
Hyperbolic Graph Neural Networks at Scale:
A Meta Learning Approach

Nurendra Choudhary
Virginia Tech

Arlington, VA, USA
nurendra@vt.edu

Nikhil Rao
Microsoft

Sunnyvale, CA, USA
nikhilrao@microsoft.com

Chandan K. Reddy
Virginia Tech

Arlington, VA, USA
reddy@cs.vt.edu

Abstract

The progress in hyperbolic neural networks (HNNs) research is hindered by their
absence of inductive bias mechanisms, which are essential for generalizing to new
tasks and facilitating scalable learning over large datasets. In this paper, we aim to
alleviate these issues by learning generalizable inductive biases from the nodes’
local subgraph and transfer them for faster learning over new subgraphs with a
disjoint set of nodes, edges, and labels in a few-shot setting. We introduce a novel
method, Hyperbolic GRAph Meta Learner (H-GRAM), that, for the tasks of node
classification and link prediction, learns transferable information from a set of
support local subgraphs in the form of hyperbolic meta gradients and label hyper-
bolic protonets to enable faster learning over a query set of new tasks dealing with
disjoint subgraphs. Furthermore, we show that an extension of our meta-learning
framework also mitigates the scalability challenges seen in HNNs faced by exist-
ing approaches. Our comparative analysis shows that H-GRAM effectively learns
and transfers information in multiple challenging few-shot settings compared to
other state-of-the-art baselines. Additionally, we demonstrate that, unlike stan-
dard HNNs, our approach is able to scale over large graph datasets and improve
performance over its Euclidean counterparts.

1 Introduction

Graphs are extensively used in various applications, including image processing, natural language
processing, chemistry, and bioinformatics. With modern graph datasets ranging from hundreds of
thousands to billions of nodes, research in the graph domain has shifted towards larger and more
complex graphs, e.g., the nodes and edges in the traditional Cora dataset [29] are in the order of
103, whereas, the more recent OGBN datasets [17] are in the order of 106. However, despite their
potential, Hyperbolic Neural Networks (HNNs), which capture the hierarchy of graphs in hyperbolic
space, have struggled to scale up with the increasing size and complexity of modern datasets.

HNNs have outperformed their Euclidean counterparts by taking advantage of the inherent hierarchy
present in many modern datasets [4, 10, 13]. Unlike a standard Graph Neural Network (GNN), a
HNN learns node representations based on an “anchor” or a “root” node for the entire graph, and the
operations needed to learn these embeddings are a function of this root node. Specifically, HNN for-
mulations [13] depend on the global origin (root node) for several transformation operations (such
as Möbius addition, Möbius multiplication, and others), and hence focusing on subgraph structures
to learn representations becomes meaningless when their relationship to the root node is not con-
sidered. Thus, state-of-the-art HNNs such as HGCN [4], HAT [15], and HypE [8] require access
to the entire dataset to learn representations, and hence only scale to experimental datasets (with
⇡103 nodes). Despite this major drawback, HNNs have shown impressive performance on sev-
eral research domains including recommendation systems [32], e-commerce [9], natural language
processing [11], and knowledge graphs [5, 8]. It is thus imperative that one develops methods to
scale HNNs to larger datasets, so as to realize their full potential. To this end, we introduce a novel
method, Hyperbolic GRAph Meta Learner (H-GRAM), that utilizes meta-learning to learn infor-

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Figure 1: Meta-learning on hyperbolic neural networks. The procedure consists of two phases - (i)
meta-training to update the parameters of the HNNs and learn inductive biases (meta gradients and
label protonets), and (ii) meta-testing that initializes the HNNs with the inductive biases for faster
learning over new graphs with a disjoint set of nodes, edges, or labels.

mation from local subgraphs for HNNs and transfer it for faster learning on a disjoint set of nodes,
edges, and labels contained in the larger graph. As a consequence of meta-learning, H-GRAM also
achieves several desirable benefits that extend HNNs’ applicability including the ability to transfer
information on new graphs (inductive learning), elimination of over-smoothing, and few-shot learn-
ing. We experimentally show that H-GRAM can scale to graphs of size O(106), which is O(103)
times larger than previous state-of-the-art HNNs. To the best of our knowledge, there are no other
methods that can scale HNNs to datasets of this size.

Recent research has shown that both node-level and edge-level tasks only depend on the local neigh-
borhood for evidence of prediction [18, 19, 42]. Inspired by the insights from such research, our
model handles large graph datasets using their node-centric subgraph partitions, where each sub-
graph consists of a root node and the k-hop neighborhood around it. In H-GRAM, the HNN formu-
lations establish the root node as the local origin to encode the subgraph. We theoretically show that,
due to the locality of tangent space transformations in HNNs (more details in Section 3), the evi-
dence for a node’s prediction can predominantly be found in the immediate neighborhood. Thus, the
subgraph encodings do not lose a significant amount of feature information despite not having ac-
cess to a “global” root node. However, due to the node-centric graph partitioning, the subgraphs are
non-exhaustive, i.e., they do not contain all the nodes, edges, and labels, as previously assumed by
HNNs. Thus, to overcome the issue of non-exhaustive subgraphs, we formulate four meta-learning
problems (illustrated in Figure 1) that learn inductive biases on a support set and transfer it for faster
learning on a query set with disjoint nodes, edges, or labels. Our model learns inductive biases in
the meta-training phase, which contains two steps - HNN update and meta update. HNN updates
are regular stochastic gradient descent steps based on the loss function for each support task. The
updated HNN parameters are used to calculate the loss on query tasks and the gradients are accumu-
lated into a meta-gradient for the meta update. In the meta-testing phase, the models are evaluated
on query tasks with parameters post the meta updates, as this snapshot of the model is the most
adaptable for faster learning in a few-shot setting. Our main contributions are as follows:

2

1. We theoretically prove that HNNs rely on the nodes’ local neighborhood for evidence in predic-
tion, as well as, formulate HNNs to encode node-centric local subgraphs with root nodes as the
local origin using the locality of tangent space transformations.

2. We develop Hyperbolic GRAph Meta Learner (H-GRAM), a novel method that learns meta in-
formation (as meta gradients and label protonets) from local subgraphs and generalize it to new
graphs with a disjoint set of nodes, edges, and labels. Our experiments show that H-GRAM can
be used to generalize information from subgraph partitions, thus, enabling scalability.

3. Our analysis on a diverse set of datasets demonstrates that our meta-learning setup also solves
several challenges in HNNs including inductive learning, elimination of over-smoothing, and
few-shot learning in several challenging scenarios.

2 Related Work

This section reviews the relevant work in the areas of hyperbolic neural networks and meta learning.

Hyperbolic Neural Networks: Due to their ability to efficiently encode tree-like structures, hy-
perbolic space has been a significant development in the modeling of hierarchical datasets [43, 44].
Among its different isometric interpretations, the Poincaré ball model is the most popular one and
has been applied in several HNN formulations of Euclidean networks including the recurrent (HGRU
[13]), convolution (HGCN [4]), and attention layers (HAT [15]). As a result of their performance
gains on hierarchical graphs, the formulations have also been extended to applications in knowledge
graphs for efficiently encoding the hierarchical relations in different tasks such as representation
learning (MuRP [1], AttH [5]) and logical reasoning (HypE [8]). However, the above approaches
have been designed for experimental datasets with a relatively small number of nodes (in the order of
103), and do not scale to real-world datasets. Hence, we have designed H-GRAM as a meta-learning
algorithm to translate the performance gains of HNNs to large datasets in a scalable manner.

Graph Meta-learning: Few-shot meta-learning transfers knowledge from prior tasks for faster
learning over new tasks with few labels. Due to their wide applicability, they have been adopted in
several domains including computer vision [14, 34], natural language processing [22] and, more re-
cently, graphs [18, 39]. One early approach in graph meta-learning is Gated Propagation Networks
[23] which learns to propagate information between label prototypes to improve the information
available while learning new related labels. Subsequent developments such as MetaR [7], Meta-NA
[41] and G-Matching [39] relied on metric-based meta learning algorithms for relational graphs, net-
work alignment and generic graphs, respectively. These approaches show impressive performance
on few-shot learning, but are only defined for single graphs. G-Meta [18] extends the metric-based
techniques to handle multiple graphs with disjoint labels. However, the method processes informa-
tion from local subgraphs in a Euclidean GNN, and thus, is not as capable as hyperbolic networks
in encoding tree-like structures. Thus, we model H-GRAM to encode hierarchical information from
local subgraphs and transfer it to new subgraphs with disjoint nodes, edges, and labels.

3 The Proposed H-GRAM Model

In this section, we define the problem setup for different meta-learning scenarios and describe our
proposed model, H-GRAM, illustrated in Figure 2. For better clarity, we explain the problem setup
for node classification and use HGCN as the exemplar HNN model. However, the provided setup can
be extended to link prediction or to other HNN models, which we have evaluated in our experiments.
The preliminaries of hyperbolic operations and meta-learning are provided in Appendix A.

3.1 Problem Setup

Our problem consists of a group of tasks Ti 2 T which are divided into a support set T s and query
set T q , where T s

\T
q = �. Furthermore, each task Ti is a batch of node-centric subgraphs Su with a

corresponding label Yu (class of root node in node classification or root link in link prediction). The
subgraphs Su could be the partitions derived from a single graph or multiple graphs, both denoted
by G

[= G
s
[G

q . We also define Ys = {Yu 2 T
s
} and Yq = {Yu 2 T

q
} as the set of labels

in the support and query set respectively. The primary goal of meta-learning is to learn a predictor
using the support set, P✓⇤(Ys|T

s) such that the model can quickly learn a predictor P✓(Ys|T
s) on

the query set. Following literature in this area [18], the problem categories are defined as follows:

3

Figure 2: An overview of the proposed H-GRAM meta-learning framework. Here, the input graphs
G
[are first partitioned into node-centric subgraph partitions. We theoretically show that encoding

these subgraph neighborhoods is equivalent to encoding the entire graph in the context of node
classification and link prediction tasks. H-GRAM then uses an HGCN encoder to produce subgraph
encodings, which are further utilized to get label prototypes. Using the HGCN gradient updates and
label prototypes, the HNN model’s parameters P✓⇤ is updated through a series of weight updates
and meta updates for ⌘ meta-training steps. The parameters are then transferred to the meta-testing
stage P✓⇤!✓ and further trained on D

s
test and evaluated on D

q
test.

1. Single graph, shared labels hSG, SLi: The objective is to learn the meta-learning model
P✓⇤!✓, where Ys = Yq and |G

s
| = |G

q
| = 1. It should be noted that the tasks are based on

subgraphs, so |G
s
| = |G

q
| = 1 6=) |T

s
| = |T

q
| = 1. Also, this problem setup is identical to

the standard node classification task considering T
q
i 2 Dtest to be the test set.

2. Single graph, disjoint labels hSG,DLi: This problem operates on the same graph in the
support and query set, however unlike the previous one, the label sets are disjoint. The goal is to
learn the model P✓⇤!✓, where |G

s
| = |G

q
| = 1 and Ys \ Yq = �.

3. Multiple graphs, shared labels hMG,SLi: This problem setup varies in terms of the dataset
it handles, i.e., the dataset can contain multiple graphs instead of a single one. However, our
method focuses on tasks which contain node-centric subgraphs, and hence, the model’s aim is
the same as problem 1. The aim is to learn the predictor model P✓⇤!✓, where Ys = Yq and
|G

s
|, |G

q
| > 1.

4. Multiple graphs, disjoint labels hMG,DLi: In this problem, the setup is similar to the previ-
ous one, but only with disjoint labels instead of shared ones, i.e., learn a predictor model P✓⇤!✓,
where Ys \ Yq = � and |G

s
|, |G

q
| > 1.

From the problem setups, we observe that, while they handle different dataset variants, the base HNN
model operates on the (Su, Yu) pair. So, we utilize a hyperbolic subgraph encoder and prototypical
labels to encode Su and get a continuous version of Yu for our meta-learning algorithm, respectively.

3.2 Hyperbolic Subgraph Encoder

In previous methods [16, 18, 38], authors have shown that nodes’ local neighborhood provides some
informative signals for the prediction task. While the theory is not trivially extensible, we use the
local tangent space of Poincaré ball model to prove that the local neighborhood policy holds better
for HNN models. The reason being that, while message propagation is linear in Euclidean GNNs
[42], it is exponential in HNNs. Hence, a node’s influence, as given by Definition 1, outside its
neighborhood decreases exponentially.
Definition 1. The influence of a hyperbolic node vector xH

v on node x
H

u is defined by the influence

score Iuv = exp
c
0

✓����
@ logx

0(xH

u)
@ logx

0 (x
H
v)

����

◆
.

4

Definition 2. The influence of a graph G with set of vertices V on a node u 2 V is defined as
IG(u) = exp

c
0

�
(
P

v2V log
c
0 (Iuv)

�
.

Theorem 1. For a set of paths Puv between nodes u and v, let us define Dpi
gµ as the geometric mean

of nodes’ degree in a path pi 2 Puv , puv as the shortest path, and Iuv as the influence of node v on u.
Also, let us say D

min
gµ = min

�
D

pi
gµ8pi 2 Puv

, then the relation Iuv exp

c
u

⇣
K/

�
D

min
gµ

�kpuvk
⌘

(where K is a constant) holds for message propagation in HGCN models.

Theorem 1 shows that the influence of a node decreases exponent-of-exponentially (expcu = O(en))
with increasing distance kpuvk. Thus, we conclude that encoding the local neighborhood of a node
is sufficient to encode its features for label prediction.
Definition 3. The information loss between encoding an entire graph G and a subgraph Su with
root node u is defined as �H(G, Su) = exp

c
0 (log

c
0 (IG(u))� log

c
0 (ISu(u))).

Theorem 2. For a subgraph Su of graph G centered at node u, let us define a node v 2 G with
maximum influence on u, i.e., v = argmaxt({Iut, t 2 N (u) \ u}). For a set of paths Puv between
nodes u and v, let us define D

pi
gµ as the geometric mean of degree of nodes in a path pi 2 Puv ,

kpuvk is the shortest path length, and D
min
gµ = min

�
D

pi
gµ8pi 2 Puv

. Then, the information loss

is bounded by �H(G, Su) exp
c
u

⇣
K/

�
D

min
gµ

�kpuvk+1
⌘

(where K is a constant).

Theorem 2 shows that encoding the local subgraph is a e
kpuvk order approximation of encoding the

entire graph, and thus, with high enough kpuvk, the encodings are equivalent. Note that kpuvk is
equivalent to the subgraph’s neighborhood size (k in k-hop). This shows that encoding a node’s local
neighborhood is sufficient to encode its features. Theorem proofs are provided in Appendix B. The
above theorems provide us with the theoretical justification for encoding local subgraphs into our
meta-learning framework. Hence, we partition the input G[into subgraphs Su = V ⇥ E centered
at root node u, with |V | nodes, |E| edges, a neighborhood size k, and the corresponding label Yu.
The subgraphs are processed through an k-layer HGCN network and the Einstein midpoint [33] of
all the node encodings are taken as the overall encoding of the subgraph Su. For a given subgraph
Su = (A,X), where A 2 H

kV k⇥kV k is the local adjacency matrix and X 2 H
kV k⇥m are the node

feature vectors of m dimension, the encoding procedure given can be formalized as:
hu = HGCN✓⇤(A,X), where hu 2 H

kV k⇥d (1)

eu =

PkV k
i=1 �iuhiu
PkV k

i=1 �iu

, where �iu =
1p

1� khiuk
2

(2)

where HGCN(A,X) 2 H
kV k⇥d is the output of k-layer HGCN with d output units and eu 2 H

d

is the final subgraph encoding of Su. �iu is the Lorentz factor of the hyperbolic vector hiu that
indicates its weightage towards the Einstein midpoint.

3.3 Label Prototypes

Label information is generally categorical in node classification tasks. However, this does not allow
us to pass inductive biases from the support set to the query set. Hence, to circumvent this issue, we
use prototypical networks [31] as our label encoding. Our approach constructs continuous label pro-
totypes by using the mean of meta-training nodes’ features that belong to the label. These prototypes
are then employed to classify meta-testing samples based on their similarity to the corresponding
meta-training label prototypes. This enables our model to handle new, non-exhaustive labels in an
inductive manner, without the need for additional training data. The primary idea is to form contin-
uous label prototypes using the mean of nodes that belong to the label. To this end, the continuous
label prototype of a label yk is defined as ck =

P
Yu=yk

�ieiP
Yu=yk

�i
, where �i =

1p
1�keik2

,and ei 2 H
d is

encoding of subgraphs Su with labels Yu = yk. For each Su with class yk, we compute the class
distribution vector as pk = e(�dc

H
(eu,ck))

P
k e(�dc

H
(eu,ck)) , where d

c
H
(eu, ck) =

2p
c
tanh�1 (

p
ck � eu � ckk) and

the loss for HNN updates L(p, y) =
P

j yi log pj , where yi is the one-hot encoding of the ground
truth. The class distribution vector pk is a softmax over the hyperbolic distance of subgraph encod-
ing to the label prototypes, which indicates the probability that the subgraph belongs to the class
yk. The loss function L(p, y) is the cross-entropy loss between ground truth labels y and the class
distribution vector p.

5

3.4 Meta-Learning

In the previous section, we learned a continuous label encoding that is able to capture inductive
biases from the subgraph. In this section, we utilize the optimization-based MAML algorithm [12]
to transfer the inductive biases from the support set to the query set. To this end, we sample a
batch of tasks, where each task Ti = {Si, Yi}

kTik
i=1 . In the meta-training phase, we first optimize

the HNN parameters using the Riemannian stochastic gradient descent (RSGD) [2] on support loss,
i.e., for each T

s
i 2 T

s
train : ✓⇤j exp

c
✓⇤
j
(�↵rLs), where ↵ is the learning rate of RSGD. Using

the updated parameters ✓⇤j , we record the evaluation results on the query set, i.e., loss on task T
q
i 2

T
q
train is Lq

i . The above procedure is repeated ⌘ times post which L
q
i over the batch of tasks T q

i 2

T
q
train is accumulated for the meta update ✓⇤ exp

c
✓⇤(��r

P
i L

q
i). The above steps are repeated

with the updated ✓
⇤ and a new batch of tasks till convergence. The final updated parameter set

✓
⇤
! ✓ is transferred to the meta-testing phase. In meta-testing, the tasks T

s
i 2 T

s
test are used

for RSGD parameter updates, i.e., T s
i 2 T

s
test : ✓j exp

c
✓j
(�↵rLs) until convergence. The

updated parameters ✓ are used for the final evaluation on T
q
i 2 T

q
test. Our meta-learning procedure

is further detailed in Appendix C and the implementation code with our experiments is available
at https://github.com/Akirato/HGRAM. Details on implementation and broader impacts are
provided in Appendices 3.5 and E, respectively.

3.5 Implementation Details

H-GRAM is primarily implemented in Pytorch [26], with geoopt [21] and GraphZoo [35] as support
libraries for hyperbolic formulations. Our experiments are conducted on a Nvidia V100 GPU with
16 GB of VRAM. For gradient descent, we employ Riemannian Adam [28] with an initial learning
rate of 0.01 and standard � values of 0.9 and 0.999. The other hyper-parameters were selected based
on the best performance on the validation set (Dval) under the given computational constraints. In
our experiments, we empirically set k = 2, d = 32, h = 4, and ⌘ = 10. We explore the following
search space and tune our hyper-parameters for best performance. The number of tasks in each batch
are varied among 4, 8, 16, 32, and 64. The learning rate explored for both HNN updates and meta
updates are 10�2

, 5 ⇥ 10�3
, 10�3 and 5 ⇥ 10�4. The size of hidden dimensions are selected from

among 64, 128, and 256. The final best-performing hyper-parameter setup for real-world datasets is
presented in Table 5.

4 Experimental Setup

Our experiments aim to evaluate the performance of the proposed H-GRAM model and investigate
the following research questions:

RQ1: Does our hyperbolic meta-learning algorithm outperform the Euclidean baselines on vari-
ous meta-learning problems?

RQ2: How does our model perform and scale in comparison to other HNN formulations in stan-
dard graph problems?

RQ3: How does H-GRAM model’s performance vary with different few-shot settings, i.e., dif-
ferent values of k and N?

RQ4: What is the importance of different meta information components?

We use a set of standard benchmark datasets and baseline methods to compare the performance of
H-GRAM on meta-learning and graph analysis tasks. The HNN models do not scale to the large
datasets used in the meta-learning task, and hence, we limit our tests to Euclidean baselines. To
compare against HNN models, we rely on standard node classification and link prediction on small
datasets. Also, we do not consider other learning paradigms, such as self-supervised learning be-
cause they require an exhaustive set of nodes and labels and do not handle disjoint problem settings.

4.1 Datasets

For the task of meta-learning, we utilize the experimental setup from earlier approaches [18]; two
synthetic datasets to understand if H-GRAM is able to capture local graph information and five
real-world datasets to evaluate our model’s performance in a few-shot setting.

6

https://github.com/Akirato/HGRAM

• Synthetic Cycle [18] contains multiple graphs with cycle as the basis with different topologies
(House, Star, Diamond, and Fan) attached to the nodes on the cycle. The classes of the node are
defined by their topology.

• Synthetic BA [18] uses Barabási-Albert (BA) graph as the basis with different topologies planted
within it. The nodes are labeled using spectral clustering over the Graphlet Distribution Vector
[27] of each node.

• ogbn-arxiv [17] is a large citation graph of papers, where titles are the node features and subject
areas are the labels.

• Tissue-PPI [16, 43] contains multiple protein-protein interaction (PPI) networks collected from
different tissues, gene signatures and ontology functions as features and labels, respectively.

• FirstMM-DB [25] is a standard 3D point cloud link prediction dataset.
• Fold-PPI [43] is a set of tissue PPI networks, where the node features and labels are the conjoint

triad protein descriptor [30] and protein structures, respectively.
• Tree-of-Life [44] is a large collection of PPI networks, originating from different species.

4.2 Baseline Methods

For comparison with HNNs, we utilize the standard benchmark citation graphs of Cora [29], Pubmed
[24], and Citeseer [29]. For the baselines, we select the following methods to understand H-GRAM’s
performance compared to state-of-the-art models in the tasks of meta-learning and standard graph
processing.
• Meta-Graph [3], developed for few-shot link prediction over multiple graphs, utilizes VGAE [20]

model with additional graph encoding signals.
• Meta-GNN [40] is a MAML developed over simple graph convolution (SGC) network [36].
• FS-GIN [37] runs Graph Isomorphism Network (GIN) on the entire graph and then uses the few-

shot labelled nodes to propagate loss and learn.
• FS-SGC [36] is the same as FS-GIN but uses SGC instead of GIN as the GNN network.
• ProtoNet [31] learn a metric space over label prototypes to generalize over unseen classes.
• MAML [12] is a Model-Agnostic Meta Learning (MAML) method that learns on multiple tasks

to adapt the gradients faster on unseen tasks.
• HMLP [13], HGCN [4], and HAT [15] are the hyperbolic variants of Euclidean multi-layer

perceptron (MLP), Graph Convolution Network (GCN), and Attention (AT) networks that use
hyperbolic gyrovector operations instead of the vector space model.

It should be noted that not all the baselines can be applied to both node classification and link
prediction. Hence, we compare our model against the baselines only on the applicable scenarios.

5 Experimental Results

We adopt the following standard problem setting which is widely studied in the literature [18]. The
details of the datasets used in our experiments are provided in Table 1. In the case of synthetic
datasets, we use a 2-way setup for disjoint label problems, and for the shared label problems the
cycle graph and Barabási–Albert (BA) graph have 17 and 10 labels, respectively. The evaluation
of our model uses 5 and 10 gradient update steps in meta-training and meta-testing, respectively.
In the case of real-world datasets, we use 3-shot and 16-shot setup for node classification and link
prediction, respectively. For real-world disjoint labels problem, we use the 3-way classification
setting. The evaluation of our model uses 20 and 10 gradient update steps in meta-training and meta-
testing, respectively. In the case of Tissue-PPI dataset, we perform each 2-way protein function task
three times and average it over 10 iterations for the final result. In the case of link prediction task,
we need to ensure the distinct nature of support and query set in all meta-training tasks. For this, we
hold out a fixed set comprised of 30% and 70% of the edges as a preprocessing step for every graph
for the support and query set, respectively.

5.1 RQ1: Performance of Meta-Learning

To analyze the meta-learning capability of H-GRAM, we compare it against previous approaches
in this area on a standard evaluation setup. We consider two experimental setups inline with previ-
ous evaluation in the literature [18]; (i) with synthetic datasets to analyze performance on different
problem setups without altering the graph topology, and (ii) with real-world datasets to analyze per-

7

Table 1: Basic statistics of the datasets used in our experiments. The columns present the dataset
task (node classification or link prediction), number of graphs |G[|, nodes |V |, edges |E|, node
features |X|, and labels |Y |. Node, Link, and N/L indicates whether the datasets are used for node
classification, link prediction, and both, respectively.

Dataset Task |G[| |V | |E| |X| |Y |
Synth. Cycle Node 10 11,476 19,687 - 17
Synth. BA Node 10 2,000 7,647 - 10
ogbn-arxiv Node 1 169,343 1,166,243 128 40
Tissue-PPI Node 24 51,194 1,350,412 50 10
FirstMM-DB Link 41 56,468 126,024 5 2
Fold-PPI Node 144 274,606 3,666,563 512 29
Tree-of-Life Link 1,840 1,450,633 8,762,166 - 2
Cora N/L 1 2,708 5,429 1,433 7
Pubmed N/L 1 19,717 44,338 500 3
Citeseer N/L 1 3,312 4,732 3,703 6

Table 2: Performance of H-GRAM and the baselines on synthetic and real-world datasets. The
top three rows define the task, problem setup (Single Graph (SG), Multiple Graphs (MG), Shared
Labels (SL) or Disjoint Labels (DL)) and dataset. The problems with disjoint labels use a 2-way
meta-learning setup, and in the case of shared labels, the cycle (S. Cy) and BA (S. BA) graph have
17 and 10 labels, respectively. In our evaluation, we use 5 and 10 gradient update steps in meta-
training and meta-testing, respectively. The columns present the average multi-class classification
accuracy and 95% confidence interval over five-folds. Note that the baselines are only defined for
certain tasks, “-” implies that the baseline is not defined for the task and setup. Meta-Graph is only
defined for link prediction. The confidence intervals for the results are provided in Appendix D.

Synthetic Datasets Real-world (Node Classification) Real-world (Link Prediction)
Task Setup hSG,DLi hMG,SLi hMG,DLi hSG,DLi hMG,SLi hMG,DLi hMG,SLi hMG,SLi
Dataset S. Cy S. BA S. Cy S. BA S. Cy S. BA ogbn-arxiv Tissue-PPI Fold-PPI FirstMM-DB Tree-of-Life
Meta-Graph - - - - - - - - - .719 .705
Meta-GNN .720 .694 - - - - .273 - - - -
FS-GIN .684 .749 - - - - .336 - - - -
FS-SGC .574 .715 - - - - .347 - - - -
ProtoNet .821 .858 .282 .657 .749 .866 .372 .546 .382 .779 .697
MAML .842 .848 .511 .726 .653 .844 .389 .745 .482 .758 .719
G-META .872 .867 .542 .734 .767 .867 .451 .768 .561 .784 .722
H-GRAM .883 .873 .555 .746 .779 .888 .472 .786 .584 .804 .742

formance for practical application. Based on the problem setup, the datasets are partitioned into
node-centric subgraphs with corresonding root node’s label as the subgraph’s ground truth label.
The subgraphs are subsequently batched into tasks which are further divided into support set and
query set for meta-learning. The evaluation metric for both the tasks of node classification and link
prediction is accuracy A = |Y = Ŷ |/|Y |. For robust comparison, the metrics are computed over
five folds of validation splits in a 2-shot setting for node classification and 32-shot setting for link
prediction. Table 2 presents the five-fold average and 95% confidence interval of our experiments
on synthetic and real-world datasets, respectively. From the results, we observe that H-GRAM con-
sistently outperforms the baseline methods on a diverse set of datasets and meta-learning problem
setups. For the disjoint labels setting, H-GRAM outperforms the best baseline in both the cases of
single and multiple graphs. In the case of synthetic graphs, we observe that subgraph methods of
H-GRAM and G-Meta outperform the entire graph encoding based approaches showing that sub-
graph methods are able to limit the over-smoothing problem [6] and improve performance. Also, we
observe that meta-learning methods (ProtoNet and MAML) are unreliable in their results producing
good results for some tasks and worse for others, whereas H-GRAM is consistently better across
the board. Hence, we conclude that using label prototypes to learn inductive biases and transfer-
ring them using MAML meta updates is a more robust technique. We note that H-GRAM, unlike
previous HNN models, is able to handle graphs with edges and nodes in the order of millions, as
evident by the performance on large real-world datasets including ogbn-arxiv, Tissue-PPI, Fold-PPI,
and Tree-of-Life. Our experiments clearly demonstrate the significant performance of H-GRAM in
a wide-range of applications and prove the effectiveness of meta-learning in HNN models.

8

Table 3: Comparison with HNN models on standard benchmarks. We compare the Single Graph,
Shared Labels (SG,SL) setup of the H-GRAM model to the baselines. The columns report the
average multi-class classification accuracy and 95% confidence interval over five-folds on the tasks
of node classification (Node) and link prediction (Link) in the standard citation graphs.

Dataset Cora Pubmed Citeseer
Task Node Link Node Link Node Link
HMLP .754±.029 .765±.047 .657±.045 .848±.038 .879±.078 .877±.090
HAT .796±.036 .792±.038 .681±.034 .908±.038 .939±.034 .922±.036
HGCN .779±.026 .789±.030 .696±.029 .914±.031 .950±.032 .928±.030
H-GRAM .827±.037 .790±.026 .716±.029 .896±.025 .924±.033 .936±.030

5.2 RQ2: Comparison with HNN models

The current HNN formulations of HMLP, HAT, and HGCN do not scale to large
datasets, and hence, we were not able to compare them against H-GRAM on large-
scale datasets. However, it is necessary to compare the standard HNN formulations
with H-GRAM to understand the importance of subgraph encoders and meta-learning.

Figure 3: Time taken (per epoch) by
H-GRAM compared to other HNNs
with varying number of nodes |V| =
{10i}7i=1 in Syn. BA graph. H-
GRAM(multi) is the multi-GPU version
of H-GRAM.

Thus, we utilize the single graph and shared labels setup
of H-GRAM to evaluate its performance on citation net-
works of Cora, Pubmed, and Citeseer for both tasks of
node classification and link prediction. We also compare
the time taken by our model and other HNNs on vary-
ing number of nodes

�
|V| = {10i}7i=1

�
in the Synthetic

BA graph. For this experiment, we also consider a multi-
GPU version of H-GRAM that parallelizes the HNN up-
date computations and accumulates them for meta up-
date. From our results, presented in Table 3, we ob-
serve that H-GRAM is, on average, able to outperform
the best baseline. This shows that our formulation of
HNN models using meta-learning over node-centric sub-
graphs is more effective than the traditional models, while
also being scalable over large datasets. The scalability
allows for multi-GPU training and translates the perfor-
mance gains of HNNs to larger datasets. In the results
provided in Figure 3, we observe that the time taken
by the models is inline with their parameter complexity
(HMLPHGCNHATH-GRAM). However, the tradi-
tional HNNs are not able to scale beyond |V| = 104,

whereas, H-GRAM is able to accommodate large graphs. Another point to note is that H-
GRAM(multi) is able to parallelize well over multiple GPUs with its time taken showing stability
after 104 nodes (which is the size of nodes that a single GPU can accommodate).

5.3 RQ3: Challenging Few-shot Settings

To understand the effect of different few-shot learning scenarios, we vary the number of few-shots
M and hops K in the neighborhood. For the experiment on few-shot classification, we consider
the problems of node classification on Fold-PPI dataset and link prediction on FirstMM-DB dataset.
We vary M = 1, 2, 3 and M = 16, 32, 64 for node classification and link prediction, respectively,
and calculate the corresponding accuracy and 95% confidence interval of H-GRAM. The results
for this experiment are presented in Figures 4a and 4b for node classification and link prediction,
respectively. To determine the effect of hops in the neighborhood, we vary K = 1, 2, 3 for the same
problem setting and compute the corresponding performance of our model. The results for varying
neighborhood sizes are reported in Figure 4c. In the results on varying the number of few-shots,
we observe a linear trend in both the tasks of node classification and link prediction, i.e., a linear
increase in H-GRAM’s accuracy with an increase in the number of shots in meta-testing. Thus,
we conclude that H-GRAM, like other generic learning models, performs better with an increasing
number of training samples. In the experiment on increasing the neighborhood size, we observe that
in the task of node classification, K = 3 shows the best performance, but in link prediction K = 2

9

has the best performance, with a significant drop in K = 3. Thus, for stability, we choose K = 2
in our experiments. The trend in link prediction also shows that larger neighborhoods can lead to an
increase in noise, which can negatively affect performance.

(a) Number of Shots (vs) Accuracy
for node classification on Fold-PPI
dataset.

(b) Number of Shots (vs) Accuracy
for link prediction on FirstMM-DB
dataset.

(c) Number of hops (vs) Accuracy
on the task of node classification and
link prediction.

Figure 4: Performance of H-GRAM on challenging few-shot settings. The reported accuracies are
multi-class classification accuracy averaged over five-fold runs of our model.

5.4 RQ4: Ablation Study

In this section, we aim to understand the contribution of the different components in our model.
To this end, we compare variants of our model by (i) varying the base HNN model (HMLP, HAT,
and HGCN), and (ii) deleting individual meta-learning components - H-ProtoNet implies H-GRAM
without meta updates and H-MAML implies H-GRAM without prototypes. The model variants
are compared on the real-world datasets and the results are presented in Table 4. The ablation study
indicates that meta gradient updates and label prototypes contribute to⇡16% and⇡6% improvement
in H-GRAM’s performance, respectively. This clearly demonstrates the ability of label prototypes
in encoding inductive biases and that of meta gradients in transferring the knowledge from meta-
training to the meta-testing phase. Additionally, from our study on different HNN bases for H-
GRAM, we note that the HGCN base outperforms the other bases of HMLP and HAT by⇡19% and
⇡2%, respectively. Thus, we choose HGCN as the base in our final model.

Table 4: Ablation study results - H-ProtoNet and H-MAML can be considered H-GRAM’s model
variants without meta updates and label prototypes, respectively. H-GRAM(HMLP) and H-
GRAM(HAT) represents the variant of H-GRAM with HMLP and HAT as base, respectively. Our
final model, presented in the last row, uses HGCN as the base model. The columns report the av-
erage multi-class classification accuracy and 95% confidence interval over five-folds on different
tasks.

Task Node Classification Link Prediction
Setup hSG,DLi hMG,SLi hMG,DLi hMG,SLi hMG,SLi
Dataset ogbn-arxiv Tissue-PPI Fold-PPI FirstMM-DB Tree-of-Life
H-ProtoNet .389±.019 .559±.027 .398±.023 .799±.015 .716±.004
H-MAML .407±.023 .762±.056 .502±.046 .777±.018 .739±.005
H-GRAM(HMLP) .370±.036 .537±.044 .372±.036 .772±.028 .688±.019
H-GRAM(HAT) .462±.032 .777±.028 .573±.048 .794±.023 .732±.021
H-GRAM(ours) .472±.035 .786±.031 .584±.044 .804±.021 .742±.013

6 Conclusion

In this paper, we introduce H-GRAM, a scalable hyperbolic meta-learning model that is able to
learn inductive biases from a support set and adapt to a query set with disjoint nodes, edges, and
labels by transferring the knowledge. We have theoretically proven the effectiveness of node-centric
subgraph information in HNN models, and used that to formulate a meta-learning model that can
scale over large datasets. Our model is able to handle challenging few-shot learning scenarios and
also outperform the previous Euclidean baselines in the area of meta-learning. Additionally, unlike
previous HNN models, H-GRAM is also able to scale to large graph datasets.

10

References
[1] Ivana Balažević, Carl Allen, and Timothy Hospedales. Multi-relational poincaré graph embed-

dings. In Proceedings of the 33rd International Conference on Neural Information Processing
Systems, Red Hook, NY, USA, 2019. Curran Associates Inc.

[2] Silvère Bonnabel. Stochastic gradient descent on riemannian manifolds. IEEE Transactions
on Automatic Control, 58(9):2217–2229, 2013. doi: 10.1109/TAC.2013.2254619.

[3] Avishek Joey Bose, Ankit Jain, Piero Molino, and William L. Hamilton. Meta-graph: Few
shot link prediction via meta learning, 2020. URL https://openreview.net/forum?id=

BJepcaEtwB.

[4] Ines Chami, Zhitao Ying, Christopher Ré, and Jure Leskovec. Hyperbolic graph convolutional
neural networks. Advances in neural information processing systems, 32, 2019.

[5] Ines Chami, Adva Wolf, Da-Cheng Juan, Frederic Sala, Sujith Ravi, and Christopher Ré.
Low-dimensional hyperbolic knowledge graph embeddings. In Proceedings of the 58th An-
nual Meeting of the Association for Computational Linguistics, pages 6901–6914, Online, July
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.617. URL
https://aclanthology.org/2020.acl-main.617.

[6] Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and relieving the
over-smoothing problem for graph neural networks from the topological view. Proceedings
of the AAAI Conference on Artificial Intelligence, 34(04):3438–3445, Apr. 2020. doi: 10.
1609/aaai.v34i04.5747. URL https://ojs.aaai.org/index.php/AAAI/article/view/

5747.

[7] Mingyang Chen, Wen Zhang, Wei Zhang, Qiang Chen, and Huajun Chen. Meta relational
learning for few-shot link prediction in knowledge graphs. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 4208–
4217, Hong Kong, China, November 2019. Association for Computational Linguistics. URL
https://www.aclweb.org/anthology/D19-1431.

[8] Nurendra Choudhary, Nikhil Rao, Sumeet Katariya, Karthik Subbian, and Chandan K. Reddy.
Self-supervised hyperboloid representations from logical queries over knowledge graphs. In
Proceedings of the Web Conference 2021, WWW ’21, page 1373–1384, New York, NY, USA,
2021. Association for Computing Machinery. ISBN 9781450383127. doi: 10.1145/3442381.
3449974. URL https://doi.org/10.1145/3442381.3449974.

[9] Nurendra Choudhary, Nikhil Rao, Sumeet Katariya, Karthik Subbian, and Chandan K. Reddy.
Anthem: Attentive hyperbolic entity model for product search. In Proceedings of the Fifteenth
ACM International Conference on Web Search and Data Mining, WSDM ’22, page 161–171,
New York, NY, USA, 2022. Association for Computing Machinery. ISBN 9781450391320.
doi: 10.1145/3488560.3498456. URL https://doi.org/10.1145/3488560.3498456.

[10] Nurendra Choudhary, Nikhil Rao, Karthik Subbian, Srinivasan H. Sengamedu, and Chandan K.
Reddy. Hyperbolic neural networks: Theory, architectures and applications. In Proceed-
ings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD
’22, page 4778–4779, New York, NY, USA, 2022. Association for Computing Machinery.
ISBN 9781450393850. doi: 10.1145/3534678.3542613. URL https://doi.org/10.1145/

3534678.3542613.

[11] Bhuwan Dhingra, Christopher Shallue, Mohammad Norouzi, Andrew Dai, and George Dahl.
Embedding text in hyperbolic spaces. In Proceedings of the Twelfth Workshop on Graph-
Based Methods for Natural Language Processing (TextGraphs-12), pages 59–69, New Or-
leans, Louisiana, USA, June 2018. Association for Computational Linguistics. doi: 10.18653/
v1/W18-1708. URL https://aclanthology.org/W18-1708.

[12] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adap-
tation of deep networks. In Proceedings of the 34th International Conference on Machine
Learning - Volume 70, ICML’17, page 1126–1135. JMLR.org, 2017.

11

https://openreview.net/forum?id=BJepcaEtwB
https://openreview.net/forum?id=BJepcaEtwB
https://aclanthology.org/2020.acl-main.617
https://ojs.aaai.org/index.php/AAAI/article/view/5747
https://ojs.aaai.org/index.php/AAAI/article/view/5747
https://www.aclweb.org/anthology/D19-1431
https://doi.org/10.1145/3442381.3449974
https://doi.org/10.1145/3488560.3498456
https://doi.org/10.1145/3534678.3542613
https://doi.org/10.1145/3534678.3542613
https://aclanthology.org/W18-1708

[13] Octavian Ganea, Gary Bécigneul, and Thomas Hofmann. Hyperbolic neural networks. Ad-
vances in neural information processing systems, 31, 2018.

[14] Ning Gao, Hanna Ziesche, Ngo Anh Vien, Michael Volpp, and Gerhard Neumann. What mat-
ters for meta-learning vision regression tasks? In 2022 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 14756–14766, 2022. doi: 10.1109/CVPR52688.
2022.01436.

[15] Caglar Gulcehre, Misha Denil, Mateusz Malinowski, Ali Razavi, Razvan Pascanu, Karl Moritz
Hermann, Peter Battaglia, Victor Bapst, David Raposo, Adam Santoro, and Nando de Fre-
itas. Hyperbolic attention networks. In International Conference on Learning Representations,
2019. URL https://openreview.net/forum?id=rJxHsjRqFQ.

[16] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30. Cur-
ran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/

5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf.

[17] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
arXiv preprint arXiv:2005.00687, 2020.

[18] Kexin Huang and Marinka Zitnik. Graph meta learning via local subgraphs. Advances in
Neural Information Processing Systems, 33:5862–5874, 2020.

[19] Mehrdad Khatir, Nurendra Choudhary, Sutanay Choudhury, Khushbu Agarwal, and Chan-
dan K. Reddy. A unification framework for euclidean and hyperbolic graph neural networks.
In Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence,
IJCAI 2023, 19th-25th August 2023, Macao, SAR, China, pages 3875–3883. ijcai.org, 2023.
doi: 10.24963/ijcai.2023/431. URL https://doi.org/10.24963/ijcai.2023/431.

[20] Thomas N Kipf and Max Welling. Variational graph auto-encoders. NIPS Workshop on
Bayesian Deep Learning, 2016.

[21] Max Kochurov, Rasul Karimov, and Serge Kozlukov. Geoopt: Riemannian optimization in
pytorch. arXiv preprint arXiv:2005.02819, 2020.

[22] Hung-yi Lee, Shang-Wen Li, and Thang Vu. Meta learning for natural language processing: A
survey. In Proceedings of the 2022 Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language Technologies, pages 666–684, Seattle,
United States, July 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.
naacl-main.49. URL https://aclanthology.org/2022.naacl-main.49.

[23] Lu Liu, Tianyi Zhou, Guodong Long, Jing Jiang, and Chengqi Zhang. Learning to Propagate
for Graph Meta-Learning. Curran Associates Inc., Red Hook, NY, USA, 2019.

[24] Galileo Mark Namata, Ben London, Lise Getoor, and Bert Huang. Query-driven active sur-
veying for collective classification. In International Workshop on Mining and Learning with
Graphs, Edinburgh, Scotland, 2012.

[25] Marion Neumann, Plinio Moreno, Laura Antanas, Roman Garnett, and Kristian Kersting.
Graph kernels for object category prediction in task-dependent robot grasping. In Online pro-
ceedings of the eleventh workshop on mining and learning with graphs, pages 0–6, 2013.

[26] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-
tala. Pytorch: An imperative style, high-performance deep learning library. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems 32, pages 8024–
8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/

12

https://openreview.net/forum?id=rJxHsjRqFQ
https://proceedings.neurips.cc/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://doi.org/10.24963/ijcai.2023/431
https://aclanthology.org/2022.naacl-main.49
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.

pdf.

[27] Nataša Pržulj. Biological network comparison using graphlet degree distribution. Bioinfor-
matics, 23(2):e177–e183, 2007.

[28] Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In
International Conference on Learning Representations, 2018. URL https://openreview.

net/forum?id=ryQu7f-RZ.

[29] Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with interactive graph
analytics and visualization. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial
Intelligence, AAAI’15, page 4292–4293. AAAI Press, 2015. ISBN 0262511290.

[30] Juwen Shen, Jian Zhang, Xiaomin Luo, Weiliang Zhu, Kunqian Yu, Kaixian Chen, Yixue Li,
and Hualiang Jiang. Predicting protein–protein interactions based only on sequences informa-
tion. Proceedings of the National Academy of Sciences, 104(11):4337–4341, 2007.

[31] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learn-
ing. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30. Cur-
ran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/

cb8da6767461f2812ae4290eac7cbc42-Paper.pdf.

[32] Jianing Sun, Zhaoyue Cheng, Saba Zuberi, Felipe Perez, and Maksims Volkovs. Hgcf:
Hyperbolic graph convolution networks for collaborative filtering. In Proceedings of the
Web Conference 2021, WWW ’21, page 593–601, New York, NY, USA, 2021. Association
for Computing Machinery. ISBN 9781450383127. doi: 10.1145/3442381.3450101. URL
https://doi.org/10.1145/3442381.3450101.

[33] Abraham A Ungar. Analytic hyperbolic geometry: Mathematical foundations and applica-
tions. World Scientific, 2005.

[34] Ricardo Vilalta and Youssef Drissi. A perspective view and survey of meta-learning. Artificial
intelligence review, 18(2):77–95, 2002.

[35] Anoushka Vyas, Nurendra Choudhary, Mehrdad Khatir, and Chandan K. Reddy. Graphzoo:
A development toolkit for graph neural networks with hyperbolic geometries. In Companion
Proceedings of the Web Conference 2022, WWW ’22, page 184–188, New York, NY, USA,
2022. Association for Computing Machinery. ISBN 9781450391306. doi: 10.1145/3487553.
3524241. URL https://doi.org/10.1145/3487553.3524241.

[36] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger.
Simplifying graph convolutional networks. In Proceedings of the 36th International Confer-
ence on Machine Learning, pages 6861–6871. PMLR, 2019.

[37] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019. URL https:

//openreview.net/forum?id=ryGs6iA5Km.

[38] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna.
GraphSAINT: Graph sampling based inductive learning method. In International Confer-
ence on Learning Representations, 2020. URL https://openreview.net/forum?id=

BJe8pkHFwS.

[39] Chuxu Zhang, Huaxiu Yao, Chao Huang, Meng Jiang, Zhenhui Li, and Nitesh V Chawla.
Few-shot knowledge graph completion. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 3041–3048, 2020.

[40] Fan Zhou, Chengtai Cao, Kunpeng Zhang, Goce Trajcevski, Ting Zhong, and Ji Geng.
Meta-gnn: On few-shot node classification in graph meta-learning. In Proceedings of the
28th ACM International Conference on Information and Knowledge Management, CIKM
’19, page 2357–2360, New York, NY, USA, 2019. Association for Computing Machinery.
ISBN 9781450369763. doi: 10.1145/3357384.3358106. URL https://doi.org/10.1145/

3357384.3358106.

13

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://openreview.net/forum?id=ryQu7f-RZ
https://openreview.net/forum?id=ryQu7f-RZ
https://proceedings.neurips.cc/paper/2017/file/cb8da6767461f2812ae4290eac7cbc42-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/cb8da6767461f2812ae4290eac7cbc42-Paper.pdf
https://doi.org/10.1145/3442381.3450101
https://doi.org/10.1145/3487553.3524241
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=BJe8pkHFwS
https://openreview.net/forum?id=BJe8pkHFwS
https://doi.org/10.1145/3357384.3358106
https://doi.org/10.1145/3357384.3358106

[41] Fan Zhou, Chengtai Cao, Goce Trajcevski, Kunpeng Zhang, Ting Zhong, and Ji Geng. Fast
network alignment via graph meta-learning. In IEEE INFOCOM 2020 - IEEE Conference
on Computer Communications, pages 686–695, 2020. doi: 10.1109/INFOCOM41043.2020.
9155456.

[42] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng
Wang, Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods
and applications. AI Open, 1:57–81, 2020. ISSN 2666-6510. doi: https://doi.org/10.1016/
j.aiopen.2021.01.001. URL https://www.sciencedirect.com/science/article/pii/

S2666651021000012.

[43] Marinka Zitnik and Jure Leskovec. Predicting multicellular function through multi-layer tissue
networks. Bioinformatics, 33(14):i190–i198, 2017.

[44] Marinka Zitnik, Rok Sosič, Marcus W. Feldman, and Jure Leskovec. Evolution of resilience in
protein interactomes across the tree of life. Proceedings of the National Academy of Sciences,
116(10):4426–4433, 2019. doi: 10.1073/pnas.1818013116. URL https://www.pnas.org/

doi/abs/10.1073/pnas.1818013116.

14

https://www.sciencedirect.com/science/article/pii/S2666651021000012
https://www.sciencedirect.com/science/article/pii/S2666651021000012
https://www.pnas.org/doi/abs/10.1073/pnas.1818013116
https://www.pnas.org/doi/abs/10.1073/pnas.1818013116

