vEnNzO/88CU5lF4D2nMPElGIQ84JWCkgV3pA3uErI55GCeAJad6OrCrTs3JgZeJW5AqKtAc2F/9YUQTyUKggmjdc50YvIwo4FSwabmfaBYTOiEj1jM0JJJpL8uPn+ITowxxEClTIeBc/T2REal1Kn3TKQmM9aI3E//zegkEV16W/8VCOl8UJAJDhGdJ4CFXjIJIDSFUcXMrpmOiCAWTV9mE4C6+vEzaZzX3snZxd15tXBdxlNAROkanyEV11EC3qIlaiKIUPaNX9GY9WS/Wu/Uxb12xipkK+gPr8wfHwJTf</latexit>

7 input mics

Figure 6: Body pose alone is not always enough to disambiguate the correct origin of sound. Using
multiple microphones helps infer the missing spatial information.

dataset of its kind that contains multimodal data of speech and body sounds, which paves the way for
a more comprehensive exploration of modeling the 3D spatial sound of humans.

Implementation Details. In the encoders, the pose is mapped onto a 32-d embedding fp, while the
audio input a1:T is mapped to 128-d features fa after time-warping. For the audio decoder, we use
M = 10 blocks, in which each Conv1D layer has 128 channels and kernel size 3, and the dilated
Conv1D layer starts with a dilation size of 1 and doubles the size after each block. To transform
the output features from 128 channels to a single channel audio, we employ two sequential Conv1D
layers with ReLU activations. During training, we fetch 4 audio clips from the training set as a batch
and randomly select 38 target microphones from the 345 available target microphones in the capture
stage, i.e., a total of 152 1s audio clips are processed in each forward pass. We use Adam to train our
model for 125 epochs with learning rate 0.002. When training with shift-`2 and multiscale STFT,
we multiply the multiscale STFT loss with weight 100. All experiments are run on 4 NVIDIA Tesla
A100 GPUs and each needs about 48 hours to finish.

Evaluation Metrics. We report results on three metrics, signal-distortion-ratio (SDR), `2 error on
the amplitude spectrogram, and angular error of the phase spectrogram. While SDR measures the
quality of the signal as a whole, amplitude and phase errors show a decomposition of the signal
into two components. High amplitude error indicates a mismatch in energy compared to the ground
truth, while high phase errors particularly occur when the delays of the spatialized signal are wrong.
Note that the angular phase error has an upper bound of ⇡/2 ⇡ 1.571. We report amplitude errors
amplified by a factor of 1000 to remove leading zeros.

5.1 The Role of Body Pose
The ablation of pose information is studied as shown in Table 1. We use all seven head-mounted
microphones as input and vary the pose information, removing all the poses or only using the head
pose. As mentioned in Section 3, the non-speech data is significantly different from the speech data,
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Table 3: Loss ablation. The proposed shift-`2 loss in combination with a multiscale STFT loss
outperforms other losses on most metrics.

non-speech speech

loss SDR " amplitude # phase # SDR " amplitude # phase #
`2 2.557 1.064 0.449 7.610 10.594 1.093
multiscale STFT �2.222 0.797 0.557 �5.077 6.898 1.902
multiscale STFT + `2 2.394 0.936 0.465 8.566 8.477 1.204
shift-`2 2.956 0.910 0.447 8.899 9.716 1.136
shift-`2 + mult. STFT 3.004 0.784 0.454 9.580 7.059 1.184

<latexit sha1_base64="oOGPSoLgg+hsFxve7/rIL5r88so=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hd3g6xj04jGCeUCyhNlJbzJmdnaZmRXCkn/w4kERr/6PN//GSbIHTSxoKKq66e4KEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtJ1Sax/LBjBP0IzqQPOSMGis1uyhEr9orld2KOwNZJl5OypCj3it9dfsxSyOUhgmqdcdzE+NnVBnOBE6K3VRjQtmIDrBjqaQRaj+bXTshp1bpkzBWtqQhM/X3REYjrcdRYDsjaoZ60ZuK/3md1ITXfsZlkhqUbL4oTAUxMZm+TvpcITNibAllittbCRtSRZmxARVtCN7iy8ukWa14l5WL+/Ny7SaPowDHcAJn4MEV1OAO6tAABo/wDK/w5sTOi/PufMxbV5x85gj+wPn8ATngjuo=</latexit>

`2
<latexit sha1_base64="kx/wsuL4V8BitPOZ25+txQRaKao=">AAACBHicbVDJSgNBEO2JW4xb1GMujUEQhDAT3I5BQTxGzAZJCD2dStKkZ6G7RgxDDl78FS8eFPHqR3jzb+wkc9DEBwWP96qoqueGUmi07W8rtbS8srqWXs9sbG5t72R392o6iBSHKg9koBou0yCFD1UUKKERKmCeK6HuDq8mfv0elBaBX8FRCG2P9X3RE5yhkTrZXAvhAWMvkligd5XrCj2mY9oCKTvFTjZvF+wp6CJxEpInCcqd7FerG/DIAx+5ZFo3HTvEdswUCi5hnGlFGkLGh6wPTUN95oFux9MnxvTQKF3aC5QpH+lU/T0RM0/rkeeaTo/hQM97E/E/rxlh76IdCz+MEHw+W9SLJMWAThKhXaGAoxwZwrgS5lbKB0wxjia3jAnBmX95kdSKBeescHp7ki9dJnGkSY4ckCPikHNSIjekTKqEk0fyTF7Jm/VkvVjv1sesNWUlM/vkD6zPH8IzluI=</latexit>

mult. STFT + `2
<latexit sha1_base64="QGr0DhSONTicKcvekbEDTNAPqcI=">AAAB+nicbVDLSsNAFJ3UV62vVJduBovgKiTia1kUxGXFvqANZTKdtkNnkjBzo5bYT3HjQhG3fok7/8Zpm4W2HrhwOOde7r0niAXX4LrfVm5peWV1Lb9e2Njc2t6xi7t1HSWKshqNRKSaAdFM8JDVgINgzVgxIgPBGsHwauI37pnSPAqrMIqZL0k/5D1OCRipYxfbwB4hlYkAB99Vr6vjjl1yHXcKvEi8jJRQhkrH/mp3I5pIFgIVROuW58bgp0QBp4KNC+1Es5jQIemzlqEhkUz76fT0MT40Shf3ImUqBDxVf0+kRGo9koHplAQGet6biP95rQR6F37KwzgBFtLZol4iMER4kgPucsUoiJEhhCpubsV0QBShYNIqmBC8+ZcXSf3Y8c6c09uTUvkyiyOP9tEBOkIeOkdldIMqqIYoekDP6BW9WU/Wi/Vufcxac1Y2s4f+wPr8AerCk8k=</latexit>

mult. STFT

<latexit sha1_base64="0iQvt41iBjAeGHBTMRejIPpHPaw=">AAAB/HicbVDLSsNAFJ3UV62vaJduBovgqiTia1l047KCfUAbymQyaYdOJmHmRgyh/oobF4q49UPc+TdO2yy09cCFwzn3cu89fiK4Bsf5tkorq2vrG+XNytb2zu6evX/Q1nGqKGvRWMSq6xPNBJesBRwE6yaKkcgXrOOPb6Z+54EpzWN5D1nCvIgMJQ85JWCkgV3tA3uEfKjiVAYYVAqjycCuOXVnBrxM3ILUUIHmwP7qBzFNIyaBCqJ1z3US8HKigFPBJpV+qllC6JgMWc9QSSKmvXx2/AQfGyXAYaxMScAz9fdETiKts8g3nRGBkV70puJ/Xi+F8MrLuUxSYJLOF4WpwBDjaRI44IpREJkhhCpubsV0RBShYPKqmBDcxZeXSfu07l7Uz+/Oao3rIo4yOkRH6AS56BI10C1qohaiKEPP6BW9WU/Wi/VufcxbS1YxU0V/YH3+AKxQlXI=</latexit>

ground truth
<latexit sha1_base64="MWg/Tb7C51SuiZG58WqTBhshHos=">AAAB/HicbVDJSgNBEO2JW4xbNEcvg0HwYpgJbsegF48RzAKZEHo6NUmTnp6hu0YchvgrXjwo4tUP8ebf2FkOmvig4PFeFVX1/FhwjY7zbeVWVtfWN/Kbha3tnd294v5BU0eJYtBgkYhU26caBJfQQI4C2rECGvoCWv7oZuK3HkBpHsl7TGPohnQgecAZRSP1iiUP4REzPeQBno49EKJX7RXLTsWZwl4m7pyUyRz1XvHL60csCUEiE1TrjuvE2M2oQs4EjAteoiGmbEQH0DFU0hB0N5seP7aPjdK3g0iZkmhP1d8TGQ21TkPfdIYUh3rRm4j/eZ0Eg6tuxmWcIEg2WxQkwsbIniRh97kChiI1hDLFza02G1JFGZq8CiYEd/HlZdKsVtyLyvndWbl2PY8jTw7JETkhLrkkNXJL6qRBGEnJM3klb9aT9WK9Wx+z1pw1nymRP7A+fwAAaJUB</latexit>

shift-`2

<latexit sha1_base64="Ay69DZNGfLxJcrJDYk4i3T6RqYI=">AAACEXicbVDJSgNBEO1xjXGLevTSGISAGGaC2zEoiMeI2SAJoadTkzTpWeiuEcOQX/Dir3jxoIhXb978GzvLQRMfFDzeq6KqnhtJodG2v62FxaXlldXUWnp9Y3NrO7OzW9VhrDhUeChDVXeZBikCqKBACfVIAfNdCTW3fzXya/egtAiDMg4iaPmsGwhPcIZGamdyTYQHTHRPeHg8bIKU7QKdaPSI+rHEPL0rX5eH7UzWzttj0HniTEmWTFFqZ76anZDHPgTIJdO64dgRthKmUHAJw3Qz1hAx3mddaBgaMB90Kxl/NKSHRulQL1SmAqRj9fdEwnytB75rOn2GPT3rjcT/vEaM3kUrEUEUIwR8ssiLJcWQjuKhHaGAoxwYwrgS5lbKe0wxjibEtAnBmX15nlQLeecsf3p7ki1eTuNIkX1yQHLEIeekSG5IiVQIJ4/kmbySN+vJerHerY9J64I1ndkjf2B9/gB/DZzI</latexit>

shift-`2 + mult. STFT

<latexit sha1_base64="McJzhsuXMazVOc1oYSjH2jvfTn4=">AAAB83icbVDLSgNBEJyNrxhfUY9eBoPgKeyKr2PQi8cI5gHZJcxOOsmQ2dllplcMS37DiwdFvPoz3vwbJ8keNLGgoajqprsrTKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqDg0ey1i3Q2ZACgUNFCihnWhgUSihFY5up37rEbQRsXrAcQJBxAZK9AVnaCXfR3jCTIvBECfdcsWtujPQZeLlpEJy1LvlL78X8zQChVwyYzqem2CQMY2CS5iU/NRAwviIDaBjqWIRmCCb3TyhJ1bp0X6sbSmkM/X3RMYiY8ZRaDsjhkOz6E3F/7xOiv3rIBMqSREUny/qp5JiTKcB0J7QwFGOLWFcC3sr5UOmGUcbU8mG4C2+vEyaZ1Xvsnpxf16p3eRxFMkROSanxCNXpEbuSJ00CCcJeSav5M1JnRfn3fmYtxacfOaQ/IHz+QPN5JIz</latexit>

right
<latexit sha1_base64="WYqCsgTIEiFyJ+tq+Qcp48dypK0=">AAAB8nicbVDLSgNBEJyNrxhfUY9eBoPgKeyKr2PQi8cI5gHJEmYnvcmQ2Z1lplcMSz7DiwdFvPo13vwbJ8keNLGgoajqprsrSKQw6LrfTmFldW19o7hZ2tre2d0r7x80jUo1hwZXUul2wAxIEUMDBUpoJxpYFEhoBaPbqd96BG2Eih9wnIAfsUEsQsEZWqnTRXjCTEKIk1654lbdGegy8XJSITnqvfJXt694GkGMXDJjOp6boJ8xjYJLmJS6qYGE8REbQMfSmEVg/Gx28oSeWKVPQ6VtxUhn6u+JjEXGjKPAdkYMh2bRm4r/eZ0Uw2s/E3GSIsR8vihMJUVFp//TvtDAUY4tYVwLeyvlQ6YZR5tSyYbgLb68TJpnVe+yenF/Xqnd5HEUyRE5JqfEI1ekRu5InTQIJ4o8k1fy5qDz4rw7H/PWgpPPHJI/cD5/APW9kbY=</latexit>
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zoom-in

Figure 7: While commonly used losses like `2 and multiscale STFT underestimate the sound field
energy and have spatial alignment errors, the proposed shift-`2 loss enables accurate sound field
reconstruction. Fine-grained details further improve when paired with a multiscale STFT loss.

and thus we report quantitative results on speech and non-speech data separately. In Table 1, our
model with full body pose outperforms variants with no pose or headpose only on all three metrics
because full body pose provides important position information of sound sources. Compared to the
no pose version, the headpose leads to a huge improvement in speech data since the headpose itself is
capable of providing necessary position information on the speech case.

Figure 5 illustrates how these quantitative differences manifest in the sound field. In the case of a
finger snap above the head, as shown in the figure, the sound source is estimated at the center of the
3D space if no pose information is available. With only headpose, the model puts all sound sources
in the head region where speech would be produced. Finally, when provided with full body pose, the
model is able to correctly locate the snap at the right hand location above the head.

5.2 The Role of Head-Mounted Microphones
We also study the impact brought by the number of input microphones. Table 2 lists the results
of our model trained with 1, 3, and 7 head-mounted input microphones respectively. As can be
observed, our model with 3 microphones shows a clear improvement over that with only one input
microphone since, complementary to pose information, some spatial information can be inferred
from a 3-channel input audio but monaural audio implies nothing about the space. Compared to 3
input mics, 7 microphones can further boost the overall performance.

Figure 6 illustrates a challenging example where body motion alone does not give a clue whether the
finger snap originates from the left or the right hand. With a single microphone as input, the model
can only guess, and in the example shown in the figure, it places the origin of sound in the wrong
hand. In contrast, using 7 microphones as input, the model is able to estimate the direction of arrival
of the sound and, consequently, place its origin in the correct hand.
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Table 4: Our method outperforms baselines both quantitatively and qualitatively.
non-speech speech

methods SDR " amplitude # phase # SDR " amplitude # phase #
Only time warping �0.016 1.031 0.502 �4.217 20.675 1.532
Ours w/o time warping 2.671 0.808 0.461 8.986 7.691 1.239
Ours 3.004 0.784 0.454 9.580 7.059 1.184

5.3 Accurate Sound Field Learning with Shift-`2
In order to evaluate the effectiveness of our new loss function proposed in Section 4.3, we train our
model with different loss functions. As shown in Table 3, we compare the new loss function shift-`2
with traditional losses like `2 or multiscale STFT Yamamoto et al. [2021]. Although not always the
best on all three metrics, this new loss empowers our model to achieve a more balanced performance,
unlike traditional loss functions. Moreover, if combined with multiscale STFT, it can further improve
the SDR value while lowering the amplitude error, on both speech and non-speech data.

A qualitative evaluation of the different losses in Figure 7 shows the deficiencies of `2-loss and multi-
scale STFT loss. With darker colors (red and blue) representing high energy and green representing
low energy, both losses severely underestimate the energy in the predicted signal. The proposed
shift-`2 loss, on the contrary, matches the ground truth signal well. When combined with a multiscale
STFT loss, we observe even more fidelity and better sound field reconstruction in the fine grained
details, see the zoomed-in example for shift-`2 + multiscale STFT in Figure 7.

5.4 Comparison to baselines
Being the first to address the problem, there is no existing work that can serve as a meaningful
baseline. Existing approaches to sound spatialization Savioja et al. [1999], Morgado et al. [2018],
Richard et al. [2021] rely on knowledge of the sound source location or are limited to first-order
ambisonic signals – recall that we model 17-th order signals for high enough spatial resolution. We
therefore compare our approach to a naive baseline, where the input signal is naively time-warped
from the head position towards the receiver microphone on the sphere, with distance attenuation
applied as well. Additionally, we run our system without time-warping to demonstrate the impact
of time-warping. As shown in Table 4, on all three metrics, our model demonstrates substantial
improvements over the baseline. The results from our model without time-warping are inferior to the
model with time-warping.

Additional visualization examples, including failure cases, can be found in the supplemental material.

6 Conclusions

Our pose-guided sound rendering system is the first approach of its kind that can successfully render
3D sound fields produced by human bodies, and therefore enriches recent progress in visual body
models by its acoustic counterpart. Enabling this multimodal experience is critical to achieving
immersion and realism in 3D applications such as social VR.

Limitations. While the results of our approach are promising, it still comes with considerable
limitations that require deeper investigation in future work. First, the approach is limited to rendering
sound fields of human bodies alone. General social interactions have frequent interactions of humans
and objects, which affect sound propagation and the characteristics of the sound itself. Moreover, as
the system is built upon an ambisonic sound field representation, it produces accurate results in the
far field, yet fails in the near field when entering a trust region too close to the body that is modeled.
Generally, the model assumes free-field propagation around the body, which is violated if two bodies
are close to each other and cause interactions and diffractions in the sound field. Lastly, the system
relies on powerful GPUs to render the sound field efficiently, and is not yet efficient enough to run on
commodity hardware with low computing resources such as a consumer VR device.

Nevertheless, correctly modeling 3D spatial audio is a necessary step for building truly immersive
virtual humans and our approach is a critical step towards this goal.
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