
RoboHive: A Unified Framework for Robot Learning

Vikash Kumarικλγφ∗, Rutav Shahδ , Gaoyue Zhouγ ,Vincent Moensφ, Vittorio Caggianoφ,
Jay Vakilφ, Abhishek Guptaλζι, Aravind Rajeswaranιλκζφ

U.Washingtonι, UC Berkeleyλ, CMUγ , UT Austinδ , OpenAIκ, GoogleAIζ , Meta-AIφ
https://sites.google.com/view/robohiveW

Abstract
We present RoboHive, a comprehensive software platform and ecosystem for re-
search in the field of Robot Learning and Embodied Artificial Intelligence. Our
platform encompasses a diverse range of pre-existing and novel environments,
including dexterous manipulation with the Shadow Hand, whole-arm manipulation
tasks with Franka and Fetch robots, quadruped locomotion, among others. Included
environments are organized within and cover multiple domains such as hand ma-
nipulation, locomotion, multi-task, multi-agent, muscles, etc. In comparison to
prior works, RoboHive offers a streamlined and unified task interface taking depen-
dency on only a minimal set of well-maintained packages, features tasks with high
physics fidelity and rich visual diversity, and supports common hardware drivers
for real-world deployment. The unified interface of RoboHive offers a convenient
and accessible abstraction for algorithmic research in imitation, reinforcement,
multi-task, and hierarchical learning. Furthermore, RoboHive includes expert
demonstrations and baseline results for most environments, providing a standard for
benchmarking and comparisons. Details: https://sites.google.com/view/robohiveW

1 Introduction

Figure 1: A subset of RoboHive’s task-suites. [in clock-
wise order] Multi-Task Suite: Environments facilitating
multiple tasks at once. Arms Suite: Diverse arms (w/
grippers) exposed to tabletop manipulation tasks. Hand
Suite: Diverse hands exposed to tasks requiring dex-
terity. Locomotion Suite: Diverse collection of legged
locomotion tasks. Myo Suite: Task collections with
musculoskeletal agents. Deformable Suite: Tasks col-
lection with deformable objects.

Recent years have witnessed unprecedented
breakthroughs in Artificial Intelligence (AI), par-
ticularly in the domains of game playing [1, 2],
protein folding [3], and language modeling [4].
Comparatively, the progress in robot learning
has been slow. This slower pace can partially
be attributed to Moravec’s paradox [5], which
posits that sensorimotor behaviors are intrinsi-
cally harder for AI agents than high-level cogni-
tive tasks. Simultaneously, another crucial issue
demands our attention: a significant hindrance
also lies in the convoluted software frameworks
for robot learning and the lack of universally
recognized benchmarks. This increases the bar-
rier for entry, limits rapid prototyping, and re-
stricts the influx of ideas. Unlike fields such as
computer vision or natural language processing,
where benchmarks and datasets are standard-
ized, the landscape of robotics remains more
fragmented.

Addressing this gap, we introduce RoboHive, a
cohesive ecosystem tailored for robot learning. As a dual-function platform, RoboHive operates
as a benchmarking suite and a research tool. It delivers a plethora of environments, precise task

∗Correspondence to vikashplus@gmail.com

37th Conference on Neural Information Processing Systems (NeurIPS 2023) Track on Datasets and Benchmarks.

Figure 2: RoboHive presents environments with rich visual diversity to aid research in visual generalization
and places high emphasis on physical realism to facilitate the real-world transfer.

definitions, and stringent evaluation criteria, supporting a diversity of learning paradigms like re-
inforcement, imitation, and transfer learning. This facilitates efficient exploration and prototyping
for researchers. Additionally, RoboHive equips users with teleoperation capabilities and hardware
integration, enabling a seamless transition between physical robots and their simulated counterparts.
With RoboHive, our goal is to bridge the gap between the current state of robot learning and its
potential for growth.

The primary contribution of our work is the development and open sourcing of the RoboHive, a
unified framework for robot learning. The key features of RoboHive include:

1. Environment Zoo: RoboHive features an extensive and diverse collection of environments,
covering a broad spectrum of research areas. These environments encompass a wide range of
manipulation tasks involving both free and articulated objects, dexterous in-hand manipulation,
locomotion with bipedal and quadrupedal robots, and even manipulation with musculoskeletal
arm-hand models. Our simulated environments, powered by MuJoCo [6], provide fast physics
simulation and are designed to ensure a high level of physical realism.

2. Unified Robot Class and out-of-box hardware support: RoboHive introduces a unified Robot-
Class abstraction that seamlessly interfaces with both simulated and physical robots using sim-
hooks and hardware-hooks, respectively. This unique capability enables researchers to effortlessly
interface with robotic hardware, and port their results from simulation to reality by simply modify-
ing a single flag.

3. Teleoperation Support and Expert Dataset: RoboHive offers teleoperation capabilities out-of-
the-box through various modalities, including a keyboard, 3D space mouse, and virtual reality
controllers. Collected using this feature, we are open-sourcing RoboSet – one of the largest
real-world manipulation datasets collected via human-teleoperation covering 12 skills across
multiple kitchen tasks. These teleoperation features and datasets are particularly valuable to
researchers engaged in imitation learning, offline learning, and related fields.

4. Physics Fidelity and Visual Diversity: To expose the next research frontier in real-world robotics,
RoboHive emphasizes tasks with high physics fidelity and rich visual diversity surpassing previ-
ous benchmarks. We incorporate complex assets, rich textures, and improved scene composition,
aligning visuomotor control research with real-world visual complexities. Furthermore, RoboHive
natively supports visual domain randomization and scene layout randomization in several envi-
ronments, enhancing the versatility of visual perception, while also providing realistic and rich
physical content.

5. Metrics and Baselines: RoboHive establishes clear and concise metrics for evaluating algorithm
performance across all environments. The framework provides a user-friendly gym-like API
[7] for seamless integration with learning algorithms, ensuring accessibility for a wide range
of researchers and practitioners. Moreover, in collaboration with TorchRL [8] and mjRL [9],
RoboHive includes comprehensive baseline resultsW for commonly studied algorithms within the
research community, offering a benchmark for performance comparison and analysis.

2 Relationship to Prior Work

Benchmarks play a crucial role in guiding research progress. In the realm of robot learning, simulated
state-based benchmarks like OpenAI Gym [7] and dm-control [10] have played a pivotal role in
leading the development cycles of numerous algorithms and applications [11, 12, 13, 14, 15, 16].

2

https://sites.google.com/view/robohive/baseline

However, with the advancements in the field, benchmarks also need to evolve to calibrate the
difficulty and rigor of the problems (to avoid overfitting), as well as to expose the next research
frontiers. For instance, the progression from MNIST towards CIFAR-10 in favor of ImageNet
significantly influenced the evolution of deep learning for computer vision [17, 18, 19, 20, 21].
Similarly, RoboHive aims to provide an enhanced set of comprehensive and challenging benchmarks
representative of the next frontiers of research in the current robot learning landscape.

Unlike other fields, like NLP and vision, where research questions are well-defined and often
homogeneous, open questions in the field of Robot learning comprise of diverse and heterogeneous
sets: such as (bipedal/quadrupedal) locomotion, (legged/wheeled, arial/terrestrial/aquatic) navigation,
(on/off-road) driving, (rigid/deformable, in-hand/full-body) manipulation. Given this diversity, the
field relies on a cluster of benchmarks each with unique strengths. Despite this, unification can
facilitate the cross-pollination of ideas that can significantly catalyze progress.

Towards this goal, RoboHive offers a comprehensive ecosystem for robot learning, serving as both a
diverse collection of benchmarks and a comprehensive research toolkit with out-of-the-box support
for common robotic hardware drivers, teleoperation capabilities, one of the largest real-world robotics
datasets, etc. to name a few.

In terms of benchmarking, RoboHive presents a diverse collection of environments and tasks under a
unified framework that includes domains like dexterous and tabletop manipulation, legged locomotion,
musculoskeletal agents, deformable objects, multi-task, multi-agent problem statements, as well as
real-world benchmarks in locomotion and manipulation. This is in contrast to existing benchmark
clusters like [7, 10] which primarily consist of state-based simple toy domains unrepresentative of
realistic robotics challenges. RoboHive tasks are designed with attention to physical realism which
provides an advantage over the [22, 23, 24, 25] cluster of benchmarks, which trades off physical
accuracy for large-scale scenes and photorealism. While there are efforts that adhere to physical
realism [26, 27, 28] they are often domain-specific. RoboHive greatly surpasses their task and visual
diversity, and covers multiple domains. The work that bears the closest resemblance to ours is
IsaacGym [29], which features photo-realistic rendering, and GPU-accelerated physics. However,
these advantages come at the cost of physical realism and demand a high level of expertise for
development. This can be particularly challenging for research investigations that frequently require
customization and rapid prototyping.

Lastly, several environments in RoboHive have been adapted from prior works and are made available
with the permission of the original authors. These environments were not originally designed and
released as benchmarks [30, 31, 32, 33], but have emerged as such over time. Wide adoption without
support led to various customization by the community leading to fragmentation and challenges
when comparing results across different versions. In the spirit of the evolution of such well-proven
benchmarks, RoboHive adopts these environments and presents them within a single framework. The
refreshed versions of these environments feature rich visual diversity (Figure 2) to meet the growing
needs for visual generalization in robot learning, clear evaluation metrics, and baselines to facilitate
further adoption by the community. The associated datasets have also been reparsed, checked for
reproducibility, and are being made available with RoboHive. The unification of these tasks under
RoboHive not only brings them together under a single framework but also deprecates the unsupported
dependencies making the entire framework be instantiated via pip install robohive.

3 Design Philosophy & Framework Overview
The primary goal of RoboHive is the development and open-sourcing of a unified framework to
support research in robot learning. Alongside a wide collection of carefully designed tasks, RoboHive
provides an ecosystem to bridge the gap between algorithmic advancements in our benchmarks and
real-world results. An overview of the different components of RoboHive is outlined in Figure 3. We
provide additional details on these components and the rationale behind their fundamental design
principles in this section.

3.1 Abstract Robot Class for Simulation & Hardware Backends

At the core of RoboHive is an abstract robot class, depicted in Figure 4, which provides a unified
abstraction for both simulator and hardware backends. The abstract robot class exposes unified APIs
for various sensors and robots across both simulation and hardware, thereby abstracting low-level

3

RoboHive: A Unified Framework For Robot Learning

⇒ Diverse task families
⇒ OpenAI Gym-API
⇒ Non-stationary tasks
⇒ Partially observability support
⇒ Batched observation/rewards
⇒ Sparse/ dense rewards

 Task
 Collections

observations, rewards
⇒ Vision (R3M, VC1, RRL)
⇒ Affordance (VIP)

 Foundation
 Models

 Augmentation
 Models

⇒ Domain Randomization
⇒ Auto Curriculums

 AI
 Agents

actions

 Human
 Agents

⇒ I/O devices
⇒ Teleoperation
⇒ Datasets (IL / ORL)

⇒ MBRL, MFRL, ORL, IL
⇒ Pretrained baselines
⇒ Datasets (IL / ORL)

 Robot
 Models

⇒ Sensor Models
⇒ Action Models
⇒ Noise models

⇒ Robots drivers
⇒ Sensors drivers

 Simulations

⇒ Powered by MuJoCo
⇒ High physical realism
⇒ Visually rich

 Hardwares

⇒ Integrated drivers

Figure 3: RoboHive’s versatility stems from its modular design. The four primary modules are – task-collections
that contain multiple environment suites, agents take contain human as well as algorithmic actors, a unified
robot that seamlessly bridges simulation and reality, and a foundation/augmentation module that supplements
RoboHivecapabilities with pre-trained models and sim2real paradigms.

implementations and enabling the switch between simulation and the real world by toggling just a
single flag. For a live demo of this functionality, please see the linked videoW. Currently, we support
a diverse collection of commonly studied robots across several morphologies as outlined below.

• Hands: Adroit [34], Shadow [33], Allegro [35],
MPL [36], D’Hand [37], D’Manus [38]

• Arms: Franka [31], Sawyer [37], Fetch [39]
• Quadrupeds: Spot Mini [40], MIT-Cheetah [41],

D’Kitty [32]
• Bipeds: Darwin [42], Atlas [43]
• Musculo-skeletal: MyoHand [44], MyoElbow [44]

RobotOperations +
Safety specsConfigs Universal

Robot API

Simulation
(MuJoCo backend)

Hardware
(Pre-packaged drivers)

Figure 4: Overview of RoboHive’s robot class
that presents a unified framework to seamlessly
work between simulation and physical hardware

Simulation Since the broader vision of RoboHive is to facilitate progress in real-world robot learn-
ing, all simulation models are designed with care toward alignment with real-world considerations.
To ensure a high degree of physical realism, we build RoboHive on top of the now open-source
MuJoCo physics engine [6]. Furthermore, RoboHive natively supports domain randomization, sensor
noise, and delays, which can all be easily toggled through a base configuration file (Figure 4).

Hardware RoboHive provides out-of-the box support for various types of robot hardware. It also
exposes a base class for users to extend as per the hardware configurations they have access to.
The robot-hardware class exposes robots in the real world via respective drivers. The robot class
supports multiple control modalities such as position, velocity, and torque control, and can be easily
customized using a configuration file. Hardware and sensor drivers and hooks for common robots are
natively supported for easy deployment and transfer of results from simulation to the real world.

3.2 Environments
RoboHive exposes environments through the widely adopted OpenAI Gym API. All the environments
are organized into suites, a visual depiction of which is provided in Figure 5. They span from whole
arm and dexterous manipulation of free and articulated objects to locomotion agents on varied
terrains, to control of detailed musculoskeletal models. These environments are useful across
different algorithmic approaches such as visual imitation learning, model-free, and model-based RL.

For the observation space, RoboHive environments expose observations through abstract sensors
for both simulation and the real world. Sensors can include low-dimension states (simulation-only),
proprioception, and cameras (RGBD). We also natively support common transformations of the visual
observations. This includes visual domain randomization [45] of textures and lighting conditions,

4

https://youtu.be/7K03boNPvTM

RoboHive: Task Collections

2 Table-Top1 Manipulation 3 Myo 4 Deformable 5 ROBEL

RoboHive: Task Collections

4 In-hand 5 Arms 8 Locomotion7 Multi-Agent6 Multi-Task

Figure 5: RoboHive Framework hosts a wide collection of environments of varying complexity (state/visual
observations, fully/partially observable, sparse/dense rewards, etc) across multiple domains. Each column
represents a task family within RoboHive and highlights a subset of its tasks.

as well as embedding the visual observation using pre-trained visual models [46, 47, 48, 49, 50].
During registration, RoboHive environments can be fully customized using a base configuration file,
to equip the robot with various sensors, augmentations, and visual foundation models.

RoboHive also explicitly decouples rewards and success criteria. In RL, it is common to use
rewards to judge a task’s performance. This complicates relative comparisons as developing reward
functions (either by hand or through learning) that can generate desired robot behaviors is itself a core
component of the robot learning field. Thus, RoboHive ships with an independent success criteria
per environment that can be used for evaluations, as opposed to reporting rewards. We provide basic
dense reward functions for all tasks and facilitate users to improve or provide new reward functions.
Finally, RoboHive also supports fully vectorized/batched rollouts in simulation for fast environment
sampling, along with named dictionaries for sensors, observations, and reward/success metrics to
enhance interpretability and to facilitate debugging.

TaskSuite Overview: Next we provide a brief overview of various task suites present in RoboHive.
Hand Manipulation Suite This task suite contains a collection of hands. The set of tasks is
inspired by [51] and presents a collection where the arm and hand joints need to be coordinated to
solve tasks. Tasks in this set typically have a high action space and face challenges in temporally
co-ordaining small movements of the fingers with large movements of the arms.
Table-Top Suite This task suite contains a collection of tasks involving arms and grippers interact-
ing with small-scale objects. Tasks like stacking blocks, pouring, zipping, pushing, and pick-place
are common in this task suite.

5

Myo Suite MyoSuite contains a unique collection of tasks involving musculoskeletal systems. This
collection is inspired by [44] and challenges policies with third-order actuation involving muscle
dynamics and high dimensional actuation space of MyoHand. Tasks of varying difficulty levels are
present – posing, pointing, key turn, baoding balls, etc.
Deformable Manipulation Suite Our deformable suite contains a set of tasks involving flexible
material . MuJoCo is primarily a rigid body simulator but has support for a few deformable objects
such as ropes and soft bodies. The tasks in this suite involve interacting with ropes, granular medium,
soft sponges, etc. These tasks need to be solved from visual inputs as the state space of the deformable
objects is hard to specify.
Robel Suite ROBEL suite was introduce in [32] and consists of well defined manipulation and
locomotion tasks using D’Claw and D’Kitty low cost robots with parallel instantiation in real world.
In-hand Manipulation Suite In hand manipulation suite is primarily inspired by the task set
presented in [33]. Tasks in this set predominately involve in-hand reorientation of objects such as die,
baoding balls, pencils, etc. Catastrophic failures due to the loss of control and thereby the object pose
a primary challenge in solving this suite.
Arm Manipulation Suite Arm manipulation suite is similar in spirit to the tabletop suite but
requires tasks that require careful attention to the morphology of the arms. Tasks in this set involve
interaction with large objects (such as appliances) where self-collisions and collision with objects are
of concern.
Multi-Task Suite With one of the primary motivations behind RoboHive being generalization, this
suite is of key importance. This suite is organized as a collection of tasks where an agent can have
shared experiences that can be generalized between tasks. This task suite builds off from the task set
introduced in Franka-kitchen [31]) and table scene (as introduced in [52])
Multi-Agent Suite To facilitate investigation in multi-agent interactive behaviors, we present a
novel suite in RoboHive. Tasks in this suite build from tasks presented in [32], [53]. Tasks objective
include interacting with passive objects, as well as other agents.
Locomotion Suite RoboHive also features a wide collection of locomotion agents and a variety of
locomotion tasks . Both agents and tasks are inter-changeable in this suite. Task objectives vary from
simple reaching tasks to maneuvering around obstacles as well as object interaction.
Classical Suite Finally, no task collection is complete without a set of simple-to-understand
classical problems . While such problems are well represented in existing benchmarks [7, 10],
RoboHive hosts a set that exposes unique challenges such as - non-holonomic control, over actuation,
etc.

3.3 Agents
By exposing environments through the OpenAI Gym API, RoboHive makes it convenient to de-
velop various agents/algorithms that can help the robots accomplish various tasks. In the realm
of reinforcement learning, by instantiating an environment (through a base configuration file) with
an observation space and reward as described in Section 3.2, along with a robot’s native action
space, any standard RL algorithm applicable to an MDP/POMDP setting can be used to train agents.
Along with TorchRL [8] and mjRL [9], we provide an initial set of baseline implementations with
policies effective in both simulationsW as well as the real worldW. Code samples of these im-
plementations along with baseline results for various environments can be directly accessed from
https://sites.google.com/view/robohiveW.

Besides online RL, robot learning encompasses other classes of algorithmic approaches to train
agents, such as offline RL and imitation learning. These approaches however require a starter dataset
from the environment with at least a few successful trajectories. To facilitate the collection of such
datasets, RoboHive provides out-of-the-box teleoperation support for most environments through
a variety of user interfaces like keyboard, 3D space mouse, and VR controllers. This teleoperation
capability is shared across both simulation and the real world. Please see this short live demoW that
demonstrates the ease of teleoperation capabilities shipped with RoboHive in under 2 minutes, right
from pip installing the package.

4 Capabilities and Utilities of the RoboHive Framework
We believe that RoboHive has several capabilities and components that are of broad use to various
communities related to robot learning. We outline several of the salient capabilities and utilities of
RoboHive in this section.

6

https://github.com/vikashplus/robohive/releases
https://sites.google.com/view/robohive/gallery/real-gallery
https://youtu.be/7K03boNPvTM

4.1 RoboHive as a repository of environments and agents
Environments RoboHive naturally provides a unified framework for environments and agents that
can power research in robot learning. By providing a large diversity and complexity of robotics
simulation assets and tasks, fast and physically realistic simulation models, and a modular framework
that is easy-to-use and extend, RoboHive naturally plugs into the ecosystem meeting research needs
in reinforcement learning and imitation learning settings. Given the need for more complex tasks and
visually rich environments for studying visual generalization, and the huge space of users who rely on
MuJoCo for their simulation needs 2, RoboHive provides the ecosystem necessary to both develop
learning algorithms as well as deploy them on various robots both in simulation as well as real-world
studies. By matching environments with real-world considerations and by providing both simulation
and hardware backends and hooks, RoboHive can considerably reduce the barrier of entry to robot
learning and enable researchers primarily interested in algorithm development to more easily deploy
their ideas on robots. RoboHive provides this flexibility without sacrificing speed and accuracy. To
demonstrate the performance of RoboHive, we provide the environment throughput for several task
suites in Table 1 (See Table 3 for full details).

Table 1: This table illustrates the environment data collection performance on a single machine using 32
processes distributed across 8 A100 GPUs. The data collection process utilizes TorchRL’s collector classes in
an asynchronous manner, following a “first ready first served” approach. Each batch of data (500 steps/batch,
800K total) was collected on a separate process, employing a random policy, and transformed to a floating point
tensor and resized to [84 × 84] pixels. The results presented in this figure are based on three different seeds,
and the reported values indicate the average and standard deviation across seeds and environments. Multi-task
suite rendering was achieved over 4 cameras with a resolution of [256× 256] pixels, Arm and Hand suites had
3 cameras with a resolution of [244× 244] pixels. The Myo suite does not support rendering over dedicated
cameras and was excluded from this analysis. The decision to employ TorchRL as the backend for data collection
is justified by the substantial superiority of these results compared to those achieved using single-process or
multiprocessed solutions offered by most other frameworks, as reported in more details in [8].

Task Family Samples or Frames per second
State observations Proprioception + Visual observations

Arm Manipulation 7473 ± 1237 993 ± 63
Hand manipulation 8785 ± 665 1713 ± 24
Multi-task 4430 ± 6 346 ± 0.4
Myo 7366 ± 3509 n/a

Agents RoboHive supports two types of behavioral agents: (1) human agents (teleoperation), and
(2) algorithmic agents (e.g. policies trained with reinforcement learning or imitation learning).

Human Agents (teleoperation): RoboHive natively supports various input devices or interfaces
using which humans can interact with RoboHiveenvironments. Currently, supported interfaces
include keyboards, game controllers, 6 DoF 3D connection space mice, VR controllers, and the
versatile CyberGlove. These interfaces can be used to control both simulated real robots to accomplish
various tasks through a teleoperation setup, and can also serve to generate datasets that can power
various offline RL and imitation learning algorithms.

Algorithmic Agents: In addition to human agents, RoboHive also boasts a collection of pre-trained
policies (with state as well as visual inputs) from well-studied algorithm families. These policies
have been trained through partnering with torchRL and mjRL, and can be readily downloaded and
used for interacting with the environment, generating datasets for offline RL or IL, or as a baseline
to compare the performance of new algorithms. Code samples for training these policies and the
pre-trained policies can be accessed from the project websiteW.

4.2 Sim and Real Counterparts
To easily study transfer between simulation and reality, RoboHive makes it seamless to toggle
between simulation and reality. Effective transfer between simulation and reality requires bridging
the reality gap. RoboHive does this by providing near-photorealistic rendering, accurate physics
modeling, and attention to detail in real-world factors such as latency, actuator, sensing delays,
etc. Figure 6 (video W) showcases a task-policy deployed in simulations as well real-world via the
sim2real bridge across two domains.

2multiple simulation engines now natively support importing MuJoCo models

7

https://sites.google.com/view/robohive
https://sites.google.com/view/robohive/gallery/real-gallery

Figure 6: Rigorous measures are taken to capture physical realism in RoboHive’s simulations models. Thanks
to Robohive’s robot class policies trained in simulations easily transfer over to the real world. Depicted in the
figure are the synchronized deployment of policies trained in simulation to both simulation and the real world
for a representative manipulation task with Franka (left) and a locomotion task with D’Kitty [32] (right).

4.3 Teleoperation and Dataset Collection
Since a variety of robot learning methods such as offline reinforcement learning, imitation learning,
and finetuning with reinforcement learning rely on meaningfully collected datasets, RoboHive
provides both pre-collected datasets - which we refer to as RoboSet and teleoperation interfaces for
users to collect their own data. The key factors here are the size and diversity of the pre-collected
datasets and the ease of use of the teleoperation interface that facilitates dataset collection (DemoW)
both in simulation as well as the real world.

In addition to refreshed versions of prior datasetsW corresponding to the environments we adopted,
RoboSet also features one of the largest (still growing) open-source real-world robotics datasetsW
released with commodity hardware covering over 12 skills across over 30 tasks in multiple kitchen
scenes. We mark the full composition of RoboSet in Table 2. We provide more details on RoboSet in
Appendix A, the data collection process in subsection A.1, reproducibility statement in subsection A.2,
and access and maintenance commitments in subsection A.3.

Table 2: RoboSet data compositions across various domains and sources
Domain # Trajs # Tasks World Visuals Source
Real kitchen 28,700 40 Real 4 cam Human TeleOp [36]
Bin Manipulation 70,000 4 Real 4 cam Script+Policy [54]
Franka kitchen 600 4 Sim 4 cam Human TeleOp [31]
Adroit 25 4 Sim 3 cam Human TeleOp [30]
Franka kitchen 75 5 Sim 4 cam Expert Policy [55]
Adroit 75 4 Sim 3 cam Expert Policy [55]
D’Kitty 75 3 Sim 4 cam Expert Policy [55]

4.4 Datasets and Environments for Visual Imitation Learning and Offline RL
As described above, the ability to directly interact with the tasks has facilitated the collection of a
rich dataset in both simulation and the real world. With this dataset, we then benchmark a variety of
visual imitation learning (summarized below) and offline RL techniques (see [56] for details).

DKittyStand DKittyWalk
Environment Task

0

20

40

60

80

100

Su
cc

es
s R

at
e

ROBEL(expert): Locomotion Suite
R3M50
RRL50
VC1-Large
Proprioceptive
State
Expert Policy

MicroOpen Knob1On Knob2Off SdoorOpen LdoorOpen
Environment Task

0

20

40

60

80

100

Su
cc

es
s R

at
e

FK1-v4(expert): Kitchen
R3M50
RRL50
VC1-Large
Proprioceptive
State
Expert Policy

Figure 7: Robel and Kitchen task family: Expert trajectories trained using NPG are used to collect the dataset
for behavior cloning consisting of 75 trajectories per task. Each visual baseline in the Kitchen task family is
averaged over 3 seeds× 3 camera angles× 25 trajectory rollouts. For the Robel Task family the results are
averaged over 3 seeds× 25 trajectory rollouts.

Learning from Visual Observations Learning behaviors directly from sensory inputs, especially
visual, is challenging due to the high-dimensional, noisy sensory space. Various approaches have been

8

https://sites.google.com/view/robohive/demo
https://github.com/vikashplus/robohive/wiki/7.-Datasets
https://sites.google.com/view/robohive/roboset

Pen Door Hammer Relocate
Environment Task

0

20

40

60

80

100

Su
cc

es
s R

at
e

HMS(human): Hand Manipulation Suite
R3M50
RRL50
VC1-Large
Proprioceptive
State
Expert Policy

MicroOpen Knob1On Knob2Off SdoorOpen LdoorOpen
Environment Task

0

20

40

60

80

100

Su
cc

es
s R

at
e

FK1-v4(human): Kitchen
R3M50
RRL50
VC1-Large
Proprioceptive
State
Expert Policy

Figure 8: Hand Manipulation and Kitchen task family: Human teleoperation is used to collect the dataset for
behavior cloning consisting of 25 trajectories per task for HMS [30] whereas for kitchen tasks, we collect 100
trajectories for each task in Kitchen Task Family (FK1-v4). Each visual baseline in both task families is averaged
over 3 seeds× 3 camera angles× 25 trajectory rollouts for robust evaluations.

proposed that learn low-dimensional, compact representations of the input images and then use these
representations to learn the task. We benchmark the performance of various state-of-the-art visual
representation learning algorithms including RRL [46], R3M [48], and VC1 [50] on the challenging
Kitchen domain of Multi-Task, Locomotion Tasks on D’Kitty from ROBEL Task suite, and Adroit
domain of the Hand Manipulation [Figure 7, Figure 8] task suites from RoboHive using the dataset
outlined in Table 2. We compare these visual baselines with an oracle policy trained using privileged
‘State’ information. Moreover, we add another baseline that is blind to the image observations
and uses the robot’s proprioceptive information to solve the task, providing a minimum acceptable
performance of the visual baselines on the benchmark. While expert demonstrations via an ‘Expert
Policy’ are feasible in simulation and easier to test models, accessing such Expert Policy in the real
world is difficult. Alternatively, human-collected demonstrations possessed with multimodal action
distribution via teleoperation is widely used in the real world. We benchmark the visual baselines on
both types of datasets: Expert Demonstrations (Figure 7) and Human Teleoperated Dataset (Figure 8).
The performance of the demonstration trajectories is shown with the label ‘Expert Policy,’ which
consists of rollouts from expert policy in Figure 7 and human teleoperated trajectories in Figure 8. To
set the right precedent in the community for a fair and robust comparison of different baselines, we
average each method across multiple seeds, and camera angles for all our results.

We observe a wide gap between state-of-the-art visual baselines and policy learned using the privileged
state information (‘State’) [Pink] using both expert and human-teleoperated datasets, highlighting the
need for learning better and more robust sensory-motor representations, including visual observations.
Surprisingly, the tasks in the locomotion domain (ROBEL in with D’Kitty (Figure 7) perform worse
using any visual representation baselines than a proprioceptive-only baseline [Red], highlighting
the challenge of learning with diverse visual observations. Moreover, the larger performance gap
between tasks in the Kitchen suite using human teleoperated (Figure 8) and dataset collected using
expert policy (Figure 8) demonstrates the additional challenges in learning policies that can model
multimodal action distributions. Finally, RoboHive also includes dexterous Hand Manipulation Suite
(Figure 8) where solving tasks with few demonstrations (25 demonstrations in this suite for each
task) using behavior cloning can be challenging (e.g., Pen and Relocate). These results underpin
the breadth of visual diversity and task-level generalization in RoboHive’s task collections often
overlooked in prior works.

4.5 Well packaged and maintained ecosystem
RoboHive offers a versatile simulation and execution tool that caters to various tasks and domains by
consolidating all environments under a common base class. The consistent constructor and method
signatures make it a one-stop solution. The library’s ability to seamlessly integrate environments of
diverse natures through a single entry point highlights its versatility.

The library is equipped with a continuous integration workflow that tests each environment construc-
tion after each contribution, which ensures that the package is fully functional at any point in time.
RoboHive is also well packaged and can be instantiated using a pip install robohive.

Because a library is only as good as its documentation, RoboHive package features a curated and
extensive documentation of its features that spans across multiple media. It offers an installation
guideW, a getting started guideW, a getting started video with simulation as well as real tele-operation
demoW, comprehensive tutorialsW, detailed documentationW, environment descriptionsW, a video

9

https://github.com/vikashplus/robohive/tree/main/setup
https://github.com/vikashplus/robohive/tree/main/setup
https://github.com/vikashplus/robohive/tree/main/robohive/tutorials
https://youtu.be/7K03boNPvTM
https://youtu.be/7K03boNPvTM
https://github.com/vikashplus/robohive/wiki/6.-Tutorials-&-FAQs
https://github.com/vikashplus/robohive/wiki
https://github.com/vikashplus/robohive/blob/main/robohive/envs/multi_task/README.md
https://sites.google.com/view/robohive/gallery
https://sites.google.com/view/robohive/gallery

showcaseW of task performance, trained baselinesW for different task families, issue trackingW
, discussion forumsW, and support commitments. Depth of RoboHive capabilities can be best
appreciated by visiting our webpage page - https://sites.google.com/view/robohiveW.

At the time of writing, the library has been actively maintained for about five years, is mature enough
to be used by a broad community of researchers, and has already facilitated a diverse set of results.
Given its long-lasting maintenance, we expect RoboHiveto be actively maintained by its authors as
well as the open-source community for the foreseeable future.

4.6 Reproducibility
RoboHive’s baselines are and will keep on being tracked across various versions of the software
to check for performance regressions. In each RoboHive’s releases we provide a detailed releases
notesW with individual runs and performance comparison across versions with at least 3 seeds for a
selected set of environments and algorithms.

5 Limitations
With a number of recent publications ([48, 49, 57, 50, 58]) leveraging RoboHive, the framework is
witnessing a steady adoption in the community. Owing to the scope of the framework, we do have
a few limitations. (1) RoboHive provide trained agents only for a few algorithmic families that are
most commonly used in the field in that corresponding task family. We hope that open-sourcing and
community engagements will help us make the coverage more comprehensive. (2) While RoboHive
has a wide coverage of task families, we hope that the community will help enrich the ecosystem over
time, especially towards aerial and navigation suites. (3) RoboHive’s robot class supports a diverse
set of commonly used hardware but it’s not representative. Manipulation hardware support outweighs
locomotion, navigation, and aerial hardware support.

Acknowledgments

Given the broad scope of RoboHive and its design flexibility that makes it compatible with a diverse
family of algorithms, the true potential of the framework can only be realized with community-wide
participation. Hence we are open-sourcing the entire framework. We hope the RoboHive ecosystem
provides a firm footing for those who are getting started with the field as well as those who are at
the forefront of research and development. We sincerely acknowledge the help and support of all
the authors and contributors of the original work upon which RoboHive builds. RoboHive wouldn’t
have been possible without their original contributions, and their help in interfacing their original
work to the RoboHive ecosystem.

10

https://sites.google.com/view/robohive/gallery
https://sites.google.com/view/robohive/gallery
https://github.com/vikashplus/robohive/releases
https://github.com/vikashplus/robohive/issues
https://github.com/vikashplus/robohive/discussions
https://sites.google.com/view/robohive
https://github.com/vikashplus/robohive/releases
https://github.com/vikashplus/robohive/releases

References

[1] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Vedavyas Panneershelvam, Marc Lanctot, Sander
Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy P. Lillicrap,
Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the
game of go with deep neural networks and tree search. Nature, 529:484–489, 2016.

[2] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Dębiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large
scale deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

[3] Mihaly Varadi, Stephen Anyango, Mandar Deshpande, Sreenath Nair, Cindy Natassia, Galabina
Yordanova, David Yuan, Oana Stroe, Gemma Wood, Agata Laydon, et al. Alphafold protein
structure database: massively expanding the structural coverage of protein-sequence space with
high-accuracy models. Nucleic acids research, 50(D1):D439–D444, 2022.

[4] OpenAI. Chat gpt, 2023.

[5] Moravec’ paradox. Moravec’s paradox.

[6] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In IROS, 2012.

[7] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym, 2016.

[8] Albert Bou, Matteo Bettini, Sebastian Dittert, Vikash Kumar, Shagun Sodhani, Xiaomeng Yang,
Gianni De Fabritiis, and Vincent Moens. TorchRL: A data-driven decision-making library for
PyTorch. 2023.

[9] University of Washington Seattle Movement Control Lab. A library of rl algorithms for
continuous control tasks.

[10] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David
Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite.
arXiv preprint arXiv:1801.00690, 2018.

[11] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymir Mnih, Tom Ward,
Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray Kavukcuoglu.
Impala: Scalable distributed deep-rl with importance weighted actor-learner architectures, 2018.

[12] Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Curl: Contrastive unsupervised represen-
tations for reinforcement learning. In International Conference on Machine Learning, pages
5639–5650. PMLR, 2020.

[13] Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. arXiv preprint arXiv:2004.13649, 2020.

[14] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and
James Davidson. Learning latent dynamics for planning from pixels. In International conference
on machine learning, pages 2555–2565. PMLR, 2019.

[15] Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and Deepak
Pathak. Planning to explore via self-supervised world models. In International Conference on
Machine Learning, pages 8583–8592. PMLR, 2020.

[16] Alvaro Sanchez-Gonzalez, Nicolas Heess, Jost Tobias Springenberg, Josh Merel, Martin Ried-
miller, Raia Hadsell, and Peter Battaglia. Graph networks as learnable physics engines for
inference and control. In International Conference on Machine Learning, pages 4470–4479.
PMLR, 2018.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition, 2015.

[18] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely connected
convolutional networks, 2018.

[19] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual
transformations for deep neural networks, 2017.

11

[20] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale, 2021.

[21] Zhengzhong Tu, Hossein Talebi, Han Zhang, Feng Yang, Peyman Milanfar, Alan Bovik, and
Yinxiao Li. Maxvit: Multi-axis vision transformer, 2022.

[22] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans, Bhavana
Jain, Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, et al. Habitat: A platform for
embodied ai research. In Proceedings of the IEEE/CVF international conference on computer
vision, pages 9339–9347, 2019.

[23] Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt, Luca Weihs, Alvaro Herrasti, Matt
Deitke, Kiana Ehsani, Daniel Gordon, Yuke Zhu, et al. Ai2-thor: An interactive 3d environment
for visual ai. arXiv preprint arXiv:1712.05474, 2017.

[24] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun. Carla:
An open urban driving simulator. In Conference on robot learning, pages 1–16. PMLR, 2017.

[25] Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu, Fangchen Liu, Minghua Liu,
Hanxiao Jiang, Yifu Yuan, He Wang, Li Yi, Angel X. Chang, Leonidas J. Guibas, and Hao
Su. SAPIEN: A simulated part-based interactive environment. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2020.

[26] Yuke Zhu, Josiah Wong, Ajay Mandlekar, Roberto Martín-Martín, Abhishek Joshi, Soroush
Nasiriany, and Yifeng Zhu. robosuite: A modular simulation framework and benchmark for
robot learning. In arXiv preprint arXiv:2009.12293, 2020.

[27] Stephen James, Zicong Ma, David Rovick Arrojo, and Andrew J Davison. Rlbench: The
robot learning benchmark & learning environment. IEEE Robotics and Automation Letters,
5(2):3019–3026, 2020.

[28] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and
Sergey Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement
learning. In Conference on robot learning, pages 1094–1100. PMLR, 2020.

[29] Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles
Macklin, David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, et al. Isaac gym: High
performance gpu-based physics simulation for robot learning. arXiv preprint arXiv:2108.10470,
2021.

[30] Aravind Rajeswaran*, Vikash Kumar*, Abhishek Gupta, Giulia Vezzani, John Schulman,
Emanuel Todorov, and Sergey Levine. Learning Complex Dexterous Manipulation with Deep
Reinforcement Learning and Demonstrations. In Proceedings of Robotics: Science and Systems
(RSS), 2018.

[31] Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay policy
learning: Solving long horizon tasks via imitation and reinforcement learning. Conference on
Robot Learning (CoRL), 2019.

[32] Michael Ahn, Henry Zhu, Kristian Hartikainen, Hugo Ponte, Abhishek Gupta, Sergey Levine,
and Vikash Kumar. ROBEL: RObotics BEnchmarks for Learning with low-cost robots. In
Conference on Robot Learning (CoRL), 2019.

[33] Anusha Nagabandi, Kurt Konoglie, Sergey Levine, and Vikash Kumar. Deep Dynamics Models
for Learning Dexterous Manipulation. In Conference on Robot Learning (CoRL), 2019.

[34] Vikash Kumar. Manipulators and Manipulation in high dimensional spaces. PhD thesis,
University of Washington, Seattle, 2016.

[35] Wonik robotics. Allegro hand, 2023.
[36] Vikash Kumar and Emanuel Todorov. Mujoco haptix: A virtual reality system for hand manipu-

lation. In 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids),
pages 657–663. IEEE, 2015.

[37] Abhishek Gupta, Justin Yu, Tony Z Zhao, Vikash Kumar, Aaron Rovinsky, Kelvin Xu, Thomas
Devlin, and Sergey Levine. Reset-free reinforcement learning via multi-task learning: Learning
dexterous manipulation behaviors without human intervention. In 2021 IEEE International
Conference on Robotics and Automation (ICRA), pages 6664–6671. IEEE, 2021.

12

[38] Raunaq Bhirangi, Abigail DeFranco, Jacob Adkins, Carmel Majidi, Abhinav Gupta, Tess
Hellebrekers, and Vikash Kumar. All the feels: A dexterous hand with large area sensing. arXiv
preprint arXiv:2210.15658, 2022.

[39] Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob McGrew, Bowen Baker, Glenn
Powell, Jonas Schneider, Josh Tobin, Maciek Chociej, Peter Welinder, et al. Multi-goal
reinforcement learning: Challenging robotics environments and request for research. arXiv
preprint arXiv:1802.09464, 2018.

[40] Boston Dynamics. Spot mini, 2023.

[41] MIT. Mini cheetah.

[42] Igor Mordatch, Kendall Lowrey, and Emanuel Todorov. Ensemble-cio: Full-body dynamic mo-
tion planning that transfers to physical humanoids. In 2015 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 5307–5314. IEEE, 2015.

[43] Tom Erez, Kendall Lowrey, Yuval Tassa, Vikash Kumar, Svetoslav Kolev, and Emanuel Todorov.
An integrated system for real-time model predictive control of humanoid robots. In Humanoid
Robots (Humanoids), 2013 13th IEEE-RAS International Conference on, pages 292–299. IEEE,
2013.

[44] Vittorio Caggiano, Huawei Wang, Guillaume Durandau, Massimo Sartori, and Vikash Kumar.
Myosuite – a contact-rich simulation suite for musculoskeletal motor control. https://
github.com/facebookresearch/myosuite, 2022.

[45] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel.
Domain randomization for transferring deep neural networks from simulation to the real world.
In 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS), pages
23–30. IEEE, 2017.

[46] Rutav Shah and Vikash Kumar. Rrl: Resnet as representation for reinforcement learning. In
International Conference on Machine Learning. PMLR, 2021.

[47] Simone Parisi, Aravind Rajeswaran, Senthil Purushwalkam, and Abhinav Gupta. The unsur-
prising effectiveness of pre-trained vision models for control. In International Conference on
Machine Learning, pages 17359–17371. PMLR, 2022.

[48] Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav Gupta. R3m: A
universal visual representation for robot manipulation. arXiv preprint arXiv:2203.12601, 2022.

[49] Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Osbert Bastani, Vikash Kumar, and
Amy Zhang. Vip: Towards universal visual reward and representation via value-implicit
pre-training. arXiv preprint arXiv:2210.00030, 2022.

[50] Arjun Majumdar, Karmesh Yadav, Sergio Arnaud, Yecheng Jason Ma, Claire Chen, Sneha
Silwal, Aryan Jain, Vincent-Pierre Berges, Pieter Abbeel, Jitendra Malik, Dhruv Batra, Yixin
Lin, Oleksandr Maksymets, Aravind Rajeswaran, and Franziska Meier. Where are we in the
search for an artificial visual cortex for embodied intelligence? 2023.

[51] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning Complex Dexterous Manipulation with Deep Reinforce-
ment Learning and Demonstrations. In Proceedings of Robotics: Science and Systems (RSS),
2018.

[52] Corey Lynch, Mohi Khansari, Ted Xiao, Vikash Kumar, Jonathan Tompson, Sergey Levine, and
Pierre Sermanet. Learning latent plans from play. Conference on Robot Learning (CoRL), 2019.

[53] Ofir Nachum, Michael Ahn, Hugo Ponte, Shixiang Gu, and Vikash Kumar. Multi-agent
manipulation via locomotion using hierarchical sim2real. arXiv preprint arXiv:1908.05224,
2019.

[54] Patrick Lancaster, Nicklas Hansen, Aravind Rajeswaran, and Vikash Kumar. Visuo-motor world
models for real-world robot manipulation. https://arxiv.org/pdf/2309.14236.pdf, 2023.

[55] Sham M Kakade. A natural policy gradient. In NIPS, 2002.

[56] Gaoyue Zhou, Liyiming Ke, Siddhartha Srinivasa, Abhinav Gupta, Aravind Rajeswaran, and
Vikash Kumar. Real world offline reinforcement learning with realistic data source. arXiv
preprint arXiv:2210.06479, 2022.

13

https://github.com/facebookresearch/myosuite
https://github.com/facebookresearch/myosuite

[57] Zhao Mandi, Homanga Bharadhwaj, Vincent Moens, Shuran Song, Aravind Rajeswaran, and
Vikash Kumar. Cacti: A framework for scalable multi-task multi-scene visual imitation learning.
arXiv preprint arXiv:2212.05711, 2022.

[58] Siddharth Karamcheti, Suraj Nair, Annie S Chen, Thomas Kollar, Chelsea Finn, Dorsa Sadigh,
and Percy Liang. Language-driven representation learning for robotics. arXiv preprint
arXiv:2302.12766, 2023.

14

Appendix

A Datasets

RoboHive offers extensive support for a diverse range of datasets known as RoboSet. These datasets
are designed to facilitate pre-training and offline learning research. With the support of multiple input
devices that users can interact with RoboHive’s environments, we obtain datasets that encompass
both human-collected data and expert datasets acquired via trained policies.

The dataset is structured in the form of trajectories, capturing essential information at each time step.
These trajectories comprise observations, actions, rewards, RGB visuals from multiple camera views,
and other relevant environmental information. The richness of information within RoboSet makes
it suitable for research endeavors across various domains and topics, including but not limited to
offline learning like imitation learning and offline reinforcement learning, visual generalization, and
policy learning generalization. All datasets within RoboSet are in HDF5 format, which is suitable for
organizing large and complex hierarchical data.

In the subsequent sections, we introduce the composition of RoboSet, the data collection process, and
provide insights into our data access and maintenance plan.

A.1 Collection Process

In this section, we introduce the data collection process of our 1) expert dataset and 2) human dataset.
For expert datasets, we use a trained task-specific NPG policy for the target task and roll out 25
trajectories in the environment each for three different trained agents. The expert dataset also contains
failure trajectories.

Our human dataset is collected through human teleoperation using Puppet [36]. During the collection
process, a human teleoperator uses an HTC Vive headset and controller to control the robot in an
end effector space. We subsequently replay and parse the trajectories in each target environment to
collect task-relevant information. The human trajectories in RoboSet are mostly successful.

Since some of the RoboHive environments are built upon existing environments such Adroit and
Franka Kitchen, it is natural to integrate datasets collected from the original environments. For
instance, our human dataset of the hand manipulation suite is adapted from the human trajecto-
ries collected from the DAPG project [51]. We replay the original trajectories into RoboHive’s
corresponding environments. This enables us to reuse datasets from prior work effectively while
supporting information that wasn’t contained in the original dataset, for example, RGB observations.
By integrating this exteroception information alongside the state-based proprioception observations,
RoboHive becomes a comprehensive testbed for conducting research on visual generalization as well.
To ensure the quality and validity of the replayed trajectories, we provide a reproducibility report in
subsection A.2.

A.2 Reproducibility

The human dataset used in RoboHive’s hand manipulation suite is derived from the original dataset
from [51]. In order to incorporate this dataset into RoboHive, we replay the robot’s actions from the
original trajectories within the corresponding environment of RoboHive. During this process, we
record the observations, rewards, and other task-relevant information.

To ensure the validity and reproducibility of the replayed trajectories, we perform a thorough
comparison between the 100 original trajectories and the replayed trajectories. Figure 9 depicts
the histogram of the norm of the difference between the last states of each original trajectory and
the replayed trajectory. Notably, we observe that the trajectories converge to the same environment
state within approximation bounds after replay, with the final states being visually indistinguishable.
This alignment in performance indicates that the replayed trajectories maintain the same level of
quality as the original dataset. As a result, the validity of past results and findings remains intact
within the RoboHive version of the task. Please refer to our Wiki Page for further information and
visualizations.

15

https://github.com/vikashplus/robohive/wiki/7.-Datasets

Figure 9: Comparison of Last State Discrepancy between Original and Replay Trajectories

A.3 Access & Maintenance

To ensure convenient and efficient access for users, we have open-sourced Ro-
boSet https://sites.google.com/view/robohive/RoboSet. The complete list of datasets and
example trajectories are available on our Wiki Page.

To utilize RoboSet effectively, users are expected to download the dataset of their task of interest, and
then they can employ their preferred training method to train policies using this data. To evaluate the
performance of these trained policies, users are encouraged to perform 25 rollouts in the environment.
Lastly, users can compare their methods to our baseline experiments outlined in subsection 4.4.

The availability of both expert and human datasets in RoboSet makes it suitable for various learning
approaches, encompassing not only imitation learning methods that rely on high-quality data, but
also offline reinforcement learning methods and any techniques that leverage multimodal or play
data. Moreover, the wealth of visual data within RoboSet opens up avenues for visual pre-training
and generalization. Importantly, all datasets in RoboSet adhere to a consistent format, mitigating
the overhead associated with transitioning between different task suites and environments. Looking
ahead, we anticipate that RoboSet will continue to expand in terms of both quantity and diversity,
ensuring its ongoing relevance and value to the research community.

B Environment sampling performeance

Table 3 illustrates the environment data collection performance on a single machine using 32 processes
distributed across 8 A100 GPUs. The data collection process utilized TorchRL’s collector classes
in an asynchronous manner, following a "first ready first served" approach. Each batch of data
(500 steps/batch, 800K total) was collected on a separate process, employing a random policy, and
transformed to a floating point tensor and resized to [84× 84] pixels. The results presented in this
figure are based on three different seeds, and the reported values indicate the average and standard
deviation across seeds. Multi-task suite rendering was achieved over 4 cameras with a resolution of
[256× 256] pixels, Arm and Hand suites had 3 cameras with a resolution of [244× 244] pixels. The
Myo suite does not support rendering over dedicated cameras and was excluded from this analysis.
The decision to employ TorchRL as the backend for data collection is justified by the substantial
superiority of these results compared to those achieved using single-process or multiprocessed
solutions offered by most other frameworks, as reported in more details in [8].

16

https://sites.google.com/view/robohive/roboset?authuser=0
https://github.com/vikashplus/robohive/wiki

Table 3: Full details of collection speed for all environments considered on a per-environment basis
Task Family Env name Samples or Frames per second
Arm Manipulation FrankaPickPlaceFixed-v0 6174.0235

FrankaPickPlaceRandom_v2d-v0 928.9412
FrankaPickPlaceRandom-v0 6127.2433
FrankaPushFixed-v0 7338.9487
FrankaPushRandom_v2d-v0 994.2035
FrankaPushRandom-v0 7382.3643
FrankaReachFixed-v0 8906.9175
FrankaReachRandom_v2d-v0 1055.2824
FrankaReachRandom-v0 8911.4261

Hand manipulation door_v2d-v1 1681.4599
doorv1 9124.0997
hammer_v2d-v1 1722.2912
hammer-v1 7826.282
pen_v2d-v1 1711.8543
pen-v1 8871.5027
relocate_v2d-v1 1737.4508
relocate-v1 9317.9963

Multi-task FK1_Knob1OnRandom_v2d-v4 346.0061
FK1_Knob1OnRandom-v4 4436.5437
FK1_Knob2OffRandom_v2d-v4 346.8642
FK1_Knob2OffRandom-v4 4434.0908
FK1_LdoorOpenRandom_v2d-v4 346.5334
FK1_MicroOpenRandom-v4 4424.7308
FK1_SdoorOpenRandom_v2d-v4 346.0869
FK1_SdoorOpenRandom-v4 4423.86

Myo myoElbowPose1D6MExoRandom-v0 11022.1737
myoElbowPose1D6MRandom-v0 10998.8446
myoFingerReachRandom-v0 10959.5896
myoHandDieReorientRandom-v0 6617.4297
myoHandKeyTurnRandom-v0 7118.316
myoHandPenTwirlRandom-v0 7890.5196
myoHandReachRandom-v0 6915.9179

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope?
[Yes] We provide extensive details of our claims throughout the paper with plots and
references. External links to our website and video demonstrations are also provided
where appropriate

(b) Did you describe the limitations of your work?
[Yes] See section 5.

(c) Did you discuss any potential negative societal impacts of your work?
[N/A] Our paper doesn’t involve any dataset or problem involving humans or public
places. We expect no negative impact to society

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them?
[Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...

17

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)?
[Yes] See subsection 4.6.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] subsection 4.4

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] subsection 4.4

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)?
[Yes] A set of few shared machines available within an academic settings

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See Table Table 2.
(b) Did you mention the license of the assets? [Yes] The license information is linked to

the project page we refer to in subsection 4.3. The license of the dataset is CC-BY 4.0.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

See subsection A.3.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] We have taken explicit consent from the authors and are releasing
it back with the same license as original.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] Our datasets contain robot trajectories so they
don’t contain personally identifiable information or offensive content.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

18

	Introduction
	Relationship to Prior Work
	Design Philosophy & Framework Overview
	push0 g 0 GpopAbstract Robot Class for Simulation & Hardware BackendsSeaGreenpush0 g 0 Gpoptowidthheightdepth
	push0 g 0 GpopEnvironmentsYellowOrangepush0 g 0 Gpoptowidthheightdepth
	push0 g 0 GpopAgentsThistlepush0 g 0 Gpoptowidthheightdepth

	Capabilities and Utilities of the RoboHive Framework
	RoboHive as a repository of environments and agents
	Sim and Real Counterparts
	Teleoperation and Dataset Collection
	Datasets and Environments for Visual Imitation Learning and Offline RL
	Well packaged and maintained ecosystem
	Reproducibility

	Limitations
	Datasets
	Collection Process
	Reproducibility
	Access & Maintenance

	Environment sampling performeance

