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Abstract

Language is often considered a key aspect of human thinking, providing us with
exceptional abilities to generalize, explore, plan, replan, and adapt to new situa-
tions. However, Reinforcement Learning (RL) agents are far from human-level
performance in any of these abilities. We hypothesize one reason for such cognitive
deficiencies is that they lack the benefits of thinking in language and that we can
improve AI agents by training them to think like humans do. We introduce a
novel Imitation Learning framework, Thought Cloning, where the idea is to not
just clone the behaviors of human demonstrators, but also the thoughts humans
have as they perform these behaviors. While we expect Thought Cloning to truly
shine at scale on internet-sized datasets of humans thinking out loud while acting
(e.g. online videos with transcripts), here we conduct experiments in a domain
where the thinking and action data are synthetically generated. Results reveal that
Thought Cloning learns much faster than Behavioral Cloning and its performance
advantage grows the further out of distribution test tasks are, highlighting its ability
to better handle novel situations. Thought Cloning also provides important benefits
for AI Safety and Interpretability, and makes it easier to debug and improve AI.
Because we can observe the agent’s thoughts, we can (1) more easily diagnose
why things are going wrong, making it easier to fix the problem, (2) steer the agent
by correcting its thinking, or (3) prevent it from doing unsafe things it plans to
do. Overall, by training agents how to think as well as behave, Thought Cloning
creates safer, more powerful agents.1

1 Introduction

Language may be the key to what separates humans from all other animals, endowing us with an
amazing level of general intelligence [1–4]. Crucially, the benefits of language are not confined to
improving our ability to communicate with others: language also helps us think better [2–4]. We first
describe the benefits of agents that can understand language (a common topic in AI) before moving
to the benefits of agents that think in language (a topic that has received far less attention).

There are many benefits that arise if our agents can understand language. Doing so is crucial for
agents to generalize to new tasks we want them to perform. This is because it is drastically more
sample efficient if one can tell an agent what the task is, rather than requiring the agent to figure out
the task through trial and error [5, 6]. Moreover, agents that can understand language allow us to
define new tasks at test time without having to anticipate every wish we might eventually have for

1The source code, model weights, and dataset are available at https://github.com/ShengranHu/
Thought-Cloning.
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our trained agents [7]. That is in contrast to conventional hand-designed task descriptions, which can
be vast, but still place constraints on what we can ask an agent to perform [8].

While the benefits of agents that can understand language are commonly discussed, there has been
relatively little discussion in AI, especially in Reinforcement Learning (RL), regarding the many
benefits of agents that think in language. While it remains debated whether humans exclusively think
in language [9, 10], many scholars believe that natural language is intricately woven into our thought
processes, conferring distinct cognitive advantages: thinking in language helps humans generalize,
extrapolate, adapt to new situations, combine old knowledge in new ways, explore, plan, replan when
necessary or beneficial, transfer knowledge via analogies, and the list goes on [2–4]. Despite these
benefits, AI agents rarely, if ever, think, at least not in human language. While neural networks
have internal vector activations that can be considered thinking, many hypothesize that there are
specific benefits to thinking in the discrete, symbolic form of language (e.g. combining ideas in an
exponential number of ways) [6, 11, 12], meaning that agents that think in language might learn
faster, perform better, and generalize better than non-lingual agents.

In addition to agents being more capable, there are major benefits regarding AI Safety and Inter-
pretability that arise when agents think in our language. If one can watch an agent think during
training, one can recognize deficiencies in skills or values that can be improved, or one could decide
the agent is not ready to be deployed. During testing, one can constantly scan the thoughts of the
agent and intervene when the agent plans to do something undesirable. For example, if an agent
thinks “My goal is to take my passenger to the store as fast as possible so I will run through this
red light without stopping” one could intervene to stop that behavior ahead of time. Furthermore,
watching agents think enhances the steerability of agents. If an agent is confused when solving
challenging tasks, one can inject their thoughts into the agent to help it solve the task in a desired
way. A final major benefit of agents that think in human language is it makes it easier to train more
capable, safer AI agents. One can spot why things are not working, instead of just seeing that they are
not working, and that provides ideas for how to debug and or improve AI training.

For all these reasons, adding the ability of AI agents to think in language could produce many
significant advantages, and we suggest that the most effective way to achieve this goal is by imitating
human thinking. Humans do not acquire thinking skills in isolation; instead, they are learned in
part through demonstrations and feedback provided by teachers [2, 13–15]. As such, a promising
method is to have agents learn from demonstrations where humans think out loud while acting. This
approach is distinct from existing works that leverage pre-trained Large Language Models (LLMs)
for planning [16, 17], because such LLMs are not trained on data where humans think out loud while
acting. Thought data, such as YouTube videos and transcripts [18, 19], contains millions of hours of
people talking out loud while performing tasks, revealing the thinking behind their actions, planning,
decisions, and replanning, such as when they play video games [19]. This thought data is greatly
valuable and widely available (Section 2), but has not yet been extensively explored, and this work
hopes to encourage further research into the use of thought data to teach thinking skills to agents.

Provided we can solve the real, significant challenges of AI Safety and existential risk [20–24], there
are tremendous gains to be had by creating more powerful AI or even AGI. In this paper, we propose
a novel Imitation Learning framework, Thought Cloning, where agents not only learn to act from
human demonstrations, as in Behavioral Cloning [25], but also learn to think from demonstrations
where human think out loud while acting. Although we expect Thought Cloning to truly shine when
trained on vast online datasets of synchronized human thoughts and actions, this paper validates the
concept with synthetic thought data in a challenging domain, BabyAI [26]. Our experimental results
illustrate that Thought Cloning outperforms Behavioral Cloning, even when Behavioral Cloning
agents have the ability to think (in latent vectors), but have to learn that skill without the supervision
of thinking provided by Thought Cloning. We also demonstrate that Thought Cloning generalizes
better than Behavioral Cloning in out-of-distribution tasks in both zero-shot and fine-tuning settings.
Finally, we provide empirical evidence for the previously discussed advantages of Thought Cloning
in terms of Safety and Interpretability, where unsafe behavior can be near perfectly stopped before
execution. All told, the results are promising and offer a glimpse of the enormous potential of Thought
Cloning to not only make AI smarter, but also safer and more interpretable.
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Figure 1: Overall framework for Thought Cloning (TC). The TC agent has two components: the
Thought Generator and Action Generator. At each timestep, the TC agent receives an observation,
a mission, and a history of thoughts as inputs. The Thought Generator generates thoughts, and the
Action Generator generates actions conditioned on these thoughts. Generated thoughts and actions
are compared to the ground truth from the demonstration dataset to calculate the loss.

2 Proposed Method

Conventional Imitation Learning methods [27, 28], such as Behavioral Cloning [25], strive to
construct a policy that accurately replicates the distribution of behavior in a given dataset of demon-
strations. However, our proposed framework, Thought Cloning, diverges from this approach by
aiming to teach agents how to also think while acting, utilizing a synchronized dataset of hu-
man thinking. The thought dataset, denoted as D = {Di}Ni=1, comprises a series of trajectories,
Di = (m, {(ot, tht, at)}Tt=1). Each trajectory encompasses a mission, m, defined in natural language,
along with an observation ot, an action at, and a corresponding thought tht at each timestep, t. Such
datasets are widely available online. For example, by inferring action labels from Youtube videos
with VPT [19] and then retrieving the corresponding transcripts, we can obtain a thought dataset that
contains both human thinking and action [19, 18]. In such a dataset for Minecraft, a thought like
"I need to gather wood to build a shelter before nightfall" might correspond to the player moving
towards a tree and collecting wood. It is worth noting that noise is an inevitable aspect of online
data. For instance, commentary like “please subscribe to my channel” would be commonly found in
YouTube videos. However, we believe this challenge could be effectively mitigated with proper data
preprocessing. An example from MineCLIP [18] shows that careful heuristic-based preprocessing
of the captions can make data clean enough to train multi-modal models (e.g. a simple heuristic
focusing on domain-specific vocabulary could remove most off-topic text). More promisingly, one
could use language models to filter out off-topic data, either by removing any off-topic comments or
determining that some videos should be excluded because not enough of the commentary is helpful.
Additionally, even if noise is present, recent ML history shows that–at scale–such “noise” does not
prevent learning the “signal”: examples of this occurring on internet-scale data include GPT [29],
CLIP [30], and VPT [19]. While not a perfect simulation of online caption noise, as described later,
we add noise to the synthetic thought data and Thought Cloning works well despite it (Section 3.1).

In the Thought Cloning training framework, agents learn to produce natural language thoughts at each
timestep and subsequently condition their actions based on these generated thoughts. This learning
process gives rise to a bi-level architecture (Fig. 1). The architecture comprises an Thought Generator
responsible for thought generation, and a Action Generator tasked with executing actions based on
the thoughts generated by the Thought Generator. While different choices of what to condition the
Thought Generator and Action Generator are possible, in this work, for a particular trajectory of
length T in the thought dataset we minimize:

min
θu,θl

T∑
t=1

−α log πθu(tht|m, {oτ}tτ=1, {thτ}t−1
τ=1)− log πθl(at|m, {oτ}tτ=1, tht) (1)

Here, θu and θl represent the weights for the Thought Generator and Action Generator; α represents
the coefficient for Thought Cloning loss; th, o, a, and m denote thought, observation, action, and
mission, as previously described. The first part of the loss is the Thought Cloning loss, where the
Thought Generator is conditioned on the history of thoughts, observations, and the mission, to predict
the thought. That thought is then compared with the ground truth thought in the dataset. The second
part is the action loss, where the Action Generator is conditioned on the current thought, the history
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Figure 2: Left: A BabyAI [26] environment example. The environment contains various colored
items (ball, key, box, door). The agent can pick up, drop, and move objects or open and close doors,
while locked doors can only be unlocked with color-matched keys. The agent can observe the 7× 7
grid cells in front of it, which can be blocked by walls and closed doors. Right: An example from a
trained Thought Cloning agent planning and replanning. The mission requires reaching the purple
box (highlighted), but a purple ball blocks the way. The agent’s thoughts and actions show replanning
when encountering the obstacle, removing it, and resuming the previous goal.

of observations, and the mission and predicts the action to do, and we then calculate the loss by
comparing the predicted action to the ground truth action in the dataset.

For more complex or large-scale scenarios, the Thought Generator can be implemented with
pre-trained Vision-Language Models (VLM) either zero-shot or fine-tuned [31], while the
Action Generator can be trained from scratch or adapted from existing language-conditioned con-
trollers in the target domain [6, 16]. In this paper, we base both components on the BabyAI 1.1 model
architecture [32], which utilizes a memory-augmented architecture–an LSTM [33]–to address the
partial observability challenge. The model also employs FiLM [34] for modality fusion, effectively
combining visual and text input. The detailed architecture adopted in this paper can be found in
Supplementary Material A. While all models in this paper are trained from scratch, we anticipate that
the utilization of pre-trained models in complex domains will be beneficial.

3 Experimental Results

3.1 Domain and Synthetic Thought Data

This paper employs BabyAI [26], a simulated partially observable 2D gridworld domain. We focus
on the most challenging environment, BossLevel, in BabyAI. An overview of the domain is shown
in Fig. 2 (left). Each BabyAI environment consists of a randomly generated room layout, item
configuration, and a mission described in natural language, sampled on an environment distribution.
Colored items (balls, keys, boxs, doors) and the initial position of the agent are randomly distributed
across a 20 × 20 grid world containing nine 6 × 6 rooms. Missions comprise four possible tasks
(GoTo, PickUp, OpenDoor, PutNextTo), connected by then/after and and (with or without ordering
constraints). GoTo and PickUp require agents to go to or pick up an object; OpenDoor requires agents
to open or unlock a door; PutNextTo requires the agent to pick up object A, find object B, and drop A
next to B. The mission may implicitly require the agent to open or unlock doors to find the target
objects. Relative directional instruction in the mission, e.g., on your right, is based on the agent’s
initial position. An environment is solved when all tasks in the mission are completed. The agent’s
observation consists of the 7× 7 grid cells in front of the agent, except the agent cannot see through
walls (Fig. 2 yellow square). This work features the state-based observations provided by BabyAI
[26]. Each grid cell in the 7× 7 observation is represented by three integers: [the item ID, the color
ID, and a status code], resulting in a 7× 7× 3 observation matrix. The status code is 1 for closed
doors and 2 for locked doors, with 0 for open doors and other items. Occluded grid cells are assigned
an item ID of 0. The agent’s action space includes [left, right, forward, pickup, drop, toggle door
(unlock, open, close)].

The key challenges in BabyAI revolve around partial observability, hard-to-explore mazes, complex
missions in natural language, and long-horizon planning. The 7 × 7 observation field is limited
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compared to the 27× 27 maze, and the agent cannot see through walls and closed doors. The maze
containing multiple closed rooms is difficult to navigate and explore as the agent needs to find target
items across multiple closed (even locked) rooms. The missions are challenging because (1) they are
described in natural language and (2) they can consist of multiple tasks, each requiring complicated
navigation and actions. Combining all these factors results in a long horizon, with hundreds or even
thousands of steps needed to solve a single environment.

One significant advantage of BabyAI is that it provides an Oracle Solver (named BOT in [26]) capable
of generating step-by-step solutions for any given environment. This is achieved through hand-coded
rules and an internal stack machine to generate plans for solving environments. In our work, we
translate the Oracle Solver’s internal states into natural language thoughts with pre-defined rules. For
example, if the inner logic is to open a red door to explore the room, the translated thought will read,
“open red door to explore”. This translation process is combined with the generated demonstrations
to synthesize the thought dataset with 1 million trajectories. To make the dataset more realistic, noise
is added, with a 1% chance of adding a random noisy segment at each timestep, consisting of a
random thought and several random actions, with a random length sampled from 1-6. A trajectory
with example noise is shown in Supplementary Material C.

3.2 Experiment Setup

To verify the effectiveness of learning to think, we compare our Thought Cloning (TC) approach
to the classic learning algorithm, Behavioral Cloning (BC). BC shares most of its architecture with
the Action Generator of TC (Fig. 1), and because it is trained only on action loss, it does not
encode thought like the Action Generator of TC. Additionally, since BC has fewer parameters than
TC, we introduce an ablation variant called TC w/o Imitating Thought that is trained without the
Thought Cloning loss to demonstrate that TC’s superiority is not solely due to its larger number
of parameters. This variant’s architecture is identical to the TC architecture, except for a minor
architectural difference where the latent vector from the Thought Generator is directly input to the
Thought Generator as thought. This adjustment is necessary because this variant is not trained on
the Thought Cloning loss, so we do not have per-word supervision. To train these parameters, we
thus need to train them based on how these “thoughts” contribute to the action loss (i.e. they are
trained end-to-end to predict actions). If we sampled words (as in Thought Cloning), we could not
train these parameters end-to-end because hard sampling of words is non-differentiable, so gradients
could not flow backward through this operation. Thus, we make one small change in order to allow
the parameters to be trained, which is to pass the logits of the Thought Generator directly into the
Action Generator, which is a differentiable operation. We feel this is the closest and fairest control
possible to Thought Cloning, allowing virtually the same architecture and the same number of
parameters, but not including the Thought Cloning innovation of exploiting human thought data.

Our training setup is based on BabyAI [26, 32]. The training iterates for 8 epochs on the 1 million
episode dataset, corresponding to a total of 7 × 108 training frames. The Thought Cloning loss
parameter α (Eq. 1) is set to 2. During training, we employ teacher-forcing [35], which is adopted
when decoding thoughts. It conditions the Action Generator on the ground truth thoughts from the
dataset. The teacher-forcing ratio linearly decreases from 100% to 0% during the training process.
Producing all the main results in the paper took about ten A40 GPUs for one week. More details on
training can be found in Supplementary Material A.

In our experiments, the performance of agents is evaluated based on their success rate in held-out
test environments. Success for an environment is defined as the completion of all specified tasks
in the mission. By controlling random seeds, all test environments are unseen during the training
process. All experiment results from Sections 3.3, 3.4 and 3.5 are calculated from five independent
runs. The success rate results in Section 3.3 are obtained by testing agents on a set of 512 sampled
environments. In Section 3.4, agents are tested in a larger set of 1,024 test environments. During the
testing phase, the TC agent has identical observations as the BC agent, i.e. it has no extra information.

3.3 Imitation Learning

In this section, we show the main performance results of training TC, BC, and TC w/o Imitating
Thought. The results illustrate that TC learns faster than BC, where BC requires orders of magnitude
more time to achieve a performance similar to TC’s early-stage results, and TC ultimately outperforms
BC at the end of training (Fig. 3). The outperformance of TC compared to BC at 25%, 50%, 75%, and
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Figure 3: Training progress comparison of Thought Cloning (TC), Behavioral Cloning (BC), and
a TC ablation variant without the Thought Cloning loss. The BC architecture is identical to the
Action Generator of TC and the TC w/o Imitating Thought has the same architecture as TC, without
the TC loss. BC and the ablation variant are trained solely with the action loss (which leads to some
minor architectural differences, see Section 3.2.) The error bars are the 95% confidence interval from
five runs of experiments. The results indicate that TC learns faster than BC and also outperforms
it. Furthermore, the comparison between TC and TC w/o Imitating Thought demonstrates that the
superiority of TC is not simply due to having more parameters.

100% of the way through training is statistically significant, as confirmed by the Mann-Whitney U
test, with p = [0.012, 0.008, 0.021, 0.008] < 0.05. These results support our hypothesis that natural
language can help the agent learn to explore and plan.

Another comparison is between TC and an ablation variant TC w/o Imitating Thought that shares
the same architecture with TC, but without the Thought Cloning loss in training. The results show
that TC also substantially outperforms TC w/o Imitating Thought (Fig. 3). Similar to the previous,
the results are statistically significant (p = [0.008, 0.012, 0.008, 0.008] < 0.05). The results reveal
that TC’s superior performance is not solely due to a larger number of parameters than BC, and also
supports our argument that learning from human thought boosts an agent’s ability to think.

An example of a TC agent planning and replanning is shown in Fig 1 (right). After opening the blue
door, the agent discovers the target (a purple box) within its observation and thinks about going to
it to complete the task. However, the agent realizes that a purple ball is blocking its path. A smart
replan emerges here, with the agent inserting a new plan to remove the ball. The agent achieves
this subgoal by picking up the ball in its way, finding an empty space, and then dropping it. After
completing this new, necessary, intermediate task, the agent resumes its original mission to go to the
purple box and successfully solves the environment. From this example, we can see that by thinking
like humans in natural language, the agent demonstrates successful planning and replanning abilities.
We also see the interpretability benefits, as it is easy to follow along and understand why the agent
executes certain actions.

3.4 Generalization to Out-of-Distribution Environments

This section compares the generalization abilities of the TC and BC agents by testing them on environ-
ments that are increasingly out of distribution. We define the distribution of environments with two
difficulty dimensions: Behavioral Difficulty and Cognitive Difficulty. Behavioral Difficulty is based
on the length of the action sequence required to solve the environment (provided by Oracle Solver,
see Section 3.1). The simplest environments require about 20 steps, while the most challenging
environments require more than 500 steps. Cognitive Difficulty reflects the complexity of the mis-
sion, with more difficult environments requiring stronger planning abilities to complete complex
tasks. The definition of Cognitive Difficulty is adapted from the maxStep parameter in BabyAI
environments [26] and is given by (# of {GoTo, PickUp, OpenDoor} + 2 × # of {PutNextTo} +
# of ordering constraints). The PutNextTo task is assigned a higher weight because it involves a
combination of picking up, navigating, and dropping, making it the most challenging task among the
four. The range of cognitive difficulty spans from 1 (simplest) to 9 (most difficult). In the training
distribution, the environments exhibit means and standard deviations of Behavioral and Cognitive
Difficulties of 84.2± 68.8 and 2.7± 1.6, respectively. In this paper, we define out-of-distribution
(OOD) environments as those with a Behavioral Difficulty > 175 or a Cognitive Difficulty ≥ 4,
each being approximately more than one standard deviation away from the mean. The furthest
OOD environments, with a Behavioral Difficulty greater than 425 or a Cognitive Difficulty of 9, had
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(a) Zero-shot success rates of agents on environments that are increasingly out of distribution.
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(b) Success rates after fine-tuning agents on out-of-distribution environments

Figure 4: The zero-shot and fine-tuning success rate of Thought Cloning (TC) and Behavioral
Cloning (BC) agents on environments that are increasingly out of distribution. Behavioral and
Cognitive Difficulties are defined by the length of the solutions to environments and the mission
complexity of environments respectively (Section 3.4). The error bars in bar and line plots are the
95% confidence interval from five runs of experiments. (a): The gray region indicates the training
distribution. The Oracle Thought + TC Learned Control refers to the TC agent with oracle high-level
thoughts. The results demonstrate TC generalizes much better than BC. They also illustrate that with
a more powerful Thought Generator trained from vast human thought data, the agent should become
drastically more capable. (b): TC is much better at adapting to novel situations than BC.

less than 5.7× 10−5 and 1.6× 10−4 probability of being sampled during training (calculated with
rejection sampling). For testing both in-distribution and out-of-distribution environments, we sample
various sets of environments that extend away from the distribution in terms of both Behavioral and
Cognitive Difficulty, and then evaluate agents on these sets. For Cognitive Difficulty, we sample sets
of environments across the full range of Cognitive Difficulty levels 1-9. For Behavioral Difficulty, we
sample sets of environments within intervals of 50 (e.g., 125-175, 175-225, etc.), starting from 25.
Environments with a Behavioral Difficulty > 425 are grouped into one set.

First, we test the zero-shot performance of TC and BC agents in OOD environments. The results
show that the TC agent substantially outperforms the BC agent with environments being increasingly
out of distribution (Fig. 4a), and the results are statistically significant across all testing difficulties
(Mann-Whitney U test p < 0.05), thereby supporting our hypothesis that language utilization can
enhance agents’ generalization capabilities. Moreover, we observe that the Oracle Thoughts + TC
Learned Control achieves near-optimal performance even on the most challenging environments.
This indicates that the current limitation of TC performance lies in high-level thinking. As we scale
our approach to leverage internet-sized datasets of human thinking, the high-level thinking capability
is expected to improve substantially, thereby enhancing the power of the TC agent.

Next, we investigate how well the agents adapt to new situations by fine-tuning them on OOD
environments. We fine-tune the TC and BC agents on the corresponding environments for 15 epochs,
with the same settings described in Section 3.2. The results demonstrate that the TC agent is better at
adapting to OOD environments (Fig. 4b). The superiority of TC over BC is statistically significant
across all testing difficulties, as supported by the Mann-Whitney U test p < 0.05, with the exception
of Cognitive Difficulty 4, where both methods already achieve near-perfect performance. The results
support our argument that language can better assist agents in adapting to novel situations.

3.5 AI Safety and Interpretability

The ability to observe the agent’s thought process gives our model a high degree of interpretability.
To empirically assess the interpretability of TC, we introduce a metric named the Future Action
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Figure 5: (a): A heatmap illustrating the Future Action Declaration Score, a metric designed to
evaluate the interpretability of Thought Cloning agents (Section 3.5). The x and y axes denote
various levels of difficulty. Each cell represents a region of sampled environments, with the color
intensity reflecting the mean score. Brighter cells indicate a higher degree of match between the
agent’s declared thoughts and subsequent actions. The green square denotes the training distribution,
while the rest of the regions are out of distribution (Section 3.4). The results illustrate the robust and
consistent interpretability of Thought Cloning agents. (b): A bar chart demonstrating the effectiveness
of the Precrime Intervention mechanism, which is to halt the Thought Cloning agents upon detecting
dangerous plans in their thoughts and thus prevent unsafe behaviors. We show three tests (x axis)
where (1) touching red items, (2) picking up balls, and (3) picking up requested items were declared
unsafe. We report the fraction of episodes where unsafe behaviors occurred (y axis). The error
bars are the 95% confidence interval from five runs of experiments. The results show that Precrime
Intervention effectively eliminates almost all unsafe behaviors.

Declaration Score. This metric quantifies the fraction of times when an agent, preparing to execute
an action other than navigation, declares this impending action in its thoughts beforehand. In the
training distribution, TC agents performed exceptionally well (green square in Fig. 5a). Interestingly,
TC agents also scored near-perfectly across all out-of-distribution environments (rest of Fig. 5a),
demonstrating the robust and consistent interpretability of our model even under novel, out-of-
distribution situations, which is an important property for AI safety and interpretability.

Due to its high degree of interpretability, Thought Cloning allows a simple method that can consider-
ably enhance AI safety. We call it Precrime Intervention. In practical settings, an agent might employ
dangerous or undesirable strategies to accomplish challenging tasks. However, because Thought
Cloning features such strong interpretability, we can simply halt the agent upon detecting dangerous
thoughts and thereby prevent the unsafe behavior it was planning to conduct. Additionally and impor-
tantly, Precrime Intervention does not require any changes to the weights of the model. If we learn or
decide after training that a certain behavior is unsafe or undesirable, Precrime Intervention can still
prevent it. The same flexibility allows different definitions of what is allowable and unsafe behavior
in different settings (e.g. in the presence of adults vs. children or customized to the preferences of
different countries with different regulations). To demonstrate this flexibility and test to what extent
Precrime Intervention works, we conducted three separate tests, where we declared three different
behaviors as unsafe (1) touching any red item, (2) picking up any ball, and (3) picking up the object
the agent is being asked to pick up in its mission. The last one is particularly interesting because the
agent has a strong prior to want to perform that action, which Precrime Intervention has to combat.
We report the fraction of episodes where such unsafe behaviors occurred with and without Precrime
Intervention (Fig. 5b). Remarkably, Precrime Intervention almost entirely eliminates all unsafe
behaviors, thereby demonstrating the promising potential of TC agents in advancing AI safety.

Moreover, the interpretability of the model also greatly aids in diagnosing problems, thus simplifying
the development of more capable and safer AI. This feature actually proved beneficial during the
development of this paper. Initially in our development, the TC agent showed promising performance
in training, but frequently failed during testing, repetitively oscillating between incorrect thoughts
(plans) without actively exploring new ideas. This observation helped us to recognize that, because
we had trained with teacher forcing throughout with oracle (i.e. perfect) thoughts, the agent had never
practiced having incorrect thoughts, and thus had never practiced recovering from them by trying
alternate ideas. Thus, at inference time when it had to generate its own thoughts, which are sometimes
incorrect, it did not know how to recover. We then instead tested an immediate transition from
teacher-forcing to 100% auto-regressive sampling and training (i.e. from 100% teacher-forcing on
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one training step to 0% on the next), but the agent generated too many nonsensical thoughts. Thanks
to the model’s interpretability, we were able to recognize the situation and try an alternative strategy
that worked well, and is the one we report results for in this paper (Section. 3.3): we gradually
decay the teacher-forcing rate (fraction) during training, which dramatically improved performance.
Supplementary Material D contains more details about this example.

Lastly, TC enables steerability, including helping agents when they are stuck. That is because the
actions of TC agents are conditioned on their thoughts, and we can manually inject alternate thoughts
to have the agents do what we wish. The TC agent, when provided with Oracle high-level thoughts,
is capable of near-perfect performance across almost all environments (Fig. 4a), which provides
evidence that steering agents is possible and effective.

4 Related Works

4.1 Planning in RL with Language

Recent work leverages the reasoning capability, the ability to flexibly combine abstractions, and the
interpretability offered by natural language to address high-level planning challenges in real-world
domains. We augment this approach by enabling agents to think in language, facilitating the capability
of agents, AI Safety, and Interpretability. There are two major categories of works in the literature that
enable language planning. The first involves Hierarchical RL methods, where the language represents
the hierarchy [36–40]. However, the planning space in these works is constrained to a pre-defined
subgoal set, limiting their generalization to novel scenarios and preventing them from utilizing the
reasoning and powerful commonsense found in pre-trained LLMs [29, 41, 42]. The second category
of work involves pre-trained LLMs that generate plans in language for RL systems. Earlier works
[16, 17] allow the LLM to predict step-by-step plans for a specific task. However, these works are
open-loop methods, as the LLM cannot perceive the environment while acting, and thus cannot
adapt and change once things do not go according to plan, which is a crucial capability in complex
environments. Some recent approaches have developed closed-loop methods to provide LLMs with
dynamic information for planning [17, 43, 44]. While these works show exciting performance in
different environments, their closed-loop feedback mechanisms for the LLMs either rely on an oracle
from the environment or complicated captioning models. The work most relevant to our vision is
PALM-E [31], in which a pre-trained Vision-Language Model is adopted as the planner, allowing
it to recognize patterns from observations directly. However, the works mentioned above were not
trained on data of humans thinking and acting, meaning they do not benefit from learning from human
thought demonstrations how to do things like plan, replan, create high-level goals and the subgoals
required to achieve them, and the many other benefits of thinking intelligently during acting.

Apart from embodied domains, many studies utilize LLMs as agents [45] operating in text domains,
such as coding [46, 47] or using API tools [48]. Many LLM agents benefit from the reasoning and
planning capabilities of LLMs [48, 49]. Some even allow LLMs to replan based on new information
[46, 47]. However, none of the methods described above directly learn to think while acting by
imitating human thought data. Thus, unlike Thought Cloning, they do not benefit from learning from
human thought demonstrations. Within LLM agent research, ReAct [50] is the most relevant to our
approach. It prompts LLMs to first generate reasoning and then conditions actions based on such
reasoning text. The paper also includes an experiment that fine-tunes LLMs with demonstrations
that contain both reasoning and actions. However, obtaining such demonstrations is challenging, as
highlighted in the ReAct paper [50], and the paper does not provide insights on overcoming this data
bottleneck to scale the method.

4.2 Learning from Dataset Aligning Action and Language

Several studies have recognized the value of datasets that align action with language. DIAL [51]
employs such a dataset to train language-conditioned agents with Behavioral Cloning, achieving
impressive results in real-world robotic tasks. However, it is limited by a pre-defined instruction set.
Another work, (SL)3 [52], generates a hierarchical dataset for agents to learn from, demonstrating
superiority in a challenging 3D simulation domain, but has the drawback discussed in the previous
section of being open-loop. Finally, in the study most similar to our own, Hu et al. [53] collected
a dataset from two human players collaborating on an RTS game. However, the agent in [53] is
not language conditioned, which limits its potential to learn to do any task (e.g. arbitrary tasks
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requested of it in natural language). Similarly, a work concurrent to ours constructed a dataset with
BabyAI oracle plans [54]. However, their architecture, unlike ours, is not compatible with most
pre-trained models, making ours more able to harness new, powerful foundation models to tackle
increasingly complex challenges. Additionally, although previously mentioned two methods [53, 54]
employ learning frameworks similar to ours, they do not explore the full potential of learning from
datasets that align action with language, particularly in terms of the resulting benefits in terms of
generalization, AI Safety, and Interpretability.

5 Discussion and Conclusion

Our research findings are focused on two main areas. First, our Thought Cloning (TC) agent
demonstrated superior performance compared to Behavioral Cloning (BC), effectively showcasing its
capabilities in generalization, exploration, planning, replanning, and adaptation to various situations.
Second, we presented empirical evidence underscoring the benefits Thought Cloning provides in
AI Safety and Interpretability. The robust interpretability of the TC agent not only help developers
in diagnosing AI systems, but also contributes to AI safety, as evidenced by mechanisms such as
Precrime Intervention. Our empirical results on steerability further spotlight the potential of TC
agents in effectively collaborating with humans to tackle complex tasks.

We utilized a synthetic dataset and trained a model from scratch as a proof of concept. However, the
full vision for the TC framework will be when Thought Cloning agents are trained on internet-scale
datasets of humans thinking out loud while acting, such as YouTube videos and their narration [19, 18]
(whether in closed caption transcripts or directly from audio). Consider the prospect of an agent that
has both learned to think and act like humans in a huge variety of settings. Much like the thoughts
of human children are guided by teachers, our agents could become skilled at planning, replanning,
reasoning, and explaining their thinking to us (either via their outputs or because we have the unique
ability to observe the thoughts in their minds). The vision for utilizing internet-scale datasets is
also supported by the empirical results in Section 3.4, which suggest that the current bottleneck in
agent capability is its high-level thinking, a skill that could be enhanced by scaling to vast online
data. Additionally, we trained all models from scratch in this paper. In more complex domains, we
anticipate that the utilization of pre-trained Transformer-based models could be beneficial.

Moreover, Thought Cloning can also improve Foundation Models (FMs) by enabling a separate
“thought channel” where they can output thoughts that get fed back in when they are planning and
answering. Recent studies indicate that FMs can benefit from contexts they self-generate, such as
reasoning steps [11, 50]. Thought Cloning can amplify this advantage by training FMs with Thought
Cloning data which includes not only the answers or solutions (action data) but also the reasoning
behind them (thought data). For example, a human programmer needs the ability to think when
developing software, but in a way where those thoughts are not part of the final output. However,
current LLMs are not trained this way. In addition to performance gains, adding such a thought
channel to FMs allows all of the AI Safety and Interpretability advantages of Thought Cloning,
including Precrime Intervention, to be added to the world-changing FM technology.

Of course, there are also risks associated with such agents. As occurs with LLM pretraining and
other forms of Behavioral Cloning, Thought Cloning could inadvertently inherit undesirable human
flaws, such as speaking falsehoods, providing false yet persuasive rationalizations, or being biased.
Alignment techniques are being constantly improved to address these challenges [55]. However, even
improving AI agent safety up to the level of a (flawed) human would be a major advance, even if
the resulting system is not perfect. Additionally, a distinguishing feature of Thought Cloning is it
provides the ability to interpret and prevent these flaws from culminating into actions, making TC
a more favorable approach in this regard. (See the experimental analyses on the effectiveness of
Precrime Intervention Section 3.5). Our intent was to inspire researchers to advance this method and
or test it in real-world scenarios, but the method itself should not be considered as a comprehensive
safety solution for real-world systems.

In conclusion, this paper has introduced Thought Cloning, where agents not only simply learn to act
from human demonstrations, as in Behavioral Cloning, but also learn to think from demonstrations
where humans think out loud while acting. Through Thought Cloning, we have illustrated how an
agent can become more capable, interpretable, and safe by imitating human thinking. This work
facilitates the training of increasingly powerful agents and opens up numerous avenues for future
scientific investigation in Artificial General Intelligence, AI Safety, and Interpretability.
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planning horizon with adaptive subgoal search. In International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=7JsGYvjE88d.

[41] Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862,
2022.

[42] Xiang Lorraine Li, Adhiguna Kuncoro, Jordan Hoffmann, Cyprien de Masson d’Autume, Phil
Blunsom, and Aida Nematzadeh. A systematic investigation of commonsense knowledge
in large language models. In Empirical Methods in Natural Language Processing, pages
11838–11855, 2022.

[43] Zihao Wang, Shaofei Cai, Anji Liu, Xiaojian Ma, and Yitao Liang. Describe, Explain, Plan and
Select: Interactive planning with large language models enables open-world multi-task agents.
arXiv preprint arXiv:2302.01560, 2023.

[44] Kevin Lin, Christopher Agia, Toki Migimatsu, Marco Pavone, and Jeannette Bohg. Text2Motion:
From natural language instructions to feasible plans. arXiv preprint arXiv:2303.12153, 2023.

[45] Lilian Weng. Llm-powered autonomous agents. lilianweng.github.io, Jun 2023. URL https:
//lilianweng.github.io/posts/2023-06-23-agent/.

[46] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. arXiv preprint arXiv:2303.17651, 2023.

[47] Noah Shinn, Beck Labash, and Ashwin Gopinath. Reflexion: an autonomous agent with
dynamic memory and self-reflection. arXiv preprint arXiv:2303.11366, 2023.

13

https://ojs.aaai.org/index.php/AAAI/article/view/11671
https://ojs.aaai.org/index.php/AAAI/article/view/11671
https://aclanthology.org/2021.findings-acl.368
https://aclanthology.org/2021.findings-acl.368
https://openreview.net/forum?id=7JsGYvjE88d
https://lilianweng.github.io/posts/2023-06-23-agent/
https://lilianweng.github.io/posts/2023-06-23-agent/


[48] Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang.
Hugginggpt: Solving ai tasks with chatgpt and its friends in huggingface. arXiv preprint
arXiv:2303.17580, 2023.

[49] Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach
themselves to use tools. arXiv preprint arXiv:2302.04761, 2023.

[50] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and
Yuan Cao. React: Synergizing reasoning and acting in language models. In The Eleventh
International Conference on Learning Representations, 2022.

[51] Ted Xiao, Harris Chan, Pierre Sermanet, Ayzaan Wahid, Anthony Brohan, Karol Hausman,
Sergey Levine, and Jonathan Tompson. Robotic skill acquistion via instruction augmentation
with vision-language models. In Workshop on Language and Robotics at CoRL 2022, 2022.

[52] Pratyusha Sharma, Antonio Torralba, and Jacob Andreas. Skill induction and planning with
latent language. In Proceedings of the 60th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pages 1713–1726, Dublin, Ireland, May
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.120. URL
https://aclanthology.org/2022.acl-long.120.

[53] Hengyuan Hu, Denis Yarats, Qucheng Gong, Yuandong Tian, and Mike Lewis. Hierarchical
decision making by generating and following natural language instructions. Advances in Neural
Information Processing Systems, 32, 2019.

[54] Lina Mezghani, Piotr Bojanowski, Karteek Alahari, and Sainbayar Sukhbaatar. Think Before
You Act: Unified policy for interleaving language reasoning with actions. In Workshop on
Reincarnating Reinforcement Learning at ICLR, 2023.

[55] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to
follow instructions with human feedback. Advances in Neural Information Processing Systems,
35:27730–27744, 2022.

[56] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[57] Tomas Mikolov, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space. In International Conference on Learning Representations, 2013.

[58] Gi-Cheon Kang, Jaeseo Lim, and Byoung-Tak Zhang. Dual attention networks for visual
reference resolution in visual dialog. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing, pages 2024–2033, 2019.

[59] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[60] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training
imagenet in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

[61] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al. Mixed precision
training. In International Conference on Learning Representations, 2018.

[62] HF Canonical Model Maintainers. gpt2 (revision 909a290), 2022. URL https://
huggingface.co/gpt2.

14

https://aclanthology.org/2022.acl-long.120
https://huggingface.co/gpt2
https://huggingface.co/gpt2


Supplementary Material

A Architecture and Training Details

For full transparency, replicability, and to facilitate future research building on our work, we are
releasing the source code, model weights, and the dataset used in our experiments2. Additionally, we
provide key details necessary for the evaluation and replication of our work in this supplementary
information. The architectural details of the Thought Cloning models adopted in this paper are
shown in Fig. 6. As in [32], all missions and thoughts are encoded with Gated Linear Units (GLUs),
with separate encoders employed for the missions and thoughts respectively. After the encoding
process, we apply an attention mechanism [56] to dynamically weight the importance of different
parts of the text encoding, based on the state history. The observation is encoded with a Convolutional
Neural Network (CNN) and a Bag-of-Words [57] encoding approach. In the Thought Generator, a
Transformer encoder [56, 58] is adopted to embed the thought history and mission, with the thought
history as the query and the mission as the key and value. This Transformer encoder consists of two
layers, each with two heads. The Action Generator is identical to the Behavior Cloning Baseline,
except with the additional encoding of thoughts. Key architectural parameters, such as memory size
and embedding size, are consistent with the baseline in [32], as shown in Table 1.

The pseudocode for Thought Cloning (TC) training framework is shown in Algorithm 1. In the
loss function, we follow [32] by including an entropy term for actions. The Adam optimizer [59] is
adopted to train TC and TC variant, with a batch size of 180 and a learning rate of 5e−4. Similar to
the setting in baseline [32, 26], we train BC with a batch size of 296 and a learning rate 5e−5. The
learning rate schedule begins with a warm-up phase of 5T training steps, where T = 51200, linearly
increasing from 1e−4 to 5e−4 for every T step, and then decaying by 50% at 120T training steps,
similar to the practices in [26, 60]. The teacher-forcing ratio linearly decreases from 100% to 0% from
the 10T training step to the end for every T step. In line 5 of Algorithm 1, the input thought could be
the ground truth from the dataset (tht) or the generated thought from the Thought Generator (t̂ht),
depending on with or without teacher forcing. For training efficiency, Backpropagation Through
Time was truncated at 20 steps in TC. The mix precision in PyTorch is also adopted during training,
which speeds up training without sacrificing much performance [61]. In fine-tuning experiments,
due to the increased difficulty of the levels and longer steps requiring more memory, we reduced
the batch size from 180 to 40 and trained with an auto-regressive strategy. Detailed hyperparameter
settings are shown in Table 1.

Table 1: Hyperparameter Settings
Hyperparameter Value

Adam β1 0.9
Adam β2 0.99
Adam ϵ 10−5

Entropy Coefficient 0.01
Image Embedding Dimension 128
Text Embedding Dimension 256

Memory Dimension 2048

B Ablation Study: BC with the same parameter count or data as TC

We designed the control TC w/o Imitating Thought (Section 3.2) to address the concern that TC
outperforms BC because TC has more parameters. Although TC w/o Imitating Thought allows
the control to have the same number of parameters (and architecture) as Thought Cloning, for
completeness, we try to address the concern in another way. Instead of holding the architecture the
same, we create a BC control with a more canonical BC architecture, but with the same number of

2https://github.com/ShengranHu/Thought-Cloning
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Figure 6: Detailed architecture for Thought Cloning (TC) agent adopted in this paper. At each timestep
t, the inputs to the TC agent include a natural language-defined mission m, and an observation ot. All
preceding thoughts {thτ}t−1

τ=1 is embedded with an LSTM in the Thought Generator. The generated
thought tht from the Thought Generator will be the input to the Action Generator and an action at
is predicted by the Action Generator. (Left): The Thought Generator. We employ an LSTM [33]
to embed the thought history and a transformer encoder to process both the mission and thought
history. The text input is then fused with the visual observation input using FiLM [34]. (Right): The
Action Generator is largely similar to the BabyAI agent [26], with the primary difference being the
additional embedding of the thought generated by the Thought Generator.

Algorithm 1 Thought Cloning

1: Input: thought dataset D = {Di}Ni=1, where each Di = (m, {(ot, tht, at)}Tt=1),
Thought Generator πθu(th|o,m, {history_th}), Action Generator πθl(a|o,m, th)

2: while training do
3: for each Di = (m, {(ot, tht, at)}Tt=1) in D do
4: for each (ot, tht, at) in Di do
5: Generate thought sentence t̂ht = πθu(·|m, {oτ}tτ=1, {thτ}t−1

τ=1)

6: Predict action probability distribution ât = πθl(·|m, {oτ}tτ=1,
ˆtht)

7: Compute the loss: L(θu, θl) = LCE(at, ât) + αLCE(tht, t̂ht)− βH(ât)
8: Update the policy network parameters θu, θl by minimizing L(θu, θl)
9: end for

10: end for
11: end while

parameters as TC. Results show it does not perform nearly as well as TC (Fig. 7 and Table 2: “Pure
BC architecture (and matched num parameters)”).

Also, one might argue that TC gets more data (one set of actions and one set of words per episode),
and thus that a proper BC control is to give BC twice as much data. A counter is that such a control is
unnecessary because noticing and harnessing this additional (often free) and heretofore ignored data
stream is a central contribution of this paper, so showing that using this data improves things is the
main comparison to be made. However, for completeness, we ran an experiment giving BC twice as
much data: results show BC with twice as much data is still far slower to learn and has significantly
worse performance at convergence (Fig. 7 and Table 2: “BC w/ 2x data”). Additionally, a prior work
Think Before You Act [54] has a similar number of episodes of actions and language data in the same
domain, and their model has more parameters than ours. Results show that TC also outperforms that
method (Table 2).

Finally, to further confirm that the superiority of TC did not come from both more data and parameters,
an ablation study was conducted on a pure BC architecture with the same number of parameters as
TC but also with 2x data. The, results show that it also underperformed TC (Fig. 7 and Table 2:
“Pure BC architecture (and matched num parameters), 2x data”). All of the aforementioned results
highlight the effectiveness of the TC framework and the importance of the thought data.
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Figure 7: Training progress comparison of Thought Cloning (TC), Behavioral Cloning (BC), and
other ablation variants. The BC architecture is identical to the Action Generator of TC and the
TC w/o Imitating Thought has the same architecture as TC, but without the TC loss (and has one
minor architectural change that is required since it does not have this loss; see response to reviewer
gnSR). BC w/ 2x Data trains BC with 2x more episodes worth of actions than TC and BC. Pure
BC architecture (and matched num parameters) is to augment BC architecture to have matched
parameters with TC. Pure BC architecture (and matched num parameters), 2x data trains BC with
both 2x episodes of actions and a BC architecture scaled up to match the number of parameters of
TC. See Table 2 in this document for more details on the number of parameters and amount of data
for each treatment. The error bars are the 95% confidence intervals from five runs of experiments.
The results show that TC learns dramatically faster and has significantly higher performance at
convergence compared with BC and all ablation variants, which indicates the advantages of TC are
not solely due to additional training data or model capacity.

C Synthetic Human Thought Dataset

Fig. 8 presents an example trajectory. We translate the inner state of the BabyAI Oracle Solver
(called “Bot” in [26]) into natural language thoughts. These thoughts outline the current plan for task
completion and also describe the underlying intentions behind these plans, as the same low-level plan
can serve different stated high-level purposes. For instance, the plan could be to “open the red door”
with the intention of “completing the open mission” or “exploring”. The segments with inserted
noise are marked in red in Fig. 8.

D Example on Diagnosing Agents by Observing Thoughts

In this section, we provide an example of one time when we were able to diagnose Thought Cloning
(TC) agents by observing their thoughts during the development phase of this paper. In the early
stages of development, we trained the TC agent with a constant teacher-forcing strategy. We observed
that during testing, the agents often got stuck persisting with incorrect thoughts and did not actively
explore new ideas. For instance, in the top right example in Fig. 9, after t=53, the agent persistently
attempted to implement the incorrect thought “pickup blue box to complete putnext mission” until
it reached the maximum step limit, without seeking new ideas. This observation led us to realize
that, as we exclusively trained the agent with oracle thoughts via a teacher-forcing strategy, the agent
had never practiced dealing with incorrect thoughts and consequently had not learned to recover
from them by trying alternative ideas. Subsequently before this realization, we had attempted to
transition directly to auto-regressive training after the teacher-forcing training stage. However, the
agent then started to generate nonsensical thoughts. The trajectory in Fig. 9 (left) shows nonsensical
thoughts such as open blue (t=24) and pickup door door (t=75) being generated when a constant
auto-regressive strategy is applied. Because of the realization from being able to observe the agent’s
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mission: put a key next to the blue ball and pick up the green key

t=1-5: Thought "pickup a key to complete PutNext mission", Action [forward, right, ... , forward]
t=6: Thought "pickup blue key to complete PutNext mission", Action [pickup]
t=7-12: Thought "explore unseen area", Action [right, right, ... , right]
t=13-14: Thought "open green door to explore", Action [left, left, ... , toggle]
t=15-22: Thought "explore unseen area", Action [forward, forward, ... , left]
t=23-28: Thought "open red door to explore", Action [forward, forward, ... , toggle]
t=29: Thought "explore unseen area", Action [forward]
t=30-38: Thought "drop blue key to complete PutNext mission", Action [forward, forward, ... , drop]
t=39-44: Thought "explore unseen area", Action [right, right, ... , left]
t=45-48: Thought "open green door to explore", Action [left, left, ... , toggle]
t=49-56: Thought "explore unseen area", Action [forward, forward, ... , left]
t=57-69: Thought "open green door to explore", Action [forward, forward, ... , toggle]
t=70-77: Thought "explore unseen area", Action [forward, forward, ... , right]
t=78-88: Thought "open grey door to explore", Action [forward, forward, ... , toggle]
t=89-95: Thought "explore unseen area", Action [forward, forward, ... , right]
t=96-101: Thought "open purple door to explore", Action [forward, forward, ... , toggle]
t=102-110: Thought "explore unseen area", Action [forward, forward, ... , right]
t=111-122: Thought "open red door to explore", Action [forward, forward, ... , toggle]
t=123-130: Thought "explore unseen area", Action [forward, forward, ... , right]
t=131-134: Thought "open grey door to explore", Action [right, right, ... , forward]
t=135-137: Thought "pickup green box to complete PutNext mission", Action [left, left, left]
t=138-204: Thought "open grey door to explore", Action [right, right, ... , toggle]
t=205: Thought "explore unseen area", Action [forward]
t=206-213: Thought "pickup green key to complete pickup mission", Action [forward,...,pickup]

Figure 8: Example trajectories of the synthetic human thought dataset. The inserted noisy segments
are highlighted in red.

mission: put the green box next to the purple door after you go to the purple door and put a blue box next to the purple door

t=1-6: explore unseen area, action [right, right, ... , left]
t=7-14: open red door to explore, action [forward, forward, ... , toggle]
t=15-21: explore unseen area, action [forward, forward, ... , left]
t=22-23: open blue door to explore, action [forward, forward, ... , left] 
t=24: open blue, action [forward] 
t=25: open blue door to complete, action [right]
t=26-28: open blue door to explore, action [right, right, ... , toggle]
t=29-37: explore unseen area, action [forward, forward, ... , right]
t=38-45: open yellow door to explore, action [forward, forward, ... , toggle]
t=46-47: explore unseen area, action [forward, forward, ... , forward]
t=48-53: go to purple door to complete goto mission, action [forward, forward, ... , right]
t=54: pickup door box to complete putnext mission, action [right]
t=55: go to purple door to complete mission, action [left]
t=56: pickup to purple door to complete mission, action [forward]
t=57-62: go to purple door to complete goto mission, action [right, right, ... , right]
t=63: pickup blue box to complete putnext mission, action [toggle]
t=64-71: explore unseen area, action [forward, forward, ... , left]
t=72-74: open yellow door to explore, action [forward, forward, ... , left]
t=75: pickup door door to complete, action [left]
t=76: open yellow door to complete, action [right]
t=77-78: open yellow door to explore, action [right, right, ... , toggle]
t=79-87: explore unseen area, action [forward, forward, ... , right]
t=88-108: open grey door to explore, action [right, right, ... , left]
t=109-116: open red door to explore, action [forward, forward, ... , toggle]
t=117-124: open grey door to explore, action [forward, forward, ... , toggle]
t=125-132: explore unseen area, action [forward, forward, ... , right]
(2748 steps are skipped and the max step is reached)

t=1-6: explore unseen area, action [right, right, ... , left]
t=7-14: open red door to explore, action [forward, forward, ... , toggle]
t=15-21: explore unseen area, action [forward, forward, ... , left]
t=22-24: open blue door to explore, action [forward, forward, ... , toggle]
t=25-33: explore unseen area, action [forward, forward, ... , right]
t=34-41: open yellow door to explore, action [forward, forward, ... , toggle]
t=42-43: explore unseen area, action [forward, forward, ... , forward]
t=44-52: go to purple door to complete goto mission, action [forward, forward, ... , right]
t=53-2880: pickup blue box to complete putnext mission, action [right,...,forward]

t=1-6: explore unseen area, action [right, right, ... , left]
t=7-14: open red door to explore, action [forward, forward, ... , toggle]
t=15-21: explore unseen area, action [forward, forward, ... , left]
t=22-24: open blue door to explore, action [forward, forward, ... , toggle]
t=25-33: explore unseen area, action [forward, forward, ... , right]
t=34-41: open yellow door to explore, action [forward, forward, ... , toggle]
t=42-43: explore unseen area, action [forward, forward, ... , forward]
t=44-52: go to purple door to complete goto mission, action [forward, forward, ... , right]
t=53-130: pickup blue box to complete putnext mission, action [right, right, ... , right]
t=131-133: open grey door to explore, action [forward, forward, ... , toggle]
t=134-141: explore unseen area, action [forward, forward, ... , right]
t=142-149: open blue door to explore, action [forward, forward, ... , toggle]
t=150-158: explore unseen area, action [forward, forward, ... , right] 
(442 steps are skipped)
t=600-615: pickup green box to complete putnext mission, action [left, left, ... , pickup]
t=616-624: drop green box to complete putnext mission, action [left,...,drop]
(environment solved)

Constant auto-regressive training after teacher-forcing training

Constant teacher-forcing training

Teacher-forcing rate gradually decay

Nonsensical 
thoughts

Stuck with 
incorrect 
thoughts

The agent 
has incorrect 
thoughts but 
fixes them.

Figure 9: Example trajectories of agents trained with different strategies. Constant teacher-forcing
training refers to exclusively training with the teacher-forcing strategy. In this scenario, the agent
does not learn to recover from incorrect thoughts. Once it adopts an incorrect thought, it continues to
follow this thought for thousands of time-steps until it reaches the maximum step count (top right
from t=53 to t=2880). Constant auto-regressive training after teacher-forcing training implies
directly transitioning to auto-regressive training following an initial phase of teacher-forcing training.
In this case, agents begin to generate nonsensical thoughts, as shown on the left, such as open blue at
t=24 (left) and pickup door door at t=75 (left). Gradual decay of teacher-forcing rate involves
gradually reducing the ratio of teacher-forcing during training. This strategy is adopted in the final
version of Thought Cloning. In this setting, the agent might generate some incorrect thoughts as
shown at t=53 (bottom right), but it can recover from these errors to explore new ideas, as evidenced
at t=131 (bottom right).
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Table 2: Success rates of TC, BC, ablation variants, and the related work Think Before You Act
[54] on BabyAI BossLevel. See the descriptions of ablation variants in the Fig. 7 Caption. The
Success Rate is the mean and standard deviation from 5 experiments (except Think Before You Act,
which did not include the number of experiments in their paper). The num (nubmer of) parameters
of Think Before You Act is estimated from the number of parameters of the Huggingface GPT-2
model [62]. The results show TC outperforms all other methods, illustrating the superiority of TC,
and supporting our argument that the advantages of TC are not solely due to additional training data
or model capacity.

Method Num Parameters Data Success Rate (%)
Behavioral Cloning 20.6M 1M Episodes Actions 91.2± 0.9

Thought Cloning w/o Imitating Thought 82.5M 1M Episodes Actions 65.5± 12.4
BC w/ 2x Data 20.6M 2M Episodes Actions 91.4± 1.7

Pure BC architecture
(and matched num parameters) 83.9M 1M Episodes Actions 91.9± 2.1

Pure BC architecture
(and matched num parameters), 2x data 83.9M 2M Episodes Actions 92.7± 1.0

Think Before You Act [54] 124M (estimated) 1M Episodes Actions
+ Language 85.2± 0.5

Thought Cloning 82.5M 1M Episodes Actions
+ Language 96.2± 0.8

thoughts, we adopted a gradual decay schedule for teacher-forcing rates during training. As shown
in Fig. 9 (bottom right), the agent in this setting was able to explore new ideas after failing on an
incorrect thought, and it rarely generate nonsensical thoughts. For example, the agent generates an
incorrect thought at t=53, but it can recover from these errors to explore new ideas, e.g. open grey
door to explore. Because we can observe the TC agents thinking out loud, we are able to identify the
issue and improve the agent’s performance. Without this visibility into the agent’s thoughts, simply
observing their actions would have made it much harder to pinpoint the underlying problems.

19


	Introduction
	Proposed Method
	Experimental Results
	Domain and Synthetic Thought Data
	Experiment Setup
	Imitation Learning
	Generalization to Out-of-Distribution Environments
	AI Safety and Interpretability

	Related Works
	Planning in RL with Language
	Learning from Dataset Aligning Action and Language

	Discussion and Conclusion
	Architecture and Training Details
	Ablation Study: BC with the same parameter count or data as TC
	Synthetic Human Thought Dataset
	Example on Diagnosing Agents by Observing Thoughts

