
A The Loss Functions for the Proposed Model

In Sec. 5, we provided the key idea of the proposed learning model. Here, we provide a detailed
explanation of the loss functions implementing the learning model described in Fig. 3 of the main
paper. Table 3 shows the notations for observation sets.

Table 3: The notations for observation sets
Notation

Source domain OS = OSE ∪OSN

Target domain OT = OTN ∪OTL

Expert behavior OE = OSE

Non-expert behavior ON = OSN ∪OTN

All observations OALL = OSE ∪OSN ∪OTN ∪OTL

The observation sets OSE , OSN , OTN and OTL are defined in Sec. 3 of the main paper.

A.1 Dual Feature Extraction

The left side of Fig. 3 shows the basic adversarial learning block for dual feature extraction. That
is, we adopt two encoders in each of the source and target domains: domain encoder and behavior
encoder. Behavior encoders (BES , BET) learn to obtain behavior feature vectors from images that
only preserve the behavioral information and discard the domain information. Here, subscript S or T
denotes the domain from which each encoder takes input. Domain encoders (DES , DET) learn to
obtain domain feature vectors which preserve only the domain information and discard the behavioral
information. The encoders learn to optimize the WGAN objective [2, 16] based on the feature
discriminators: behavior discriminator BD∗ and domain discriminator DD∗. Discriminators BDB

and DDB are associated with the behavior encoder BEX , where X = S or T , and Discriminators
BDD and DDD are associated with the domain encoder DEX , where X = S or T . BDB learns
to identify the behavioral information from behavior feature vectors, and DDB learns to identify
the domain information from behavior feature vectors. BDD learns to identify the behavioral
information from domain feature vectors, and DDD learns to identify the domain information from
domain feature vectors. For notational simplicity, we define functions BE and DE as

BE(o) =

{
BES(o) if o ∈ OS

BET (o) if o ∈ OT
(1)

DE(o) =

{
DES(o) if o ∈ OS

DET (o) if o ∈ OT .
(2)

Two loss functions are defined for the dual feature extraction: feature prediction loss and feature
adversarial loss.

1) Feature prediction loss: This loss makes the model retain the desired information from feature
vectors and is given by

Lpred
feat = −

(
Eo∈OE

[BDB(BE(o))]− Eo∈ON
[BDB(BE(o))]

+ Eo∈OS
[DDD(DE(o))]− EO∈OT

[DDD(DE(o))]

)
(3)

where Eo∈A[·] is the expectation over inputs o ∈ A. The first term Eo∈OE
[BDB(BE(o))] in the right-

hand side (RHS) of (3) means that if the input observation of the encoder BE(·) is from the expert
observation set OE , then the discriminator BDB with the extracted feature should declare a high
value. The second term −Eo∈ON

[BDB(BE(o))] in the right-hand side (RHS) of (3) means that if the
input observation of the encoder BE(·) is from nonexpert observation set ON , then the discriminator
BDB with the extracted feature should declare a low value. The third term Eo∈OS

[DDD(DE(o))] in
the right-hand side (RHS) of (3) means that if the input observation of the encoder DE(·) is from the
source-domain set OS , then the discriminator DDD with the extracted feature should declare a high

14

value. The fourth term −Eo∈OT
[DDD(DE(o))] in the right-hand side (RHS) of (3) means that if

the input observation of the encoder DE(·) is from the target-domain set OT , then the discriminator
DDD with the extracted feature should declare a low value. Since we define a loss function, we have
the negative sign in front of the RHS of (3). (Note that BDB learns to assign higher values to expert
behavior and to assign lower values to non-expert behavior. DDD learns to assign higher values to
the source domain and to assign lower values to the target domain.) The encoders (BE, DE) help
discriminators (BDB , DDD) to identify the behavioral or domain information from the input, and
they jointly learn to minimize Lpred

feat.

2) Feature adversarial loss: This loss makes the model delete the undesired information from feature
vectors by adversarial learning between the encoders and the discriminators. The loss is given by

Ladv
feat =Eo∈OS

[DDB(BE(o))]− Eo∈OT
[DDB(BE(o))]

+ Eo∈OE
[BDD(DE(o))]− Eo∈ON

[BDD(DE(o))]. (4)

In this loss function, the output of the behavior encoder is fed to the domain discriminator, and the
output of the domain encoder is fed to the behavior discriminator. The learning of the encoders and
the discriminators is done in an adversarial manner as

min
BE,DE

max
DD∗,BD∗

Ladv
feat. (5)

Recall that BD∗ learns to assign higher values to expert behavior and to assign lower values to
non-expert behavior, and DD∗ learns to assign higher values to the source domain and to assign
lower values to the target domain. Thus, the discriminators try to do their best, whereas the encoders
try to fool the discriminators.

The first two terms in the RHS of (4) imply that the output of the behavior encoder BE should not
contain the domain information. The last two terms in the RHS of (4) imply that the output of the
domain encoder DE should not contain the behavioral information.

A.2 Image Reconstruction and Associated Consistency Check

In the previous subsection, we explained the loss functions of basic adversarial learning for dual
feature extraction. Now, we explain the loss functions associated with consistency checks with image
reconstruction.

As shown in the middle part of Fig. 3, for image reconstruction, we adopt a generator in each
of the source and target domains: generator GS for the source domain and generator GT for the
target domain. Generators GS and GT learn to produce images from the feature vectors so that
the generated images should resemble the original input images. GS takes a source-domain feature
vector and a behavior feature vector as input and generates an image that resembles images in the
source domain. On the other hand, GT takes a target-domain feature vector and a behavior feature
vector as input and generates an image that resembles images in the target domain.

Generators GS and GT learn to optimize the WGAN objective with the help of image discriminators:
IDS and IDT . IDS distinguishes real and generated images in the source domain, and IDT does so
in the target domain. For notational simplicity, we define functions G(·, ·) and ID(·, ·) as

G(DE(o), BE(o′)) =

{
GS(DE(o), BE(o′)) if o ∈ OS

GT (DE(o), BE(o′)) if o ∈ OT
(6)

ID(o) =

{
IDS(o) if o ∈ OS

IDT (o) if o ∈ OT .
(7)

1) Image adversarial loss: The basic loss function for training the image generators and the associated
blocks is image adversarial loss of WGAN learning [2, 16]. The image adversarial loss makes the
model generate images that resemble the real ones and is given by

Ladv
img = la(SE) + la(SN) + la(TN) + la(TL). (8)

15

where la(x) is the adversarial WGAN loss for a real image in Ox. In more detail, the first term in the
RHS of (8) can be expressed as

la(SE) = Eo∈OSE
[ID(o)]− E(ox,oy)∈(OSN ,OSE)[ID(G(DE(ox), BE(oy)))]. (9)

Note that the image discriminator ID∗ learns to assign a high value for a true image and a low value
for a fake image. The first term in the RHS of (9) trains the image discriminator ID(·) to assign a
high value to a true image o ∈ OSE , whereas the second term in the RHS of (9) trains the image
discriminator ID(·) to assign a low value to a fake image. The latter is because the ID(·) input, i.e.,
the generator output G(DE(ox), BE(oy)) with (ox, oy) ∈ (OSN , OSE) inside the second term in
the RHS of (9) is a fake image; for this image, the behavior feature is taken from oy ∈ OSE but the
domain feature is taken from ox ∈ OSN not in OSE .

The other terms la(SN), la(TN) and la(TL) in the RHS of (8) are similarly defined as

la(SN) = Eo∈OSN
[ID(o)]− E(ox,oy)∈ÔSN,fake

[ID(G(DE(ox), BE(oy)))] (10)

la(TN) = Eo∈OTN
[ID(o)]− E(ox,oy)∈ÔTN,fake

[ID(G(DE(ox), BE(oy)))] (11)

la(TL) = Eo∈OTL
[ID(o)]− E(ox,oy)∈ÔTL,fake

[ID(G(DE(ox), BE(oy)))] (12)

where ÔSN,fake is the set of image combinations {(ox, oy)} such that the generated fake image
G(DE(ox), BE(oy)) has label SN . ÔTN,fake and ÔTL,fake are similarly defined. Specifically,

ÔSN,fake = (OSE , OSN) ∪ (OSE , OTN) ∪ (OSN , OTN)

ÔSN,fake = (OSE , OSN) ∪ (OSE , OTN) ∪ (OSN , OTN)

ÔTL,pair = (OTN , OTL).

With the image adversarial loss Ladv
imag in (8), the learning is performed in an adversarial manner. The

encoders and generators learn to minimize Ladv
img, while the image discriminators learn to maximize

Ladv
img. That is, the image discriminators are trained to distinguish fake images from real images,

whereas the encoders and the generators are trained to fool the image discriminators ID∗.

Note that the image adversarial loss is basically for training the image generators and the associated
blocks in a WGAN adversarial manner. With the availability of the image generators GS and GT , we
can impose our first and second consistency criteria: image reconstruction consistency and feature
reconstruction consistency. We define the corresponding loss functions below.

2) Image reconstruction consistency loss: This loss checks the feature extraction is properly done.
When we combine the features S and BS from DES and BES with an input true image oSE (or
input true image oSN) in the first-stage feature extraction and input the feature combination (S,BS)
into image generator GS , the generated image should be the same as the original observation image
oSE (or oSN). The same consistency applies to the feature combination (T,B)) in the target domain
with a true input image oTN or oTL and the image generator GT . Thus, the image reconstruction
loss is given as

Lrecon
img = Eo∈OALL

[lmse(o, ô)] (13)

where

ô = G(DE(o), BE(o)), (14)

OALL = OSE ∪OSN ∪OTN ∪OTL, and lmse(u, v) is the mean square error between u and v. The
encoders and generators learn to minimize Lrecon

img .

3) Feature reconstruction consistency loss: This is the second self-consistency criterion. If we input
the generated source-domain image S̃BS described in the above image reconstruction loss part into
the encoders DES and BES , then we obtain domain feature S̃ and behavior feature B̃S , and these
two features should be the same as the features S and BS extracted in the first-stage feature extraction.

16

The same principle applies to the target domain. Thus, the feature reconstruction consistency loss is
expressed as

Lrecon
feat = Eo∈OALL

[||BE(o)−BE(ô)||22] + Eo∈OALL
[||DE(o)−DE(ô)||22] (15)

where

ô = G(DE(o), BE(o)), (16)

|| · ||2 denotes the 2-norm of a vector, and OALL = OSE ∪ OSN ∪ OTN ∪ OTL. Note that ô is a
generated image from the domain and behavior features extracted from o, and DE(ô) and BE(ô)
are the domain and behavior features from the generated image ô. The encoders and generators learn
to minimize Lrecon

feat .

A.3 Cycle-Consistency Check

Now, let us consider our third consistency criterion: cycle-consistency check with the right side of
Fig. 3. This consistency check involves image translation in the middle part of Fig. 3 and the image
retranslation in the right part of Fig. 3 in the main paper, and requires that the original image and the
reconstructed image of translation/retranslation should be the same for perfect feature extraction and
generation. The image cycle-consistency loss is expressed as

Lcycle
img = E(ox,oy)∈O2

cycle
[lmse(ox, G(DE(ô(x,y)), BE(ô(y,x)))] (17)

where

ô(x,y) = G(DE(ox), BE(oy)) (18)

ô(y,x) = G(DE(oy), BE(ox)) (19)

and O2
cycle is the set of image pairs such that the two images in a pair do not belong to the same domain,

i.e., one image belongs to the source domain and the other image belongs to the target domain. The
explanation is as follows. Consider that we apply image ox to the upper input and image oy to the lower
input of the left side of Fig. 3 in the main paper. Then, ô(x,y) = G(DE(ox), BE(oy)) is the generated
image in the lower row and ô(y,x) = G(DE(oy), BE(ox)) is the generated image in the upper row
in the middle part of Fig. 3 in the main paper. Finally, the image G(DE(ô(x,y)), BE(ô(y,x))) is the
final reconstructed image in the upper row of the right side of Fig. 3 in the main paper. So, we can
check the cycle-consistency between ox and G(DE(ô(x,y)), BE(ô(y,x))). The situation is mirrored
when we apply image ox to the lower input and image oy to the upper input of the left side of Fig. 3
in the main paper. The encoders and generators learn to minimize Lcycle

img .

The feature cycle-consistency loss is expressed as

Lcycle
feat =E(ox,oy)∈O2

cycle
[lmse(DE(ox), DE(ô(x,y)))] + E(ox,oy)∈O2

cycle
[lmse(BE(oy), BE(ô(y,x)))]

(20)

where

ô(x,y) = G(DE(ox), BE(oy)) (21)

The explanation is as follows. For example, from the target domain real image TBT , we extract
domain feature T and behavior feature BT . From these features, we can reconstruct TBT . Also, we
extract domain feature T̂ (from T̂BS) and behavior feature B̂T (from ŜBT). From these features,
we can reconstruct TBT . Let’s assume B̂T (behavior feature from the source domain image ŜBT

generated by GS) is replaced by BT (behavior feature from the target domain image TBT). Then
from T̂ and BT we should still reconstruct TBT . That is, B̂T (behavior feature from the source
domain image ŜBT made by GS) = BT (behavior feature from the target domain image TBT).
They are behavior features from different domains but they are equal. This implies that the behavior
feature is independent of domain information. We name this by feature cycle-consistency because
this constraint implicitly satisfies image cycle-consistency. if we explicitly constrain B̂T = BT and
T̂ = T , then we can replace B̂T and T̂ by BT and T , and the image cycle-consistency is implicitly
satisfied.

17

A.4 Other Losses

We further define losses to enhance performance.

1) Feature regularization loss: The feature regularization loss prevents the feature vector values from
exploding for stable learning, and is given by

Lreg
feat = Eo∈OALL

[||BE(o)||22 + ||DE(o)||22]. (22)

Instead, more rigorously, we can use the following regularization:

Lreg,1
feat = Eo∈OS

[(||DES(o)|| − cnorm,d)
2]

Lreg,2
feat = Eo∈OS

[(||BES(o)|| − cnorm,b)
2]

Lreg,3
feat = Eo∈OT

[(||DET (o)|| − cnorm,d)
2]

Lreg,4
feat = Eo∈OT

[(||BET (o)|| − cnorm,b)
2]

Lreg
feat = Lreg,1

feat + Lreg,2
feat + Lreg,3

feat + Lreg,4
feat . (23)

Where, cnorm,d and cnorm,b are hyperparameters with non-negative values. Appendix D.2 provides
details including the value of cnorm,d and cnorm,b for the experiment.

2) Feature similarity loss: This loss aims to map observations of the same domain to similar points
in the feature vector space and to map observations of the same behavior to similar points in the
feature vector space. The feature similarity loss is defined as

Lsim
feat = ||µBE(OSN) − µBE(OTN)||22 + ||µDE(OSE) − µDE(OSN)||22 + ||µDE(OTN) − µDE(OTL)||22,

(24)

where µBE(Ox) and µDE(Ox) are the means of the behavior feature vectors and the domain feature
vectors over the observation set Ox (x ∈ {SE, SN, TN, TL}), respectively.

A.5 Final Loss

Combining the above individual loss functions, we have the final objective for the encoders
E = (BES , DES , BET , DET), the generators G = (GS , GT), feature discriminators FD =
(BDB , DDB , BDD, DDD) and image discriminators ID = (IDS , IDT) as follows:

min
E,G

LE,G = λadv
featL

pred
feat + λadv

featL
adv
feat + λadv

imgL
adv
img + λrecon

img Lrecon
img + λrecon

feat Lrecon
feat

+ λcycle
img Lcycle

img + λcycle
feat L

cycle
feat + λsim

featL
sim
feat + λreg

featL
reg
feat

(25)

min
FD,ID

LFD,ID = λadv
featL

pred
feat − λadv

featL
adv
feat − λadv

imgL
adv
img (26)

where the weighting factors λadv
feat, λ

adv
feat, λ

adv
img, λ

recon
img , λrecon

feat , λcycle
img , λcycle

feat , λ
sim
feat, λ

reg
feat are hyper-

parameters and their values are shown in Appendix D. Note that Ladv
feat and Ladv

img appear in both (25)
and (26) with negative sign in (26). Hence, these two terms induce adversarial learning in the overall
learning process.

A.6 Reward Generation and Learner Policy Update

In this section, we explain the simple method of extracting expert features and training Drew for
reward generation. That is, we just use the output of BES in the source domain with expert input
oSE . In this case, Drew learns to minimize the following objective while behavior encoder BET is
fixed:

LD = EoSE∈OSE
[log(Drew(BE(oSE)))] + EoTL∈OTL

[log(1−Drew(BE(oTL)))]

+ Eox∈Mix(ôTE ,oTL)[(||∇Drew(BE(ox))||2 − 1)2].
(27)

where the third expectation in (27) is over the mixture of ôTE and oTL with a certain ratio. The
proposed method other than this simple method is explained in Sec. 5.
Drew takes a behavior feature vector as input and predicts its behavior label E or L from the input

18

behavior feature vector. Drew learns to assign the value 1 to the expert behavior and 0 to the learner
behavior. On the other hand, πθ learns to generate observations OTL so that the corresponding
behavior feature vector looks like the expert. The learner updates the policy using SAC [17], and the
estimated reward for an observation ot is defined by

r̂(ot) = log(Drew(BET (ot)))− log(1−Drew(BET (ot))), (28)

which is in a similar form to that in [24].

19

B Algorithm Pseudo Codes

Algorithm 1 Dual feature extraction and image generation
Input: The number of epochs nepoch_it, domain encoders DE = (DES , DET), be-
havior encoders BE = (BES , BET), generators G = (GS , GT), feature discriminators
FD = (BDB , DDB , BDD, DDD), image discriminators ID = (IDS , IDT), observation sets
OSE , OSN , OTN of size ndemo.

Initialize parameters for DE, BE, G, FD, ID.
Make a copy of OTN and initialize OTL with the copy.
for k = 1 to nepoch_it do

Sample a minibatch of observations oSE , oSN , oTN , oTL from OSE , OSN , OTN , OTL, respec-
tively.
for o in (oSE ∪ oSN ∪ oTN ∪ oTL) do

Extract DE(o) and BE(o).
Generate ô in eq. (14).
Extract DE(ô) and BE(ô).

end for
for ox, oy (not in the same domain) in (oSE ∪ oSN ∪ oTN ∪ oTL) do

Generate ô(x,y) and ô(y,x) in eqs. (18) and (19).
Generate G(DE(ô(x,y)).BE(ô(y,x))).

end for
Compute LE,G and LFD,ID in eqs. (25) and (26).
Update DE, BE and G to minimize LE,G.
Update FD and ID to minimize LFD,ID.

end for
return E,G, FD, ID

Algorithm 2 Reward estimation and policy update
Input: The number of training epochs nepoch_pol, the number of discriminator updates nupdate,D,
the number of policy updates nupdate,θ, domain encoders DE, behavior encoders BE, generators G,
discriminator Drew for reward estimation, learner policy πθ, observations sets OSE , OSN , OTN of
size ndemo, replay buffer B of size nbuffer.

Initialize parameters for Drew, πθ and B.
for k1 = 1 to nepoch_pol do

Sample a trajectory τ ∼ πθ.
Store transitions (s, a, s′) and observations o to B.
for k2 = 1 to nupdate,D do

Sample minibatch of observations oSE ∈ OSE , oTN ∈ OTN , oTL ∈ B.
Update Drew to minimize LD in Sec. 5.4.

end for
for k3 = 1 to nupdate,θ do

Sample minibatch of transitions (s, a, s′) and corresponding observations o.
Compute reward r̂ in Sec. 5.4.
Update the policy πθ using SAC.

end for
end for

20

C Third-Person Imitation Learning (TPIL)

This section summarises TPIL [37], one of the pioneering works that address the domain shift problem
in IL. TPIL trains a model based on an unsupervised domain adaptation technique [15] with GAIL
[18]. TPIL consists of a single behavior encoder BE, a domain discriminator DD, and a behavior
discriminator BD, as shown in Fig. 12. The input label XBX in Fig. 12 means that the input is
in the X domain with behavior BX . X can be source S or target T , and BX can be expert E or
non-expert N . The key idea is to train BE to extract domain-independent behavior features from
inputs. The trained BE can be used to tell whether the learner’s action in the target domain is expert
behavior or non-expert behavior, and we can use this evaluation to train the learner. DD learns to
predict the domain label (source or target) of the input, and BD learns to predict the behavior label
(expert or non-expert) of the input. Therefore, encoder BE learns to fool DD by removing domain
information from the input while helping BD by preserving behavior information from the input. In
[37], the behavior feature is a concatenation of BE(ot) and BE(ot−4); however, we just simply the
notation and denote the behavior feature by BE(ot).

The total loss for TPIL LTPIL is defined as follows:

LTPIL =
∑
oi

LCE(BD(BE(oi)), bi) + λdLCE(DD(G(BE(oi)), di)) (29)

where oi is an image observation, LCE is the cross-entropy loss, di is the domain label of oi (1 for
source domain and 0 for target domain), bi is the behavior label of oi (1 for expert behavior and 0
for non-expert behavior), λd is a hyperparameter, and G is a Gradient Reversal Layer (GRL) [15] is
defined by

G(x) = x

dG(x)/dx = −λgI

where λg is a hyperparameter. GRL enables updating BE, DD, and BD simultaneously using
back-propagation. The imitation reward rt for an observation ot generated by the learner policy is
defined by the probability that BD predicts the observation to be generated by an expert policy, as
determined by rt = BD(BE(ot)).

Figure 12: Basic structure for domain-independent behavior feature extraction: BE - behavior
encoder, BD - behavior discriminator, DD - domain discriminator

21

D Implementation Details

D.1 Network Architectures

In this section, we explain the network architectures of the components of the proposed method.
Table 4 shows the layers for encoders, generators, and discriminators.

Each behavior encoder (BES or BET) consists of 6 convolutional layers and a flattened layer. The
number of output channels for each convolutional layer is (16, 16, 32, 32, 64, 64), and each channel
has 3 × 3 size. Zero padding is applied before each convolutional layer, and ReLU activation is
applied after each convolutional layer except the last layer. The flattening layer reshapes the input to
a one-dimensional vector. The shape of the input is (N,W,H, 4C), where N is the minibatch size,
W and H are the width and height of each image frame, and C is the number of channels (for RGB
images, C = 3). The shape of the behavior feature vector is (N, (W/4)× (H/4)× 64).

Each domain encoder (DES , DET) consists of 6 convolutional layers, a flattened layer, and a linear
layer. The number of output channels for each convolutional layer is (16, 16, 32, 32, 64, 64), and
each channel has 3 × 3 size. Zero padding is applied before each convolutional layer, and ReLU
activation is applied after each convolutional layer. The shape of the input is (N,W,H,C), and the
shape of the domain feature vector is (N, 8).

Each generator (GS or GT) consists of 7 transposed convolutional layers. The number of output
channels for each layer is (64, 64, 32, 32, 16, 16, 4C), and each channel has 3 × 3 size. Zero
padding is applied before each layer, and ReLU activation is applied after each layer except the last
layer. The input is a behavior feature vector and a domain feature vector. The shape of the output is
(N,W,H, 4C), which is the same as the shape of the input of behavior encoders.

Each feature discriminator (BDB , DDB , BDD, or DDD) consists of 2 fully connected layers and
a linear layer. Each fully connected layer has 32 hidden units with ReLU activation. Each image
discriminator (IDS or IDT) consists of 6 convolutional layers, a flattened layer, and a linear layer.
Each convolutional layer has 3× 3 channel size. The number of output channels for each layer is
(16, 16, 32, 32, 64, 64). Zero padding is applied before each layer, and ReLU activation is applied
after each layer except on the last layer. The discriminator D for reward estimation consists of 2
fully connected layers and a linear layer. Each fully connected layer has 100 hidden units with ReLU
activation. The input size is (N, (W/4)× (H/4)× 64).

For the SAC algorithm, each actor and the critic consist of 2 fully connected layers and a linear layer.
Each fully connected layer has 256 hidden units with ReLU activation.

D.2 Details for Training Process

Before training the model, we collected expert demonstrations OSE , and non-expert datasets OSN ,
OTN . OSE is obtained by the expert policy πE , which is trained for 1 million timesteps in the source
domain using SAC. OSN is obtained by a policy taking uniformly random actions in the source
domain, and OTN is obtained by a policy taking uniformly random actions in the target domain.
For each IL task, the number of observations (i.e., the number of timesteps) for OSE , OSN , OTN

is ndemo = 10000 except for HalfCheetah-to-locked-legs task, where ndemo = 20000 for this task.
Each observation consists of 4 RGB images, but the size of these images varies depending on the
specific IL task. For IL tasks including IP, IDP, CartPole, and Pendulum, the image size is 32x32. For
IL tasks including RE2 and RE3, the image size is 48x48. For IL tasks including HalfCheetah and
UMaze, the image size is 64x64. Note that the proposed method does not require a specific input
image size.

Our proposed method has two training phases. The first phase updates domain encoders, behavior
encoders, generators, feature discriminators, and image discriminators. The second phase updates
the discriminator D for reward estimation and the policy πθ. In the first phase, we trained the model
for nepoch_it = 50000 epochs for all IL tasks except for HalfCheetah-to-locked-legs task, where
nepoch_it = 200000 for this task. In each epoch, we sampled a minibatch of size 8 from each dataset
OSE , OSN , OTN , OTL. We set OTL as a copy of OTN . For coefficients in Eqs. (25) and (26), we set
λpred
feat = λadv

feat = 0.01, λreg
feat = 0.1, λadv

img = 1, λsim
feat = λrecon

feat = 1000, λrecon
img = λcycle

img = 100000.
We used λcycle

feat = 10 for IP-to-color, IDP-to-one, IP-to-two, and PointUMaze-to-ant, λcycle
feat = 100

22

Table 4: Layers for networks in the proposed model. Conv(nc, st, act) denotes a 2D convolutional
layer with the number of output channels (nc), stride (st), and activation (act). Conv(nc, st, act)
denotes a 2D transposed convolutional layer with the number of output channels (nc), stride (st),
and activation (act). FC(nh, act) denotes a fully connected layer with the number of units (nh) and
activation (act). Flatten denotes a function that reshapes the input to a one-dimensional vector.

BES , BET Conv(16, 1, ReLU) DES , DET Conv(16, 1, ReLU)
Conv(16, 1, ReLU) Conv(16, 1, ReLU)
Conv(32, 2, ReLU) Conv(32, 2, ReLU)
Conv(32, 1, ReLU) Conv(32, 1, ReLU)
Conv(64, 2, ReLU) Conv(64, 2, ReLU)
Conv(64, 1, Linear) Conv(64, 1, ReLU)

Flatten Flatten
FC(8, Linear)

BDB , DDB FC(32, ReLU) BDD, DDD FC(32, ReLU)
FC(32, ReLU) FC(32, ReLU)
FC(1, Linear) FC(1, Linear)

GS , GT ConvTranspose(64, 1, ReLU) IDS , IDT Conv(16, 1, ReLU)
ConvTranspose(64, 1, ReLU) Conv(16, 1, ReLU)
ConvTranspose(32, 2, ReLU) Conv(32, 2, ReLU)
ConvTranspose(32, 1, ReLU) Conv(32, 1, ReLU)
ConvTranspose(16, 2, ReLU) Conv(64, 2, ReLU)
ConvTranspose(16, 1, ReLU) Conv(64, 1, ReLU)
ConvTranspose(4C, 1, Linear) Flatten

FC(1, Linear)
D FC(100, ReLU)

FC(100, ReLU)
FC(1, Linear)

for IDP-to-color, λcycle
feat = 100 for RE3-to-tilted, and λcycle

feat = 10000 for RE2-to-tilted, RE3-to-two,
RE2-to-three, and HC-to-LF. We used λcycle

feat = 100 for all environments from DeepMind Control
Suite. We chose these coefficients so that the scale of each loss component is balanced, which was
observed to be enough to yield good performances of πθ.

As mentioned in Appendix A.4, we adjusted the values of cnorm,d and cnorm,b in Eq. (23) of the
proposed method for the experiment. For IL tasks including IP, IDP, RE2, RE3, and HalfCheetah, we
set cnorm,d = cnorm,b = 0. For IL tasks including CartPole and Pendulum, we set cnorm,d = 1 and
cnorm,b = 20. For UMaze task, we set cnorm,d = 1 and cnorm,b = 40. The ratio between cnorm,d

and cnorm,b is determined based on the input image size since the proposed method does not require
a specific input image size and produces behavior features of varying sizes depending on the input
image size.

In the second phase, we trained D for reward estimation and πθ for nepoch_pol epochs, where
nepoch_pol = 20 for IP-to-color, IDP-to-one tasks, nepoch_pol = 30 for CartPole and Pendulum tasks
in DeepMind Control Suite, and nepoch_pol = 100 for other IL tasks. Each epoch consists of 10000
timesteps. In each epoch, the following process is repeated. We sampled a trajectory from πθ, and
stored state transitions (s, a, s′) and observations o to the replay buffer B. The maximum size of B is
nbuffer = 100000, which is much smaller compared to that in off-policy RL algorithms because of
the large memory consumption when storing images in B. Then, D is updated for nupdate,D times.
We nupdate,D to be 50 times smaller than the episode length for each IL task. For example, if the
episode length is 1000, then nupdate,D = 20. For every D update, we sampled a minibatch of size
128 from each dataset OSE and OTN . For OTL, we sampled a minibatch of size 64 from B and a
minibatch of size 64 from OTN . After D update, πθ is updated for nupdate,θ times using SAC [17].
We set nupdate,θ to be equal to the episode length for each IL task. For example, if the episode length
is 1000, then nupdate,θ = 1000. For every πθ update, we sampled a minibatch of size 256 from B.

In each epoch, we evaluated πθ after updating D and πθ. We sampled neval trajectories using πθ

and computed the average return, where each return is computed based on the true reward in the
target domain. We set neval = 10 as default. For IL tasks including Reacher environments, we set

23

neval = 200 to reduce variance because each return highly depends on the goal position in Reacher
environments. We used Adam optimizer [23] for optimizing all networks. We set the learning rate
lr = 0.001 and momentum parameters β1 = 0.9 and β2 = 0.999 for encoders, generators, and
discriminators. We set lr = 0.0003, β1 = 0.9 and β2 = 0.999 for the actor and critic. For SAC, we
set the discount factor γ = 0.99, the parameter ρ = 0.995 for Polyak averaging the Q-network, and
the entropy coefficient α = 0.1.

The proposed method is implemented on TensorFlow 2.0 with CUDA 10.0, and we used two Intel
Xeon CPUs and a TITAN Xp GPU as the main computing resources. One can use a GeForce RTX
3090 GPU instead as the computing resource, which requires TensorFlow 2.5 and CUDA 11.4. Based
on 32x32 images, The GPU memory consumption is about 2.5GB for the training feature extraction
model and about 1.5GB during policy update. Note that these highly depend on the image size and
the batch size. Our D3IL is implemented based on the code provided by the authors of [6].

D.3 Dataset and Training Process for PointUMaze-to-Ant Task

For the UMaze environments, the number of observations for OSE , OSN or OTN is ndemo = 10000.
Each observation consists of 4 frames and each frame is a 64x64 RGB image. During the training, the
reward that the agent receives for each timestep is rtotal = c× (rIL + 1reach_goal × rgoal), where
rIL is the estimated reward given by D; 1reach_goal is 1 if the robot reaches the goal and 0 otherwise;
rgoal is the reward when the robot reaches the goal; and c > 0 is a scaling coefficient. In the
experiment, we chose c = 100 and rgoal = 1, and these parameters are applied to all baselines. For
the proposed method, the number of epochs, minibatch sizes, and network structures for the training
feature extraction network and image reconstruction network are the same as those in Appendix D.1.
The policy is trained for nepoch_pol = 200 and each epoch consists of 10000 timesteps, so the total
number of timesteps for policy training is 2,000,000.

Also, we trained an agent using a vanilla RL method (SAC [17]) with access to true rewards, to show
that it is difficult to obtain expert demonstrations in the target domain. For SAC, the agent receives
true rewards. For true rewards, the agent receives a penalty of -0.0001 for each timestep and receives
1000 when the robot reaches the goal, so the maximum true episodic return is 1000.

24

E RL Environment Settings and Sample Image Observations

We first describe the base RL tasks in the Gym.

Inverted pendulum (IP): The agent moves a cart to prevent the pole from falling. The episode length
is 1000. Unlike the IP task in Gym [4], an episode does not terminate midway even if the pole falls.
This makes the task much more challenging because each episode provides less useful observations
to solve the task.

Inverted double pendulum (IDP): This is a harder version of the IP task where there are two poles on
the cart.

Reacher-two (RE2): The agent moves a two-link arm with one end fixed so that the movable endpoint
of the arm reaches the target point. The episode length is 50. Unlike the Reacher task in Gym, we
narrowed the goal point candidates to 16 points, where the polar coordinate (r, φ) of the target point
can be r ∈ {0.15, 0.2}, and φ ∈ {0, π/4, π/2, 3π/4, · · · , 7π/4}.

Reacher-three (RE3): This is a harder version of the RE2 task where the agent moves a three-link
armed robot.

Note that our IL tasks are more difficult than those considered in the experiments in the baseline
algorithm references [6, 37]. Our simulation setting has an episode length of 1000 for the IP and
IDP tasks instead of 50. The episode horizon is also a component of an MDP, and the observation
space of the MDP changes as the episode horizon changes. MDP with a longer episode length can
yield more various observations which are much different from the initial one, so the observation gap
between the source domain and the target domain increases. We meant this for a bigger domain gap.

If the goal position is fixed throughout the entire learning phase in RE tasks, as designed in [6, 37],
distinguishing between expert and non-expert behavior solely depends on the arm position. However,
in our implementation, the goal position is randomly chosen from 16 positions for each episode.
This makes distinguishing expert and non-expert behavior much more challenging because the same
arm movement can be considered expert or non-expert behavior depending on the goal position.
Therefore, extracting proper behavior features is much more difficult as the feature extraction model
should catch the relationship between the arm movement and the goal position.

Figure 13: Example observations for IP, IDP, RE2, and RE3 environment

25

The following images are sample observations for IL tasks with changing a robot’s degree of freedom.

Figure 14: Example image pairs for IL tasks with changing DOF

In the HalfCheetah (HC) environment, the agent controls an animal-like 2D robot. The goal is to
move the animal-like 2D robot forward as fast as possible by controlling 6 joints. Similarly to [6], we
have a modification with immobilized feet, and this modified environment is ’HalfCheetah-Locked-
Feet (HC-LF)’. In the HC-LF environment, the robot can use only 4 joints instead of 6, where the
immobilized feet are colored in red.

Figure 15: Example observations of HalfCheetah environment

The following images are sample image observations of environments in the DeepMind Control Suite
(DMCS). We use CartPole-Balance, CartPole-SwingUp, and Pendulum environments from DMCS.
The goal for all environments is to keep the pole upright.

CartPole-Balance: The pole starts in an upright position and the agent should move the cart to keep
the pole upright while avoiding exceeding the boundaries along the x-axis.

CartPole-Swingup: The pole starts in a downward position and the agent should move the cart to
swing the pole and keep the pole in an upright position while avoiding exceeding the boundaries
along the x-axis.

Pendulum: The agent should add torque on the center to swing the pole and keep the pole upright.

Domain adaptation between these tasks is challenging because not only the embodiment between
agents in both domains are different but also the distributions of expert and non-expert demonstrations,
and initial observations for both domains are quite different.

Figure 16: Example observations of environments in DMCS

We omit sample image observations of PointUMaze and AntUMaze environments because they are
already provided in the main paper. Table 5 shows the dimensions of state space, action space, and
visual observation for RL tasks used in the Experiment section.

26

Table 5: State dimension, action dimension, and visual observation image size for RL tasks used in
the Experiments section. Each visual observation input consists of 4 RGB images, and the rightmost
column shows the size (width x height) of each image.

RL Task State
dimension

Action
dimension

Visual observation
image size

Inverted Pendulum (IP) 4 1 32x32
Inverted Double Pendulum (IDP) 11 1 32x32

Reacher-two (RE2) 11 2 48x48
Reacher-three (RE3) 14 3 48x48
HalfCheetah (HC) 17 6 64x64

HalfCheetah-Locked-Feet (HC-LF) 13 4 64x64
Cartpole 5 1 32x32

Pendulum 3 1 32x32
PointUMaze 7 2 64x64
AntUMaze 30 8 64x64

27

F Additional Experimental Results

F.1 Results on IL Tasks with Changing Visual Effect

We evaluated D3IL on tasks where the domain difference is caused by visual effects on image
observations on four IL tasks: IP and IDP, with different color combinations of the pole and cart
(IP-to-colored and IDP-to-colored tasks), and RE2 and RE3, with different camera angles (RE2-to-
tilted and RE3-to-tilted tasks). Sample image observations are provided in Figure 17. For the IP and
IDP tasks, the primary changes occur in the pixel values of the pole and the cart. Meanwhile, for
the RE2 and RE3 tasks, major changes are observed in the pixel values of the background outside of
the arms and the goal position. The average episodic return for D3IL and the baselines over 5 seeds
are shown in Fig. 18. We only included baselines that receive demonstrations as images because
changing visual effects on image observations do not affect the true state space and the action space.
As shown in Fig. 18, D3IL outperformed the baselines with large margins on IL tasks with changing
visual effects on image observations.

Figure 17: Example image pairs for IL tasks with changing visual effects

0 1 2 3 4 5
Timesteps 1e6

0

200

400

600

800

1000

M
ea

n
ep

iso
di

c
re

tu
rn

TPIL DisentanGAIL D3IL (ours) Target domain expert

0.0 0.5 1.0 1.5 2.0
Timesteps 1e5

0

200

400

600

800

1000

M
ea

n
ep

iso
di

c
re

tu
rn

(a) IP-to-color

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e6

0

2000

4000

6000

8000

M
ea

n
ep

iso
di

c
re

tu
rn

(b) IDP-to-color

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e6

12

10

8

6

4

M
ea

n
ep

iso
di

c
re

tu
rn

(c) RE2-to-tilted

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e6

12

10

8

6

4

2

M
ea

n
ep

iso
di

c
re

tu
rn

(d) RE3-to-tilted

Figure 18: The learning curves in the target domain of the IL tasks with visual effects

28

F.2 The Evaluation on the Feature Quality

Fig. 19 shows some instances of the estimated rewards from sampled observations in the RE2-to-
three task, corresponding to the time of 150,000 timesteps in Fig. 5d. The left column of Fig. 19 is
non-expert behavior and the right column is expert behavior. One side of the Reacher arm is fixed at
the center of the image. In the left column, the movable arm end moves away from the goal position
through four time-consecutive images, whereas the movable arm end moves towards the goal position
in the right column. Note that in these instances, the baseline algorithm assigns a higher reward to
the non-expert behavior, whereas the proposed method correctly assigns a higher reward to the expert
behavior. We conjecture that this wrong reward estimation of the baseline algorithms based on poor
features is the cause of the gradual performance degradation of the baseline algorithms in Fig. 5.

In Fig. 20, we checked the quality of extracted features from a conventional method, TPIL, and that of
our method. Since TPIL does not consider image reconstruction but considers only the extraction of
domain-independent behavior features. In order to generate an image from the domain-independent
behavior feature of TPIL, along with TPIL we also trained two generators (GS , GT): GS takes a
behavior feature vector as input and generates an image that resembles the images from the source
domain. GT takes a behavior feature vector as input and generates an image that resembles the
images from the target domain. This GS and GT training is done with two discriminators (IDS and
IDT), where IDS distinguishes the real and generated images in the source domain, and IDT does
so in the target domain. As shown in Fig. 20, the reconstructed image from the behavior feature of
TPIL is severely broken for the RE2-to-tilted task. Thus, it shows that the "domain-independent"
behavior feature of TPIL does not preserve all necessary information of the original observation
image. On the other hand, our method based on dual feature extraction and image reconstruction,
yields image reconstruction looking like ones. This implies that the features extracted from our
method well preserve the necessary information, and thus reconstruction is well done.

Figure 19: RE2-to-three: Instances of estimated rewards. Four time-consecutive images comprise
one observation. The estimated reward is shown in the fourth image.

29

Figure 20: Examples of real and generated images. The generated images are generated from the
feature vectors obtained by conventional TPIL and our proposed method. Here we used IP-to-two
and RE2-to-three task, where each task is explained in Sec. 6.1.

30

F.3 Experimental Results on Simpler Tasks

In the main result subsection of Sec. 6, we mentioned that the baseline algorithms perform well in
the case of easier settings. As a preliminary experiment, we verify the performance of the proposed
method and the baseline IL algorithms on simpler IL tasks, which are easier variants of the IL tasks
shown in Sections 6.2 and 6.3. We first describe the base RL tasks.

Inverted pendulum - short (IPshort): This is the same task as the IP task, but the episode length is 50.

Inverted double pendulum - short (IDPshort): This is the same task as the IDP task, but the episode
length is 50.

Reacher-two - one goal (RE2onegoal): This is the same task as the RE2 task, but the goal point is
fixed to (x, y) = (1.0, 1.0) for the entire training.

Reacher-three - one goal (RE3onegoal): This is the same task as the RE3 task, but the goal point is
fixed to (x, y) = (1.0, 1.0) for the entire training.

Sample visual observations for each IL task are provided in Fig. 21. We followed the training process
as described in [6]. For each IL task, we collected OSE , OSN and OTN of size 10000. The learner
policy πθ is trained for 20 epochs. Each epoch has 1000 timesteps, so the total number of timesteps is
20000. The size of the replay buffer is 10000. We used TPIL [37] and DisentanGAIL [6] as baseline
algorithms. For each IL task, we trained the learner policy using our proposed method and baseline
algorithms over 5 seeds. For evaluation, we generated 5 trajectories from πθ for every epoch and
computed the average return, where the return was computed based on the true reward in the target
domain.

Fig. 22 shows the average episodic return. As shown in Fig. 22, the baseline algorithms perform
well in these easy IL tasks. The IL tasks shown in Fig. 21 are much easier to solve than the IL tasks
in Sections 6.2 and 6.3 because the pole needs to be straight up for only 50 timesteps instead of
1000 timesteps in IPshort and IDPshort, and the goal position is fixed to a single point instead of
randomly sampled from 16 candidates in RE2ongoal and RE3onegoal. The baselines can achieve
good performance on these easy IL tasks. However, as shown in Fig. 5 of the main paper and Fig. 18
in Appendix 6.2, the baseline algorithm yields poor performance on hard IL tasks and the proposed
method achieves superior performance on hard IL tasks to the baselines due to the high-quality feature
extraction by the dual feature extraction and image reconstruction.

31

Figure 21: Example observation pairs for each IL task. For each pair of images, the left-hand side is
the image in the source domain, and the right-hand side is the image in the target domain.

0 1 2 3 4 5
Timesteps 1e6

0

200

400

600

800

1000

M
ea

n
ep

iso
di

c
re

tu
rn

TPIL DisentanGAIL D3IL (ours) Target domain expert

0.0 0.5 1.0 1.5 2.0
Timesteps 1e4

15

20

25

30

35

40

45

50

M
ea

n
ep

iso
di

c
re

tu
rn

(a) IPshort-to-color

0.0 0.5 1.0 1.5 2.0
Timesteps 1e4

200

250

300

350

400

450

M
ea

n
ep

iso
di

c
re

tu
rn

(b) IDPshort-to-color

0.0 0.5 1.0 1.5 2.0
Timesteps 1e4

10

8

6

4

2

M
ea

n
ep

iso
di

c
re

tu
rn

(c) RE2onegoal-to-tilted

0.0 0.5 1.0 1.5 2.0
Timesteps 1e4

8

7

6

5

4

3

2

1

M
ea

n
ep

iso
di

c
re

tu
rn

(d) RE3onegoal-to-tilted

0.0 0.5 1.0 1.5 2.0
Timesteps 1e4

15

20

25

30

35

40

45

50

M
ea

n
ep

iso
di

c
re

tu
rn

(e) IDPshort-to-one

0.0 0.5 1.0 1.5 2.0
Timesteps 1e4

200

250

300

350

400

450

M
ea

n
ep

iso
di

c
re

tu
rn

(f) IPshort-to-two

0.0 0.5 1.0 1.5 2.0
Timesteps 1e4

8

6

4

2

M
ea

n
ep

iso
di

c
re

tu
rn

(g) RE3onegoal-to-two

0.0 0.5 1.0 1.5 2.0
Timesteps 1e4

8

7

6

5

4

3

2

1

M
ea

n
ep

iso
di

c
re

tu
rn

(h) RE2onegoal-to-three

Figure 22: The learning curves for the simpler IL tasks in the target domain

32

F.4 Experiments Results with Single Expert Trajectory during Policy Update

In this section, we investigated whether D3IL can successfully train the target learner when a single
trajectory of expert demonstration is available during policy training. For results in Section 6,
multiple trajectories of expert demonstrations and non-expert data are provided for D3IL, TPIL,
and DisentanGAIL, where the details are provided in Appendix D. Since GWIL calculates the
Gromov-Wasserstein distance between expert and learner policies, GWIL can leverage only a single
expert trajectory. This is also true for the implementation with the code provided by the authors
of [9]. In contrast, the size of the replay buffer nbuffer of GWIL equals the number of training
timesteps, which can vary from 200,000 to 2,000,000 depending on the IL task. On the other hand,
nbuffer is fixed to 100,000 for D3IL and baselines that utilize image observations. This is due to
the huge memory consumption for storing image observations. In this experiment, we evaluated the
performance of D3IL under the condition of a single trajectory of expert demonstration during policy
training. To provide one trajectory of SE, and similarly, we supplied SN and TN with the same size
of SE. In Reacher environments, we collected one trajectory per goal position for each SE, SN ,
and TN , respectively. Fig. 23 shows the average return of D3IL and baselines across 5 seeds.

0 1 2 3 4 5
Timesteps 1e6

0

200

400

600

800

1000

M
ea

n
ep

iso
di

c
re

tu
rn

TPIL DisentanGAIL GWIL D3IL (ours) Target domain expert

0.0 0.5 1.0 1.5 2.0
Timesteps 1e5

0

200

400

600

800

1000

M
ea

n
ep

iso
di

c
re

tu
rn

(a) IDP-to-one

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e6

0

2000

4000

6000

8000

M
ea

n
ep

iso
di

c
re

tu
rn

(b) IP-to-two

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e6

12

10

8

6

4

2

M
ea

n
ep

iso
di

c
re

tu
rn

(c) RE3-to-two

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e6

12

10

8

6

4

2

M
ea

n
ep

iso
di

c
re

tu
rn

(d) RE2-to-three

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e6

0

200

400

600

800

1000

M
ea

n
ep

iso
di

c
re

tu
rn

(e) HalfCheetah-to-LockedLegs

0 1 2 3
Timesteps 1e5

0

200

400

600

800
M

ea
n

ep
iso

di
c

re
tu

rn

(f) CartPoleBalance-to-Pendulum

0 1 2 3
Timesteps 1e5

0

200

400

600

800

M
ea

n
ep

iso
di

c
re

tu
rn

(g) CartPoleSwingup-to-Pendulum

0 1 2 3
Timesteps 1e5

200

0

200

400

600

800

1000

M
ea

n
ep

iso
di

c
re

tu
rn

(h) Pendulum-to-CartPoleBalance

0 1 2 3
Timesteps 1e5

0

200

400

600

800

M
ea

n
ep

iso
di

c
re

tu
rn

(i) Pendulum-to-CartPoleSwingup

Figure 23: The learning curves for the considered IL tasks when using single expert trajectory

33

F.5 Domain Transfer between CartPole-Balance and CartPole-SwingUp

In Section 6.5, we present the results of four IL tasks that use three different environments in DMCS:
CartPole-Balance, CartPole-SwingUp, and Pendulum. In these tasks, the robot’s embodiment and
dynamics of both domains are the same but their task configuration and initial state distribution of
both domains are different. Fig. 24 shows the results of the other two IL tasks where both domains use
the CartPole environment. We evaluated D3IL and the baselines on IL tasks for 5 seeds. As illustrated
in Fig. 24, all methods failed to solve the CartPole-SwingUp task using demonstrations from the
CartPole-Balance task. In contrast, our methods were able to successfully solve the CartPole-Balance
task using demonstrations from the CartPole-SwingUp task. This difference in performance can be
attributed to the variation in expert demonstrations between the two environments. Demonstrations
of the CartPole-SwingUp task typically show images in which the pole is upright, with only a small
number of images where the pole is initially pointing downwards and begins to swing up. As a
result, an agent for the CartPole-Balance task can learn that expert behavior involves keeping the
pole upright and preventing it from falling. In contrast, demonstrations of the CartPole-Balance task
typically only show images in which the pole is upright, which means that an agent designed for the
CartPole-SwingUp task may not have access to information on expert behavior for swinging up the
pole from a downward-pointing position. This problem can be mitigated if non-expert data contains
more diverse images from the CartPole-SwingUp task. Our method can also be enhanced by utilizing
images generated from the target learner to train our feature extraction model.

0 1 2 3 4 5
Timesteps 1e6

0

200

400

600

800

1000

M
ea

n
ep

iso
di

c
re

tu
rn

TPIL DisentanGAIL GWIL D3IL (ours) Target domain expert

0 1 2 3
Timesteps 1e5

0

200

400

600

800

M
ea

n
ep

iso
di

c
re

tu
rn

(a) CartPole: Balance-to-SwingUp

0 1 2 3
Timesteps 1e5

0

250

500

750

1000

M
ea

n
ep

iso
di

c
re

tu
rn

(b) CartPole: SwingUp-to-Balance

Figure 24: The learning curves for the considered IL tasks for CartPole-Pendulum and CartPole-
SwingUp environments

34

F.6 Results on Acrobot Environment

In this section, we evaluated D3IL on IL tasks where the target domain is the Acrobot environment
in DMCS. In Acrobot, the agent should apply torque to the joint located between a two-link pole to
make the pole stand upright. The dynamics of the Acrobot environment are much different from those
of other environments like CartPole and Pendulum. Although the state and action dimensions of the
Acrobot environment are low, achieving high scores in this task is non-trivial. In our implementation,
the policy using vanilla RL with SAC, with 10 million timesteps, 256 hidden units for actor and critic
networks, and a batch size of 256, obtained the average return of 45.49 across 5 seeds. Figure 25
shows sample observations for the Acrobot environment, where each observation consists of four
32x32 RGB images with corresponding consecutive timesteps.

We evaluated D3IL and baselines on two IL tasks, where the source domain is either CartPole-
SwingUp or Pendulum, and the target domain is Acrobot. CartPole-SwingUp and Pendulum are
known to be solvable by SAC. We examined whether D3IL can transfer expert knowledge from
simpler tasks to more challenging ones. Fig. 26 shows the average episodic return of D3IL and the
baselines across 5 seeds. The results demonstrate that D3IL outperforms other baselines, and achieves
the average return of vanilla RL using SAC with 10 million timesteps in much smaller timesteps. Our
method has the potential to improve if additional information on Acrobot’s dynamics is provided to
the model. This can be accomplished by obtaining diverse non-expert data, such as observations from
the policy with medium quality or observations from the target learner policy, to train the feature
extraction model.

Figure 25: Sample observations on Acrobot task.

0.0 0.5 1.0 1.5 2.0
Timesteps 1e6

0

20

40

60

80

M
ea

n
ep

iso
di

c
re

tu
rn

TPIL DisentanGAIL GWIL D3IL (ours) Target domain SAC (10 million timesteps)

0.0 0.5 1.0 1.5 2.0
Timesteps 1e6

0

20

40

60

80

M
ea

n
ep

iso
di

c
re

tu
rn

(a) CartPoleSwingUp-to-Acrobot

0.0 0.5 1.0 1.5 2.0
Timesteps 1e6

0

20

40

60

80

100

M
ea

n
ep

iso
di

c
re

tu
rn

(b) Pendulum-to-Acrobot

Figure 26: The learning curves for the considered IL tasks with Acrobot as the target domain task

35

F.7 Experiment on Walker, Cheetah, and Hopper Task

To assess the effectiveness of our proposed method in more challenging scenarios, we tested our
method on IL tasks with domain shifts caused by variations in robot morphology. We employed
Walker, Cheetah, and Hopper environments in the DeepMind Control Suite. In these environments,
the objective is to propel a 2D robot forward as fast as possible by manipulating its joints. The
difficulty arises from the significant difference in the robot morphology and dynamics between the
source and target domains. Sample visual observations for each IL task are provided in Fig. 27.

For all environments, we set each episode length to be 200. The expert policy πE is trained for 3
million timesteps in the source domain using SAC. The number of observations is ndemo = 1000 (5
trajectories and each trajectory has a length of 200). Each observation consists of 4 frames and each
frame is a 64x64 RGB image.

We evaluated our proposed method and baseline algorithm in three tasks: Walker-to-Cheetah, Walker-
to-Hopper, and Cheetah-to-Hopper (denoted as ‘A-to-B’ where ‘A’ is the source domain and ‘B’ is
the target domain). A camera generates image observations by observing the robot’s movement.
Rewards were assigned to the agent based on the robot’s horizontal velocity, with higher velocity
leading to greater rewards. Fig. 28 depicts the learning curve of our method and baselines on three
tasks, where each curve shows the average horizontal velocity of the robot in the target domain over
three runs. These results demonstrate the superiority of our method over the baselines, which leads
us to anticipate that our proposed method can extend to more complicated domains.

(a) Walker (b) Cheetah (c) Hopper

Figure 27: Sample observations for Walker, Cheetah, and Hopper task.

0.0 0.5 1.0 1.5 2.0
Timesteps 1e4

0

2

4

6

8

10

12

14

16

M
ea

n
ep

iso
di

c
re

tu
rn

TPIL DisentanGAIL GWIL D3IL (ours)

0 1 2 3 4 5
Timesteps 1e5

0

1

2

3

Av
er

ag
e

Ve
lo

cit
y

al
on

g
x-

ax
is

(a) Walker-to-Cheetah

0 1 2 3 4 5
Timesteps 1e5

0.25

0.00

0.25

0.50

0.75

1.00

1.25

Av
er

ag
e

Ve
lo

cit
y

al
on

g
x-

ax
is

(b) Walker-to-Hopper

0 1 2 3 4 5
Timesteps 1e5

0.2

0.0

0.2

Av
er

ag
e

Ve
lo

cit
y

al
on

g
x-

ax
is

(c) Cheetah-to-Hopper

Figure 28: Results on Walker, Cheetah, and Hopper task

36

F.8 Visualizing Sample Trajectories for Trained Learner

In this section, we provide visualized sample trajectories of demonstration sequences in the source
domain and sequences generated by the learned policy trained in the target domain for qualitative
analysis on two tasks: RE2-to-three and PointUMaze-to-Ant. Fig. 29 shows sample trajectories from
the source domain expert and target domain learner on the RE2-to-three task. The top row of Fig. 29
shows a sample trajectory of image observations sampled by πE in the source domain using SAC
for 1 million timesteps. The bottom row of Fig. 29 shows a sample trajectory of image observations
sampled by πθ trained using D3IL for 1 million timesteps in the target domain.

Figure 29: (Top) An example trajectory of image observations generated by πE in the source domain.
(Bottom) An example trajectory of image observations generated by πθ trained using D3IL for 1
million timesteps in the target domain.

In Section 6.6, we tested the performance of D3IL on the PointUMaze-to-Ant task. Fig. 30 shows
sample trajectories from the source domain expert and target domain learner. The top row of Fig. 30
shows a sample trajectory of image observations sampled by πE in the source domain using SAC for
0.1 million timesteps. The bottom row of Fig. 30 shows a sample trajectory of image observations
sampled by πθ trained using D3IL for 2 million timesteps in the target domain. The episode lengths
for the trained learner vary when running multiple evaluation trajectories, most of which have episode
lengths in the range of 60 to 80. This implies that D3IL can train the agent in the target domain with
its dynamics by observing expert demonstrations in the source domain with a different embodiment.

Figure 30: (Top) An example trajectory of image observations generated by πE in the source domain.
In this figure, the interval between two consecutive image frames is 1 timestep, and the total episode
length is 18. (Bottom) An example trajectory of image observations generated by πθ trained using
D3IL for 2 million timesteps in the target domain. In this figure, the interval between two consecutive
image frames is 4 timesteps, and the total trajectory length is 69.

37

G Further Discussions

Explanation of the performance gap with GWIL GWIL is a state-based method, but having
access to expert states does not necessarily ensure superior performance. In the original GWIL
paper [9], the authors provided simulation results on Pendulum-to-CartpoleSwingUp (Fig. 7 in [9]),
showing GWIL achieves 600 points. However, Fig. 7 in [9] assumes that the target-domain learner
receives the target-domain sparse reward directly in addition to the IL reward. So, the GWIL result
in our paper can be different from that in the GWIL paper. Despite our efforts to tune GWIL’s
hyperparameters, GWIL did not show high performance only with the IL reward without direct
target-domain sparse reward. Our approach consistently shows better performance in almost all tasks
presented in this paper. As the GWIL paper indicates, GWIL can recover the optimal policy only up
to isometric transformations. Given that expert demonstrations only cover a fraction of the optimal
policy’s scope, recovering the exact optimal policy becomes more difficult. Additionally, GWIL uses
Euclidean distance as a metric within each space to compute Gromov-Wasserstein distance, which
confines the method to scenarios limited to rigid transformations between domains.

Broader Impacts The proposed learning model does not raise significant ethical concerns. However,
as an IL algorithm, it should be applied to train models that learn tasks beneficial to society.

38

	The Loss Functions for the Proposed Model
	Dual Feature Extraction
	Image Reconstruction and Associated Consistency Check
	Cycle-Consistency Check
	Other Losses
	Final Loss
	Reward Generation and Learner Policy Update

	Algorithm Pseudo Codes
	Third-Person Imitation Learning (TPIL)
	Implementation Details
	Network Architectures
	Details for Training Process
	Dataset and Training Process for PointUMaze-to-Ant Task

	RL Environment Settings and Sample Image Observations
	Additional Experimental Results
	Results on IL Tasks with Changing Visual Effect
	The Evaluation on the Feature Quality
	Experimental Results on Simpler Tasks
	Experiments Results with Single Expert Trajectory during Policy Update
	Domain Transfer between CartPole-Balance and CartPole-SwingUp
	Results on Acrobot Environment
	Experiment on Walker, Cheetah, and Hopper Task
	Visualizing Sample Trajectories for Trained Learner

	Further Discussions

