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Abstract

Adapting models deployed to test distributions can mitigate the performance degra-
dation caused by distribution shifts. However, privacy concerns may render model
parameters inaccessible. One promising approach involves utilizing zeroth-order
optimization (ZOO) to train a data adaptor to adapt the test data to fit the deployed
models. Nevertheless, the data adaptor trained with ZOO typically brings restricted
improvements due to the potential corruption of data features caused by the data
adaptor. To address this issue, we revisit ZOO in the context of test-time data
adaptation. We find that the issue directly stems from the unreliable estimation
of the gradients used to optimize the data adaptor, which is inherently due to the
unreliable nature of the pseudo-labels assigned to the test data. Based on this
observation, we propose pseudo-label-robust data adaptation (SODA) to improve
the performance of data adaptation. Specifically, SODA leverages high-confidence
predicted labels as reliable labels to optimize the data adaptor with ZOO for la-
bel prediction. For data with low-confidence predictions, SODA encourages the
adaptor to preserve data information to mitigate data corruption. Empirical results
indicate that SODA can significantly enhance the performance of deployed models
in the presence of distribution shifts without requiring access to model parameters.

1 Introduction

Deep neural networks have emerged as a dominant tool in solving artificial intelligence problems due
to their exceptional performance across various tasks [19, 20, 42], thus being deployed to various
environments. However, in practice, these models typically suffer performance degradation due to
distribution discrepancies between training and test data [1, 13, 47, 35]. To mitigate this issue, Test-
Time Adaptation (TTA) is proposed as a promising solution, where unlabeled test data are leveraged
to modify the parameters of deployed models to alleviate performance degradation [7, 21, 39].

In practice, the parameters of deployed models may be unmodifiable and inaccessible in many appli-
cations due to intellectual property protection, misuse prevention, or privacy concerns in healthcare
and finance [22, 46]. The difficulty in modifying model parameters has hindered previous efforts
aimed at adapting deployed models to the test distribution [15, 23, 29]. It is shown that training a
data adaptor to modify test data offers an alternative solution to mitigate the performance degradation
caused by distribution discrepancy [18, 37]. However, the difficulty in accessing model parameters
makes gradient computation a challenging task, hindering these data adaptation methods.

One straightforward approach involves utilizing zeroth-order optimization (ZOO) [25] to train the
data adaptor to adapt test data to fit deployed models. In particular, ZOO can be employed to estimate
gradients for the optimization of data adaptors without modifying and accessing the parameters of
deployed models. Therefore, test-time data adaptation with ZOO makes it possible to improve the
performance of deployed models in many practical scenarios. However, introducing data adaptors
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Figure 1: Demonstration of corrupted data and adapted data. The left part shows examples of the
original test data from CIFAR-10-C, the corrupted data generated by the data adaptor trained with
unreliable pseudo-labels, and the adapted data generated by the data adaptor in SODA. The right part
shows the corresponding accuracy of test data, corrupted data, and adapted data on CIFAR-10/100-C.

trained with ZOO brings limited improvement. To endow data adaptors with reliability in improving
model performance, we revisit ZOO in the context of test-time data adaptation. Training of the
data adaptor depends heavily on the predicted labels. Thus, unreliable predicted labels will lead to
unreliable gradient estimations in ZOO, which makes data features corrupted rather than adapted to
deployed models. This is consistent with our observations as depicted in Figure 1.

Built upon the observation, we propose pseudo-label-robust data adaptation (SODA) to enhance
deployed models with inaccessible parameters. SODA robustifies the training of data adaptors by
splitting the test dataset into two subsets. One subset contains data with high-confidence predictions
and is regarded as a reliable dataset. The other contains the remaining data points, considered to
be an unreliable subset. For data in the reliable dataset, SODA trains the data adaptor using ZOO
in a supervised manner. In the meantime, SODA encourages the data adaptor to preserve input
information in an unsupervised manner for data corruption mitigation over unreliable data. To
verify the efficacy of SODA, we evaluate it on three widely used benchmark datasets under various
settings. Our experimental results demonstrate that SODA can effectively mitigate the performance
degradation of deployed models in the presence of distribution shifts.

To sum up, our main contributions are presented as follows:

• To enhance deployed models with unmodifiable and inaccessible parameters, we propose to
shift from model adaptation to data adaptation, where zeroth-order optimization is employed
to estimate gradients for the training of the data adaptor. Unfortunately, test-time data
adaptation causes corruption of data features, leading to limited performance improvements.

• To exploit the potential of test-time data adaptation, we find that the limited improvement
issue stems from the unreliable nature of the predicted labels used in ZOO. Thus, we propose
SODA to robustify the training of test-time data adaptation, where the data adaptor is trained
to preserve input information for data with unreliable predictions.

• We verify the effectiveness of SODA under various settings. Our experimental results
demonstrate that SODA can directly enhance the deployed model under distribution shifts
without accessing and modifying the model parameters.

2 Related Work

Test-time adaptation. Test-time adaptation is a machine learning technique that addresses the
distribution shift problem using only unlabeled test data before making predictions. To mitigate the
distribution discrepancy, most previous works adapt the pre-trained model to test data by modifying
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the full or part of the model parameters. Some advanced works [7, 21] adapt the feature extractor
to obtain more efficient feature representations of test data, while others [16, 17, 45] modify or
replace the last linear classification layer to improve prediction over the extracted features. Batch
normalization calibration [23, 34, 43, 49] is also exploited to adjust the statistics and affine parameters
in batch normalization layers. Unlike previous works, our work focuses on situations where model
parameters are unmodifiable and adapts test data to the pre-trained model as an alternative solution.

White-box input adaptation. Recently, several works have put effort into input-level optimization
in test-time adaptation by changing the input data or features. Auxiliary auto-encoders [12, 18],
amplitude features and Fourier-style calibration [50], label-preserving features along with a generative
model [31], and generative diffusion model [10] are utilized to achieve input-level adaptation. These
works require either modification of the model training process or gradients from the deployed model
at test time. In contrast, our work focuses on test-time data adaptation without accessing the training
process and gradients of the deployed model, making it more practical and broadly applicable.

Domain adaptation of black-box predictors. Domain Adaptation of Black-Box Predictors (DABP)
is a subcategory of unsupervised domain adaptation [9, 30] that solves a more restricted and practical
application setting. Under this setting, the pre-trained model is treated as a black box, and only
the model’s output is available during adaptation. Few works [22, 32, 46] have proposed solutions
to this challenge using knowledge distillation to transfer knowledge from the black-box model to
target models. In this work, we address the black-box setting in the context of test-time adaptation
and propose to perform data adaptation without knowledge transfer. Besides, while previous DABP
works require training on the entire unlabeled test dataset, our proposed method can also deal with
online black-box settings where the test data arrive sequentially.

Zeroth-order optimization. Zeroth-order optimization (ZOO) [25] is a family of optimization
methods that do not require gradient information to search for the optimal solution. Instead, it
explores the searching space using various techniques [6, 24] to estimate the optimization direction.
Although it can be less efficient than first-order optimization methods, ZOO methods can be helpful
in scenarios where gradient information is unavailable or expensive to compute. For instance,
recent studies have applied ZOO to perform adversarial attacks to black-box neural networks [48],
hyperparameter optimization in federated learning without gradient descent [51], and transfer learning
on black-box models [40]. In this work, we propose to leverage ZOO for test-time data adaptation on
deployed models with inaccessible gradient information.

3 Methodology

We mainly focus on the C-way image classification task with a distribution shift between the training
and test data, following previous works [26, 39, 43]. Given a deployed model M with inaccessible
parameters, our purpose is to improve its prediction accuracy on unlabeled test data X = {x1, ...,xn}.
Since the parameters and inner structures of M are unknown, only the output prediction probabilities
are available from M during the entire adaptation process. Namely, the proposed method pseudo-
label-robust data adaptation (SODA) aims to adapt X to M without requiring access to the parameters
of M. The overall framework of SODA is shown in Figure 2.

3.1 Preliminary

Before elaborating on our proposed framework, we introduce zeroth-order optimization (ZOO). ZOO
is a gradient-free alternative of first-order optimization (FOO), e.g., SGD, SCD, and Adam. Most
ZOO methods follow the structure of FOO and consist of three fundamental steps [25]: gradient
estimation, descent direction computation, and point updating. They utilize function-value-based
gradient estimations to approximate the full or stochastic gradients computed in FOO.

One commonly used ZOO gradient estimation strategy is multi-point estimation [6, 24]. Given a
continuously differentiable objective function f(θ) on a d-dimensional variable θ ∈ Rd, multi-point
estimation computes directional derivative approximation as follows:

∇̂θf(θ) :=
1

µq

q∑
i=1

[
(f(θ + µui)− f(θ))ui

]
, (1)
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Figure 2: The overall framework of SODA. (a) Before adaptation, SODA first performs reliable
pseudo-label selection according to prediction confidence. (b) During adaptation, the data adaptor
with parameter θ is trained over the test data with reliable pseudo-labels using cross-entropy loss
and those with unreliable pseudo-labels using mutual information maximization. The gradient is
estimated using (c) zeroth-order optimization.

where u1, ...,uq are q random direction vectors typically drawn from the standard multivariate normal
distribution N (0, I), and µ is the smoothing parameter. On a mini-batch of data points x1, ...,xl, the
estimated gradient δ̂ is the average of the multi-point estimations to all data points x1, ...,xl:

δ̂ =
1

l

l∑
i=1

∇̂θf(θ;xi). (2)

Various strategies are adopted to compute the descent direction. For zeroth-order stochastic gradient
descent (ZO-SGD) utilized in our work, the descent direction is set as the current gradient estimation
δ̂. The point updating rule is the same as in traditional SGD: with learning rate η,

θ = θ − ηδ̂. (3)

3.2 Zeroth-Order Optimization in Test-Time Data Adaptation

Let G with parameters θ be the data adaptor for test-time data adaptation. For each test data point xi

(i = 1, ..., n), G transforms it to form the adapted data xθ
i for inference as follows:

xθ
i = G(xi;θ). (4)

Ideally, the data adaptor G should be trained by minimizing the KL divergence between the predicted
probabilities of the adapted data and the true labels of test data. Typically, the training process requires
back-propagating the gradients from the deployed model to the data adaptor. A challenge arises as
gradient computation is infeasible for the deployed model M with inaccessible parameters. In this
regard, ZOO provides an effective approach to estimating gradients, as discussed in the previous
section. Considering the parameters θ of the data adaptor G as the variables to be optimized, utilizing
ZOO in test-time data adaptation is to replace the objective function f(θ) with the training objective
function used to train the data adaptor G. Assuming that the true one-hot label yi of a test data point
xi is given, and replacing the function f(θ) in Eq. (1) with KL divergence loss L(·, ·) := KL(·∥·),
the directional derivative approximation w.r.t. L(·, ·) and (xi,yi) is

∇̂θLi =
1

µq

q∑
j=1

[(
L(yi,M ◦G(xi;θ + µuj))− L(yi,M ◦G(xi;θ))

)
uj

]
. (5)
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In test-time adaptation, the true labels of test data are obviously unknown. A common strategy is to
use the predicted pseudo-label ŷi as the substitute of the true label yi.

However, the pseudo-labels are unreliable due to the inaccurate model prediction under distribution
shifts, causing the corrupted data features depicted in Figure 1. Let σi denote the disturbance of
pseudo-label ŷi, i.e., ŷi = σi + yi, and p̂θ

i = M ◦G(xi;θ) denote the predicted probability of the
adapted data point xθ

i = G(xi;θ), the KL divergence loss at test point xi becomes:

Li = −H(yi + σi) + Lce(yi, p̂
θ
i )− σi log p̂

θ
i , (6)

where Lce(·, ·) is the cross-entropy loss. Then, replacing yi with ŷi in Eq. (5), the directional
derivative approximation becomes

∇̂θĽi = ∇̂θLce +
σi

µq

q∑
j=1

log
p̂θ
i

p̂
θ+µuj

i

uj , (7)

where ∇̂θLce =
1
µq

∑q
j=1

[(
Lce(yi, p̂

θ+µuj

i )− Lce(yi, p̂
θ
i )
)
uj

]
is the ideal directional derivative

approximation. The derivations of Eq. (6) and Eq. (7) are deferred to Appendix A. In Eq. (7), the last
term is the disturbing term directly introduced by σi, causing the difference between ∇̂θLce and the
unreliable directional derivative approximation ∇̂θĽi. ∇̂θĽi further leads to unreliable estimated
gradients in Eq. (2), which hinders the optimization of θ and the training of G.

3.3 Pseudo-Label-Robust Training

A direct strategy to alleviate the impact of the disturbing term in Eq. (7) is to select pseudo-labels
with small σi. The selected pseudo-labels form reliable pseudo-label set Ŷr to train the data adaptor
in a supervised manner. In particular, two basic criteria for reliable pseudo-label selection are adopted
in SODA: 1) the prediction confidence should be higher than a threshold τ , indicating the selected
pseudo-labels have small disturbances; 2) the number of selected reliable pseudo-labels for each class
should be less than (1− ρ)n/C to maintain the balance among classes, where ρ is the noise ratio, and
C is the number of classes. The test data points corresponding to the selected reliable pseudo-labels
are considered as reliable data set Xr, which is trained over with cross-entropy loss Lce and Ŷr.

To mitigate the data corruption over the remaining test data points Xu with unreliable pseudo-labels,
SODA trains over them in an unsupervised manner. Following previous works [21, 22], mutual
information maximization [4, 36, 41] is a widely-used unsupervised loss that can encourage both
global diversity and local certainty of model predictions by maximizing the mutual information
between the input data sample and the predicted probabilities. Thus, it is adopted to preserve input
information in Xu as shown in Eq. (8), where xθ

i = G(xi;θ) and p̂i = M ◦G(xi;θ).

Lim(X
θ
u) = Exθ

i ∈Xθ
u
[

C∑
k=1

p̂ik log p̂ik]−
C∑

k=1

Exθ
i ∈Xθ

u
p̂ik logExθ

i ∈Xθ
u
p̂ik. (8)

3.4 Theoretical Analysis

To theoretically show the effectiveness of the proposed pseudo-label-robust training strategy, we
analyze the expected gradient estimation error [5, 24] in the training of test-time data adaptor with
zeroth-order optimization. For simplicity, we consider the special case where the estimated gradient
equals directional derivative approximation with mini-batch size equal to 1. The expected gradient
estimation error RX between the estimated gradient ∇̂θĽi and the true gradient ∇θLi w.r.t. the
whole test dataset X is:

RX = EX

[
E[∥ ∇̂θĽi −∇θLi ∥2]

]
. (9)

Denoting h(xi) = −σi log p̂
θ
i in Eq. (6), the gradient of the KL divergence loss is∇θLi = ∇θLce+

∇θh. Accordingly, the estimated gradient of the KL divergence loss is ∇̂θĽi = ∇̂θLce + ∇̂θh.
Then, before applying pseudo-label-robust data adaptation, the upper bound of expected gradient
estimation error is:

RX ≤ EX

[
E[∥ ∇̂θĽce −∇θLce ∥2] + E[∥ ∇̂θh−∇θh ∥2]

]
. (10)

5



Algorithm 1 SODA framework

Input: test data X, data adaptor G with parameters θ, deployed model M, adaptation epochs N ,
learning rate η, α, q
STEP 1: Before adaptation:
Compute p̂ = M(X)

Select Ŷr, Xr and Xu as described in Section 3.3
STEP 2: During adaptation:
for 1 to N do

for mini-batch Xb = {xb1 ,xb2 , ...,xbl
} in X do

Compute Ŷb = {ŷb1
, ŷb2

, ..., ŷbl
}, where ŷbi

= M(xbi
)

Select Ŷrb = Ŷr ∩ Ŷb = {ŷb1
, ŷb2

, ..., ŷblr
} and their corresponding data Xrb =

{xr1 ,xr2 , ...,xrlr
}, the remaining data as Xub

= {xu1
,xu2

, ...,xulu
} {Xrb ∪Xub

= Xb}
Compute xθ

ri and xθ
ui

using Eq. (5) for each data point in Xrb and Xub

Compute Lce for Xθ
rb

= {xθ
r1 ,x

θ
r2 , ...,x

θ
rlr
} using Ŷrb

Compute Lim for Xθ
ub

= {xθ
u1
,xθ

u2
, ...,xθ

ulu
} using Eq. (8)

Compute estimated gradients δ̂ce and δ̂im w.r.t. Lce and Lim using Eq. (5) and Eq. (2)
θ ← θ − η(δ̂im + αδ̂ce)

end for
end for

In pseudo-label-robust training strategy, the test dataset X is separated into reliable set Xr learned by
cross-entropy loss with pseudo-labels, and unreliable set Xu learned by mutual information loss, the
expected gradient estimation error w.r.t. X becomes:

R̃X = EXr

[
E[∥ ∇̂θLce −∇θLce + ∇̂θh−∇θh ∥2]

]
+ EXu

[
E[∥ ∇̂θLim −∇θLim ∥2]

]
. (11)

According to the previous study [3], minimizing the cross entropy loss Lce(yi, p̂
θ
i ) is equivalent to

maximizing the mutual information Lim. Then, the upper bound of the expected gradient estimation
error w.r.t. X is:

R̃X ≤ EXr

[
E[∥ ∇̂θLce−∇θLce ∥2]+E[∥ ∇̂θh−∇θh ∥2]

]
+EXu

[
E[∥ ∇̂θLce−∇θLce ∥2]

]
. (12)

Comparing Eq. (10) and Eq. (12), the upper bound of the expected gradient estimation error is
tightened after applying the pseudo-label-robust training strategy, justifying that the proposed pseudo-
label-robust training strategy can alleviate the disturbance caused by the unreliable pseudo-labels in
the gradient estimation in zeroth-order optimization of the test-time data adaptor.

3.5 SODA Framework

Up to this point, we have discussed zeroth-order optimization in test-time data adaptation and our
proposed pseudo-label-robust training strategy. The overall training objective is shown in Eq. (13),

Lall(X, Ŷr) = −Lim(Xu) + αLce(Xr, Ŷr), (13)

where α is the balancing hyperparameter between mutual information maximization loss Lim and
cross entropy loss Lce. The training algorithm of SODA is summarized in Algorithm 1.

4 Experiments

4.1 Experimental Setup

Datasets. We first evaluate our proposed framework SODA on two widely used out-of-distribution
benchmarks, namely CIFAR-10-C and CIFAR-100-C [14], each containing 10,000 CIFAR-10/100
test images corrupted by 19 kinds of corruptions with 5 severity levels. We further evaluate SODA
on a large scale dataset ImageNet-C [14] with 50,000 ImageNet validation images corrupted by
the same corruptions as CIFAR10/100-C. We conduct our experiments on the highest level of each
corruption and report the averaged accuracies over 19 corruptions.
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Table 1: Average accuracies (%) on CIFAR-10-C (C10-C), CIFAR-100-C(C100-C) and ImageNet-C
(IN-C). FO Grad. means the requirement of first-order gradient from the target model or deployed
model. Model Mod. means the requirement of modifying the parameters of deployed models. Distill.
indicates methods using knowledge distillation to learn target models. DA indicates methods using
test-time data adaptation. MA indicates methods using model adaptation.

Categories Methods FO Grad. Model Mod. C10-C C100-C IN-C

- Deployed - - 72.39 41.41 31.36

Distill. DINE ✓ ✗ 73.86 40.52 -
BETA ✓ ✗ 75.71 39.62 -

DA

DA-PGD ✗ ✗ 24.63 4.15 14.39
DA-ZOO-Input ✗ ✗ 68.70 31.53 17.57
DA-Direct ✗ ✗ 70.48 37.67 29.37
DA-PL ✗ ✗ 72.93 41.44 31.91
SODA (Ours) ✗ ✗ 82.55 52.41 42.14
SODA-R (Ours) ✓ ✗ 88.39 60.31 48.70

MA MA-SO ✓ ✓ 86.54 62.02 56.90

Baselines. Deployed is the deployed model without adaptation. We compare our proposed SODA
framework with two DABP baselines utilizing knowledge distillation. DINE [22] distills the knowl-
edge from the deployed model to a target model by minimizing the KL divergence between smoothed
pseudo-labels and target model predictions. BETA [46] divides the target domain into easy- and
hard-to-adapt subdomains, then mutually distills twin networks with weak-strong augmentation on
two subdomains. We further implement four vanilla baselines of test-time data adaptation using
ZOO. DA-Direct directly generates adapted data instead of perturbations using the same network
structure and initial pseudo-labels. DA-PGD adopts PGD [27] to directly generate perturbations
using estimated gradients computed by ZOO and the training objective of SODA. DA-ZOO-Input
uses the same data adaptor and training objective as SODA, except that the variables optimized in
ZOO are the input data of the deployed model, i.e., the output adapted data of the data adaptor. The
gradients of data adaptor parameters are computed based on the estimated gradients w.r.t. the adapted
data. DA-PL trains the same data adaptor as SODA using initial pseudo-labels. Assuming gradient
information is accessible, we also implement SODA-R using first-order gradients computed from the
deployed model. To compare SODA with model adaptation, we implement MA-SO that modifies
model parameters (except the last linear layer) using the same training objective as SODA.

Deployed model settings. For all experiments regarding CIFAR-10/100-C tasks, we adopt the
CIFAR-10/100 pretrained ResNet-50 [11] model used in [26] and [38] as the deployed model. For
experiments regarding the ImageNet-C task, we adopt the ImageNet pre-trained ResNet-50 model
provided by TorchVision [28] as the deployed model. Except for SODA-R and MA-SO, the deployed
model is frozen with only output probabilities accessible. For SODA-R, the deployed model is also
frozen, but gradients can be computed and back-propagated through the model. For MA-SO, the
deployed model is set in training mode, and all parameters can be modified.

Implementation details. For SODA, the data adaptor uses a small network with two convolutional
layers and an instance normalization layer in between to generate perturbations added to the original
test data. For SODA-R in the CIFAR-10/100-C tasks, two ResNet blocks as in [33] are inserted
between the convolutional layers to form a larger data adaptor. For SODA-R in the ImageNet-C task,
one ResNet block and a couple of downsampling/upsampling layers are inserted instead. Detailed
data adaptor structure is described in Appendix B.3. For all methods except DINE, BETA, DA-PGD,
and SODA-R, the data adaptor/model is optimized using SGD with learning rate = 1e-3, momentum
= 0.9, and weight decay = 1e-5. For DINE and BETA, we follow the same settings as in [22] and [46],
and the target models are both ResNet-50 initialized with ImageNet-pretrained weights downloaded
from TorchVision [28]. For DA-PGD, the step size is also set to be 1e-3. SODA-R is optimized using
Adam with learning rate = 1e-3 and weight decay = 1e-5. Batch size = 256 is fixed for all methods.
The number of training epochs = 150 for all baselines except DINE and BETA. For DINE and BETA,
we train them for 120 epochs and fine-tune them for 30 epochs. For all methods using ZOO, the query
number q = 5 for CIFAR-10-C and ImageNet-C and q = 10 for CIFAR-100-C, smoothing parameter

7



Table 2: Comparison of SODA using ZOO with different query numbers and SODA using first-order
gradients. The network structure, training objective, and training strategy are the same. Averaged
accuracies (%) over 19 corruptions are reported.

Query Numbers 2 5 10 20 50 SODA-FO

CIFAR-10-C 82.43 82.55 82.57 82.59 82.53 85.97
CIFAR-100-C 51.03 52.19 52.41 52.97 52.97 54.32

µ = 1e-3. All experiments are repeated with three random seeds. The code implementation can be
found at https://github.com/tmlr-group/SODA.

4.2 Experimental Results

Effectiveness of SODA. Table 1 shows the accuracies on CIFAR-10-C, CIFAR-100-C and ImageNet-
C averaged over 19 corruptions. In the mostly restricted setting where first-order gradient computation
and model modification are both not allowed, SODA improves the deployed model prediction accuracy
by a large margin, 10% on CIFAR-10-C, 11% on CIFAR-100-C and 11% on ImageNet-C. SODA also
outperforms the DABP baselines on CIFAR10-C and CIFAR100-C tasks. Note that DINE and BETA
are excluded in experiments on ImageNet-C because they are required to initialize their target models
by ImageNet pre-trained weights, which violates the TTA setting. Especially on CIFAR-100-C and
ImageNet-C task with much lower initial prediction accuracy, all baselines except MA-SO fail to
improve, while SODA and SODA-R make significant improvement.

SODA v.s. model adaptation. Further relaxing the restriction on the deployed model, when
parameters of the deployed model are frozen, but gradient computation is feasible, SODA-R achieves
comparable accuracy with completely unrestricted MA-SO on CIFAR-100-C and even better accuracy
on CIFAR-10-C. It shows that data adaptation can be as effective as model adaptation for deployed
models with inaccessible parameters. On ImageNet-C, SODA-R performs worse than MA-SO,
suggesting that improvement is still needed on large-scale datasets.

Effect of pseudo-label-robust training strategy in SODA. The failures of DA-Direct show that
directly generating data using unreliable pseudo-labels fails to adapt data to the deployed model due
to the corrupted data features. By adding perturbations to the original test data, DA-PL improves from
DA-Direct to a small degree but still fails to enhance the deployed model. With the same data adaptor
as DA-PL, SODA can improve the model prediction to a large degree, indicating the effectiveness of
the proposed pseudo-label-robust training strategy.

Effect of data adaptor parameter ZOO in SODA. Both using a perturbation generation strategy,
DA-PGD fails by directly generating perturbations using estimated gradients without learning a data
adaptor, and DA-ZOO-Input achieves worse results by directly optimizing the model input using
ZOO. With the same training objective, the significant improvements made by SODA indicate the
effectiveness of the data adaptor parameter ZOO adopted in SODA.

4.3 Discussion

Effect of query number in ZOO. To analyze the relation between query number q and adaptation
accuracy in SODA, we conduct experiments with q ∈ {2, 5, 10, 20, 50}. The results in Table 2 show
that SODA is not sensitive to query number used in ZOO. Especially on CIFAR-10-C, only a slight
performance drop is observed when q = 2. On CIFAR-100-C, a larger query number contributes to
accuracy improvement more observably, but when q > 10, the contribution becomes less efficient, as
the computation cost is also increased. Balancing the trade-off between accuracy and computation
costs, we finally choose q = 5 for CIFAR-10-C and 10 for CIFAR-100-C.

Zeroth-order optimization v.s. first-order optimization. To better illustrate the effect of ZOO, we
implement a comparing baseline as SODA-FO that shares the same setting with SODA but uses the
first-order gradients back-propagated from the deployed model. Note that SODA-FO and SODA-R
differ in data adaptor network structure, optimizer, and other strategies as discussed in Appendix
C.1. As shown in Table 2, although SODA does not achieve the same accuracies as SODA-FO
due to the unavoidable gradient estimation error, it still indicates competitive performance when
gradient computation is infeasible. In Figure 3, SODA using ZOO has the slowest convergence speeds

8

https://github.com/tmlr-group/SODA


0 25 50 75 100 125 150
epoch

50

55

60

65

70

75

80

85

ac
cu

ra
cy

 o
n 

ga
us

si
an

 n
oi

se
 (

%
)

SODA
SODA-FO
SODA-R

(a)

0 25 50 75 100 125 150
epoch

20

25

30

35

40

45

50

55

ac
cu

ra
cy

 o
n 

ga
us

si
an

 n
oi

se
 (

%
)

SODA
SODA-FO
SODA-R

(b)

Figure 3: Accuracy convergence on Gaussian noise in (a) CIFAR-
10-C and (b) CIFAR-100-C.
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Table 3: Comparison of SODA and SODA-R
using data adaptor with different numbers of
ResNet blocks. Averaged accuracies (%) over
19 corruptions on CIFAR-10-C are reported.

#blocks 0 1 2 3

SODA 82.55 81.91 80.56 78.65
SODA-R 86.07 88.07 88.39 88.51

Table 4: Average accuracies (%) on CIFAR-10-C
(C10-C) and CIFAR-100-C (C100-C) under online
setting with difference batch size (epochs = 10). D
is the deployed model, BS is batch size.

Methods D SODA-O

BS - 32 64 128 256

C10-C 72.39 78.01 78.66 78.79 77.03
C100-C 41.41 45.82 47.11 47.26 45.93

and lowest accuracies on both datasets. SODA-FO has similar convergence speeds as SODA-R
but converges to lower accuracies, indicating that the strategies used in SODA-R with first-order
optimization, i.e., deeper network and Adam optimizer, can boost the training of the data adaptor.

Effect of data adaptor network complexity. We also explore the effect of data adaptor network
complexity on SODA and SODA-R. To increase network complexity, we change the number of
ResNet blocks in the data adaptor. Results of data adaptor with {0, 1, 2, 3} ResNet blocks are reported
in Table 3. For SODA, accuracy decreases as network complexity increases, indicating that complex
networks hinder data adaptation using ZOO. However, the accuracy of SODA-R increases along with
network complexity. This contrast illustrates that a more complex data adaptor can achieve higher
accuracy but is restricted and even encumbered by zeroth-order gradient estimation.

SODA with fewer test data points. We further explore the effectiveness of SODA with fewer test data
points. We randomly choose {50, 100, 500, 1000, 5000, 10000} test data points evenly distributed
across 10 classes in CIFAR-10-C for each corruption as smaller test datasets. The averaged accuracies
are reported in Figure 4. The performance of SODA is better when training data adaptor over more
test data points. Nevertheless, training over 5,000 data points achieves comparable accuracy with
training over 10,000 data points, showing that SODA does not require an extremely large number of
data points to achieve good performance. Besides, SODA can still improve with less than 500 test
data points, providing promising insights for test-time data adaption with smaller test datasets.

Hyperparameter sensitivity. We conduct sensitivity analysis regarding the noise ratio ρ, the
confidence threshold τ and the balancing parameter α. The detailed results illustrated in Appendix
C.3 show that SODA is robust to different combinations of hyperparameters, but adapting an adapted
threshold instead of a fixed threshold might further improve the performance of SODA.

4.4 SODA for Online Test-Time Adaptation

More practically, test data is not entirely available but arrives sequentially, i.e., online test-time
adaptation. Hence, we further implement SODA-O as a variant of SODA under online settings. Given
mini-batches of test data arrived sequentially {X1, ...,XT }, SODA-O adapts one mini-batch at a time
before processing the next mini-batch with knowledge accumulated from the previous mini-batches.

The main difference between SODA-O and SODA lies in the reliable pseudo-label selection. Without
access to the test data before adaptation, SODA-O maintains an ordered queue Q with maximum size
S to store the selected reliable pseudo-labels Yr and their corresponding data points Xr. Specifically,
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Table 5: Average accuracies (%) on CIFAR-10-C and CIFAR-100-C under online setting with
different number of epochs per batch (batch size = 256).

Methods Deployed SODA-O SODA

Epochs/Batch - 5 10 30 50 100 150 150*

CIFAR-10-C 72.39 75.22 77.03 79.63 80.38 81.33 81.71 82.55
CIFAR-100-C 41.41 43.59 45.81 48.56 49.26 50.04 50.12 52.41
*SODA is trained over the entire test dataset for 150 epochs

for a mini-batch Xt arrives at time t, reliable pseudo-labels Yrt with prediction confidences higher
than τ are selected and pushed into Q along with their corresponding test data points Xrt . To
maintain the class balance in Q, the pseudo-labels with the smallest confidence for class k will be
popped out once the number of pseudo-labels for k in Q is larger than S/C. Then, the remaining data
points Xut

in Xt are considered as X′
ut

, all pseudo-labels and data points stored in Q are considered
as Y′

rt and X′
rt . X′

ut
and X′

rt form a small test dataset to train the data adaptor as in SODA, i.e.
Step 2 in Algorithm 1. After adaptation, the inference of Xt is given by the current data adaptor
and the deployed model. Note that the optimization in SODA-O is not repeated after reaching the
entire test dataset but only repeats for the current test data batch and the cached queue. During the
adaptation of the current test data batch, the previous data batches are no longer available except for
those saved in the queue. The data adaptor, hyperparameter setting, and training strategy of SODA-O
are the same as SODA. The queue size S = 1,000 for both CIFAR-10-C and CIFAR-100-C.

Effect of epochs per mini-batch. We fix batch size = 256 and conduct experiments with different
numbers of epochs per mini-batch, i.e., {5, 10, 30, 50, 100, 150} epochs/batch. As shown in Table 5,
SODA-O is effective under online setting. As epochs/batch increase, the accuracy of SODA-O also
increases and approaches the accuracy of SODA. But more training epochs means more processing
time for each mini-batch, leading to a time-accuracy trade-off. With 10 epochs/batch, SODA-O can
still improve the deployed model by 5% and 4% on CIFAR-10-C and CIFAR-100-C.

Effect of batch size. Fixing epochs/batch = 10, we also conduct experiments with different batch
sizes, {32, 64, 128, 256}. The averaged accuracies are shown in Table 4. The results show that the
performance of SODA-O is stable across different batch sizes. The best performance is achieved
with batch size = 128. Only a slight performance drop is observed when batch size is reduced to 32,
indicating that SODA-O can handle relatively small batch size.

5 Limitations

While providing valuable insights into robust test-time data adaptation for deployed models with
inaccessible parameters, it is also essential to consider the limitations that may have affected the
efficiency and effectiveness of our proposed framework. The main limitation of SODA is the time
consumption brought by i) multiple queries required for gradient estimation in ZOO and ii) multiple
passes required for training the random initialized data adaptor. In the future, one solution to
alleviate this issue could be leveraging ZOO methods with higher query efficiency and less estimation
error. Moreover, it is unclear whether SODA designed for OOD generalization can benefit OOD
detection [8, 44]. Thus, we leave the exploration for OOD detection as our future work.

6 Conclusion

This paper focuses on two major challenges in adapting deployed machine learning models with
inaccessible parameters at test-time: unmodifiable model parameters and infeasible gradient com-
putation. Without modifying the model parameters, a data adaptor is adopted to adapt test data to
the deployed model. Zeroth-order optimization is further leveraged to train the data adaptor with
estimated gradients. Revisiting ZOO in test-time data adaptation, we discover that the unreliable
gradient estimation in ZOO is due to the unreliable pseudo-labels assigned to test data. The proposed
pseudo-label-robust data adaptation (SODA) addresses this issue with reliable pseudo-label selection
and input information maximization. Our experiments on three widely used out-of-distribution
benchmarks demonstrate the effectiveness of SODA in both offline and online settings.
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Appendix

A Derivation of Directional Derivative Approximation in SODA

In Section 3.2, given a deployed model M, the ideal objective function of training the data adaptor
G with parameters θ in SODA is the KL divergence between the predicted probability p̂θ

i =
M◦G(xi;θ) of the adapted data point xθ

i = G(xi;θ) and the true label yi of the original data point
xi. Because yi is not available at test time, pseudo-label ŷi predicted by M is adopted as a substitute
of yi. Due to the inaccurate model prediction under distribution shifts, there is a disturbance σi in
ŷi compared to yi, i.e. ŷi = σi + yi. Hence, the KL divergence loss L(·, ·) := KL(·∥·) at test data
point xi is

Li = KL(ŷi∥p̂θ
i ) = ŷi log

ŷi

p̂θ
i

= (yi + σi) log
yi + σi

p̂θ
i

= (yi + σi) log(yi + σi)− yi log p̂
θ
i − σi log p̂

θ
i

= −H(yi + σi) + Lce(yi, p̂
θ
i )− σi log p̂

θ
i

(14)

where Lce(yi, p̂
θ
i ) is the cross entropy loss between yi and p̂θ

i . Because the gradient information
is inaccessible from the deployed model, zeroth-order optimization (ZOO) is utilized to estimate
gradients for the training of the data adaptor in SODA. To do this, the objective function f(θ) in
Eq. (1) is replaced with the training objective function Li in test-time data adaptation. Denote Lθ

i
as the KL divergence loss computed by data adaptor with parameters θ, the directional derivative
approximation of ZOO is

∇̂θĽi =
1

µq

q∑
j=1

[(
KL(ŷi∥p̂

θ+µuj

i )−KL(ŷi∥p̂θ
i )
)
uj

]
=

1

µq

q∑
j=1

[(
(Lce(y, p̂

θ+µuj

i )− σi log p̂
θ+µuj

i )− (Lce(y, p̂
θ
i )− σi log p̂

θ
i )
)
uj

]
=

1

µq

q∑
j=1

[(
Lce(y, p̂

θ+µuj

i )− Lce(y, p̂
θ
i )
)
uj

]
+

1

µq

q∑
j=1

[(
σi log p̂

θ
i − σi log p̂

θ+µuj

i

)
uj

]
= ∇̂θLce +

σi

µq

q∑
j=1

log
p̂θ
i

p̂
θ+µuj

i

uj ,

(15)

where ∇̂θLce =
1
µq

∑q
j=1

[(
Lce(yi, p̂

θ+µuj

i )− Lce(yi, p̂
θ
i )
)
uj

]
is the ideal directional derivative

approximation.

B Implementation Details

B.1 Implementation details of DINE and BETA

The implementations of DINE and BETA on CIFAR-10-C and CIFAR-100-C are kept the same,
following their original work [22] and [46]. For DINE, the momentum hyperparameter γ = 0.6 and
the Mixup balancing hyperparameter β = 1. For BETA, τ = 0.8 for domain division, α = 1.0 for
Mixup, λmse = 0, sharpening factor T = 0.5, and adversarial regularizer γ = 0.1. The training strategy
of DINE and BETA are both SGD with learning rate = 0.001 for target network backbones and 0.01
for MLP classifiers. momentum = 0.9 and weight decay = 1e-3 are also adopted.

B.2 Software and hardware

In our paper, all models are implemented using PyTorch 1.13.1. The ImageNet pre-trained weights
used in DINE and BETA are downloaded from TorchVision 0.14.1. The experiments are conducted
using NVIDIA A100-PCIE-40GB GPU with CUDA 11.7.
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B.3 Network structure of data adaptor

Figure 5 shows the network structure of the data adaptor used in our experiments. The basic structure
of the data adaptor consists of two convolutional layers and an instance normalization layer in
between. Multiple ResNet blocks and downsampling/upsampling layers can be inserted into the
convolutional layers to form a deeper network as in [33]. For all methods except DA-Direct, the
adapted data is generated by treating the network output as perturbation and adding it to the original
data.

ResNet
block n

ResNet
block 1

Figure 5: Network structure of data adaptor. The green block is the convolutional layer, the blue
block is the instance normalization layer, the white block is the dropout layer, and the orange block is
the downsampling/upsampling layer. The dashed blocks can be added or removed to form different
network structures. The red dashed line means the network output is added to the original data to
generate the adapted data.

C Additional Analysis

C.1 Discussion about SODA and SODA-R

Compared with SODA, SODA-R uses computed first-order gradients and adopts several techniques
to improve the performance, i.e., deeper data adaptor with 2 ResNet blocks, Adam optimizer,
perturbation regularization, and dropout. The effect of network complexity has already been discussed
in Section 4.3. In this subsection, we first introduce the perturbation regularization used in SODA-R,
then evaluate the effect of perturbation regularization, different optimizers, and dropout on SODA
and SODA-R.

C.1.1 Perturbation regularization in SODA-R

In SODA and SODA-R, the adapted data is computed by perturbing the original data with a
generated perturbation. To further restrict the impact of generated perturbations on data Xr =
{xr1 ,xr2 , ...,xrlr

} and Xu = {xu1
,xu2

, ...,xulu
}, perturbation regularization with l1 norm is used:

let xθ
ri and xθ

ui
be the corresponding adapted data of xri and xru ,

R(X) = Exi∈Xr

∥∥xθ
ri − xri

∥∥
1
+ Exi∈Xu

∥∥xθ
ui
− xui

∥∥
1
. (16)

First-order gradients of the perturbation regularization are directly computed and back-propagated
through the data adaptor. Hence, the training objective of SODA-R becomes:

Lall(X, Ŷr) = Lim(Xu) + αLce(Xr, Ŷr) + βR(X), (17)

where β is the weight of perturbation regularization and is set to be 0.005 for CIFAR-10-C and 0.01
for CIFAR-100-C.

C.1.2 Evaluation of perturbation regularization in SODA and SODA-R

We evaluate the effect of perturbation regularization in SODA and SODA-R on CIFAR-10-C and
CIFAR-100-C. Except for the perturbation regularization term in the training objective, all other
settings are kept the same as in the main experiments. The results are shown in Table 6 and Table 7.
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It shows that perturbation regularization can improve the performance of SODA-R using first-order
optimization, especially on CIFAR-100-C. However, it largely hinders the performance of SODA
using zeroth-order optimization. The computed first-order gradients of perturbation regularization are
more accurate than the estimated zeroth-order gradients of the main training objective. Thus, the data
adaptor tends to optimize the perturbation regularization term first, resulting in perturbations with
too small norms. The perturbations with too small norms do not have enough ability to modify the
test data, which might be the reason for the worse performance achieved by SODA with perturbation
regularization. One possible solution to this problem could be treating perturbation regularization as
an optimization constraint and using constrained ZOO methods to train the data adaptor.

Table 6: Comparison of SODA and SODA-R
with and without perturbation regularization on
CIFAR-10-C. β = 0.005 in experiments w/ reg-
ularization.

Methods SODA SODA-R

w/ regularization 73.40 88.39
w/o regularization 82.55 87.96

Table 7: Comparison of SODA and SODA-R
with and without perturbation regularization on
CIFAR-100-C. β = 0.01 in experiments w/
regularization.

Methods SODA SODA-R

w/ regularization 42.27 60.31
w/o regularization 52.41 58.11

C.1.3 Evaluation of optimizers in SODA and SODA-R

We evaluate the effect of optimizers used in SODA and SODA-R on CIFAR-10-C and CIFAR-100-C.
Except for the optimizer used to train the data adaptor, all other settings are kept the same as in the
main experiments. The results are shown in Table 8 and Table 9. On CIFAR-10-C, SODA trained by
SGD and Adam achieve almost the same accuracy, while SODA-R trained by Adam achieves 3.3%
higher accuracy than SGD. On CIFAR-100-C, SODA-R trained by Adam still outperforms SODA-R
trained by SGD, but SODA trained by Adam achieves even worse accuracy than SODA trained
by SGD. It shows that Adam optimizer can improve the training of data adaptors using first-order
gradients but fails when using the estimated zeroth-order gradients.

Table 8: Comparing of SODA and SODA-R
using SGD and Adam optimizer on CIFAR-10-
C.

Methods SODA SODA-R

SGD 82.55 84.95
Adam 82.75 88.39

Table 9: Comparison of SODA and SODA-R
using SGD and Adam optimizer on CIFAR-100-
C.

Methods SODA SODA-R

SGD 52.41 58.32
Adam 49.75 60.31

C.1.4 Evaluation of dropout in SODA and SODA-R

We also evaluate the effect of dropout on SODA and SODA-R. As depicted in Figure 5, a dropout
layer can be inserted into the ResNet block. We conduct experiments using data adaptors with and
without dropout layers for SODA and SODA-R. To keep the same network structure as SODA-
R, the data adaptor used in SODA also has 2 ResNet blocks. The dropout ratio is set to be 0.5.
All other settings are kept the same as in the main experiments. Table 10 and Table 11 show the
results on CIFAR-10-C and CIFAR-100-C, respectively. For SODA-R, adding dropout layers can
improve the accuracy by 0.7% on CIFAR-10-C and 2% on CIFAR-100-C. However, for SODA,
adding dropout layers extremely hinders the performance, especially on CIFAR-100-C. This contrast
indicates that dropout harms data adaptor optimized using estimated zeroth-order gradients while
positively affecting data adaptor optimized using computed first-order gradients. The reason might
be that the extra randomness introduced by dropout increases the difficulty of gradient estimation
in zeroth-order optimization. Note that the accuracy of SODA using a data adaptor with 2 ResNet
blocks on CIFAR-100-C is worse than that using a data adaptor with 0 ResNet blocks, which is
consistent with the results on CIFAR-10-C as shown in Table 3.
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Table 10: Comparing of SODA and SODA-R
with and without dropout layers on CIFAR-10-
C.

Methods SODA SODA-R

w/ dropout 32.19 88.39
w/o dropout 80.56 87.54

Table 11: Comparison of SODA and SODA-R
with and without dropout layers on CIFAR-100-
C.

Methods SODA SODA-R

w/ dropout 5.47 60.31
w/o dropout 43.96 58.27

To sum up, compared with SODA using zeroth-order optimization, SODA-R uses first-order op-
timization and adopts deeper network structure, perturbation regularization, Adam optimizer, and
dropout to improve the performance. However, these techniques cannot improve or even hinder
the performance of SODA. This comparison shows that the common boosting strategies used in
first-order optimization cannot be directly applied to zeroth-order optimization, leading to the limited
performance of methods using zeroth-order optimization.

C.2 Convergence of SODA

In Figure 3, the convergence speeds of SODA on CIFAR-10-C and CIFAR-100-C are slower than
SODA-FO and SODA-R and do not achieve complete convergence after training with 150 epochs.
We further train SODA on Gaussian noise in CIFAR-10-C and CIFAR-100-C for 300 epochs to show
the complete convergence of SODA as depicted in Figure 6. With more training epochs, SODA
can achieve higher accuracies on both datasets. However, training with more epochs means more
adaptation processing time or more computing resources with parallel computation. For time and
resource efficiency, we only report the accuracies achieved at 150 epochs in our main experiments,
which already improves the deployed model by a large margin. If computing time and resources are
not restricted, SODA can further improve the deployed model for higher accuracy.
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Figure 6: Accuracy convergence on Gaussian noise in (a) CIFAR-10-C and (b) CIFAR-100-C for 300
epochs.

C.3 Hyperparameter analysis of reliable pseudo-label selection

We evaluate the hyperparameters in reliable pseudo-label selection, namely the confidence threshold
τ , the noise ratio ρ, and the balancing parameter α. τ and ρ controls the number of selected reliable
pseudo-labels. With lower τ and lower ρ, the number of selected reliable pseudo-labels increases. We
evaluate τ in {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, and ρ in {0.1, 0.3, 0.5, 0.7, 0.9}. Note that
when τ = 0, the number of selected pseudo-labels is not equal to (1 − ρ)n, where n is the total
number of test data points, because the pseudo-labels are not evenly distributed across classes as
depicted in Figure 8a. The inaccurate model prediction tends to bias towards a few classes, leading to
more pseudo-labels belonging to those classes. α controls the balance between the supervised training
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objective Lce and the unsupervised training objective Lim. We evaluate α in {0.01, 0.001, 0.0001}.
The results of SODA with different sets of hyperparameters on CIFAR-10-C Gaussian noise level 5
corruption are shown in Figure 7. The performance of SODA is stable across different hyperparameter
settings. A common trend among different α is that accuracy tends to increase when τ and ρ decrease,
i.e., the top-right corner of each figure. This trend shows that the performance of the data adaptor
can be improved using more selected pseudo-labels, which further indicates the reliability of the
selected pseudo-labels. There is a mild tendency of performance drop in the overall performance of
SODA when unsupervised learning of test points with unreliable pseudo-labels is overwhelmed by
supervised learning of reliable pseudo-labels with larger α, indicating that learning on test points
with unreliable pseudo-labels also has a contribution to the performance of SODA. To balance the
supervised and unsupervised learning terms, we finally choose α = 0.0001 in our main experiments.
Although better performance can be achieved by carefully fine-tuning τ and ρ with a validation set
to show the general performance of SODA and select the most reliable pseudo-labels for different
corruptions, we set τ = 0.9 and ρ = 0.9 for CIFAR-10/100-C tasks and τ = 0.1 and ρ = 0.9 for
ImageNet-C task in our main experiments without elaborated hyperparameter fine-tuning.

Figure 7: Evaluation of reliable pseudo-label selecting hyperparameters on CIFAR-10-C Gaussian
noise corruption level 5. Numbers are prediction accuracies (%) after adaptation.

C.4 Evaluation of queue size in SODA-O

We evaluate the effect of queue size in SODA-O. A larger queue size means more past reliable
pseudo-labels and their corresponding test data points are stored and used in the adaptation pro-
cess of the current mini-batch. Fixing batch size = 128, we conduct experiments on queue size
{500, 1000, 2000, 3000}, and the results are shown in Table 12. The performance of SODA-O is
stable across different queue sizes, especially when the queue size is smaller. When queue size
increases, the ratio of reliable pseudo-labels used to train the data adaptor for the current mini-batch
also increases. It makes the training of the data adaptor more biased towards the supervised training
with the reliable pseudo-labels. Thus, the mild performance drop observed along with the larger
queue size might indicate that the reliable pseudo-labels still have disturbance, and the unsupervised
training of data points with unreliable pseudo-labels is useful to alleviate the negative effect caused
by the remaining disturbance.

C.5 Results on challenging Office-Home tasks

We conduct experiments on three challenging Office-Home tasks to show the effectiveness of SODA
and SODA-R on different kinds of distribution shifts. For SODA, the network structure of the
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Table 12: Comparison of SODA-O with different queue sizes. Averaged accuracies (%) over 19
corruptions are reported.

Queue Size 500 1000 2000 3000

CIFAR-10-C 78.78 78.79 78.22 77.73
CIFAR-100-C 47.18 47.21 46.67 45.63

data adaptor is the same as that in CIFAR-10/100-C tasks. For SODA-R, a deeper data adaptor is
adopted with 2 downsampling/upsampling layers and 2 ResNet blocks. Both SODA and SODA-R
are trained using SGD with learning rate = 1e-3, momentum = 0.9, and weight decay = 1e-5 for 60
epochs. A warmup process is used to first train the data adaptor with pseudo-label supervision for
10 epochs. Following DINE [22] and BETA [46], MixMatch [2] and EMA pseudo-label updating
are also adopted. The weights of cross-entropy loss and mutual information loss are set to be 0.1
and 0.01, respectively. The confidence threshold τ is set to be 0.5. The noise ratio ρ is set to be 0.
The query number is set to 5 for SODA. The results are listed in Table 13. The results show that
SODA and SODA-R can improve the deployed model in challenging Office-Home tasks with initial
prediction accuracies lower than 50%

Table 13: Accuracies (%) on three challenging Office-Home domain adaption tasks. FO Grad.
means the requirement of first-order gradient from the target model or deployed model. Model Mod.
means the requirement of modifying the parameters of deployed models.

Methods FO Grad. Model Mod. Art->Clipart Product->Clipart Realworld->Clipart

Deployed - - 44.67 40.53 47.12
SODA ✗ ✗ 46.53 41.47 48.71
SODA-R ✓ ✗ 50.45 45.20 53.22

D Qualitative Evaluation of SODA

D.1 T-SNE Visualization of SODA features

To qualitatively evaluate the performance of SODA, we use T-SNE to visualize the feature embeddings
of SODA, i.e., the input features of the last classification layer in the deployed model before and after
adaptation in Figure 8. According to the visualization results, the feature embeddings are much more
separated apart between classes after adaptation, showing the effectiveness of SODA.

(a) Before adaptation (b) After adaptation

Figure 8: T-SNE visualization of SODA feature embeddings on CIFAR-10-C pixelate corruption
level 5.
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D.2 Examples of Adapted Data

Figure 9 shows examples of test and adapted data using SODA for 19 corruptions in CIFAR-10-C.
Comparing original data without corruption, test data before adaptation, and adapted data after
adaptation, it is obvious that the adapted data looks closer to the original data than the corresponding
test data. This observation is consistent with the improved prediction accuracy using SODA and
further illustrates that the distribution shifts between the test data and the training data are alleviated
after applying SODA to test data. It also indicates that SODA adapts the test data to the deployed
model by modifying them to "look like" the training data. Then, the distribution shifts between the
test data and the training data are mitigated, leading to improved prediction of the deployed model.

E Detailed Results

There are 19 corruptions in CIFAR-10-C, CIFAR-100-C and ImageNet-C: Gaussian noise (GN), shot
noise (ShN), impulse noise (IN), speckle noise (SpN), defocus blur (DB), glass blur (GlB), motion
blur (MB), zoom blur (ZB), Gaussian blur (GaB), snow (SW), frost (FR), fog (FG), brightness (BR),
contrast (CT), elastic transform (ET), pixelate (PX), jpeg compression (JC), spatter (SP) and saturate
(SA). We report the accuracies of each method w.r.t. each corruption on CIFAR-10-C, CIFAR-100-C,
and ImageNet-C in Table 14, Table 15 ,and Table 16. Except for SODA-R and MA-SO using first-
order gradients from the deployed model, SODA outperforms all baselines on almost all corruptions.
On CIFAR-10-C, SODA-R even outperforms MA-SO on all corruptions. On CIFAR-100-C, although
the average accuracy of SODA-R is lower than that of MA-SO, SODA-R still outperforms MA-SO on
7 corruptions. On ImageNet-C, SODA improves the deployed model on most corruptions. SODA-R
even outperforms or performs on par with MA-SO on 5 corruptions.

Table 14: Accuracies of 19 corruptions on CIFAR-10-C. For brevity, DA-PGD, DA-ZOO-Input,
DA-PL, and DA-Direct are abbreviated as D-PG, D-Z-I, D-PL, and D-Di, respectively.

C Deployed DINE BETA D-PG D-Z-I D-PL D-Di SODA SODA-R MA-SO

GN 51.28 56.86 62.85 28.34 49.93 52.18 48.80 73.18 85.82 84.09
ShN 56.02 58.44 64.75 29.52 53.99 56.63 54.59 74.52 86.23 85.40
IN 42.98 47.25 53.36 22.23 42.57 44.38 41.12 57.48 83.20 75.06
SpN 57.15 59.41 65.61 27.36 54.33 57.07 56.04 73.77 85.52 84.55
DB 88.16 88.14 86.94 16.39 84.64 88.67 85.94 90.97 91.79 90.98
GlB 49.21 53.31 58.38 17.48 46.65 49.75 44.68 66.24 77.08 76.51
MB 76.62 77.25 79.27 17.76 72.05 77.35 75.16 86.43 91.13 87.37
ZB 89.14 89.37 88.86 17.76 85.93 89.73 87.52 90.96 92.28 92.46
GaB 84.59 84.66 84.65 15.87 80.24 85.74 84.38 91.25 93.13 90.93
SW 78.06 78.03 77.42 36.16 75.39 78.62 75.53 83.83 88.92 85.94
FR 71.75 72.39 72.96 23.15 68.13 72.24 70.41 82.92 87.63 87.45
FG 70.58 71.84 73.60 11.56 63.08 71.56 71.71 82.72 86.29 82.82
BR 92.98 92.85 91.28 41.57 91.46 92.75 90.18 92.84 93.15 92.14
CT 86.72 86.74 84.64 15.06 67.58 87.95 87.15 92.67 93.89 92.07
ET 76.64 77.35 78.02 18.32 72.30 77.04 71.99 79.50 82.70 81.99
PX 52.12 58.46 64.50 27.95 50.91 52.35 49.55 87.12 90.26 89.29
JC 80.55 80.93 80.70 29.20 78.51 81.03 78.60 86.06 88.08 87.04
SP 77.66 77.11 77.80 30.20 76.13 77.86 75.69 83.06 88.87 85.73
SA 93.13 92.90 92.98 42.09 91.56 92.68 90.02 92.94 93.62 92.43
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Table 15: Accuracies of 19 corruptions on CIFAR-100-C. For brevity, DA-PGD, DA-ZOO-Input,
DA-PL, and DA-Direct are abbreviated as D-PG, D-Z-I, D-PL, and D-Di, respectively.

C Deployed DINE BETA D-PG D-Z-I D-PL D-Di SODA SODA-R MA-SO

GN 19.21 20.17 20.89 5.31 13.95 19.13 16.73 40.88 53.59 57.25
ShN 22.13 23.02 24.23 5.28 16.20 21.87 19.49 41.91 55.16 58.60
IN 12.26 11.50 11.78 3.70 9.28 12.38 10.32 20.31 49.14 47.37
SpN 23.37 23.84 25.02 4.69 16.64 23.27 20.39 40.35 53.72 58.42
DB 60.39 57.75 56.31 3.24 44.99 60.00 55.37 67.22 68.03 68.92
GlB 17.74 17.81 18.58 3.01 12.61 17.22 12.90 29.92 41.97 49.66
MB 45.79 43.98 43.20 3.61 34.81 46.38 43.43 58.50 66.88 64.03
ZB 61.64 59.07 57.06 3.42 44.73 61.98 57.18 64.86 66.57 70.51
GaB 54.40 51.94 49.67 3.20 39.83 55.09 51.40 68.53 70.47 69.53
SW 45.47 44.82 43.18 6.08 35.14 44.88 40.18 50.30 59.15 58.23
FR 39.77 39.65 39.52 3.49 27.85 39.77 37.11 52.10 57.82 60.97
FG 31.94 31.23 30.71 1.43 17.73 31.66 31.07 48.71 55.13 54.40
BR 71.18 69.67 65.47 6.53 61.33 70.23 64.35 70.29 70.73 70.34
CT 49.10 46.10 43.35 1.23 25.49 51.56 48.43 71.71 73.03 69.91
ET 40.45 39.86 38.89 3.29 28.36 39.66 32.71 40.14 49.77 56.61
PX 27.77 27.87 29.36 4.24 29.23 27.72 24.85 55.63 62.06 66.37
JC 49.98 49.50 48.39 5.91 44.13 50.36 45.79 55.99 59.92 63.89
SP 44.18 43.80 42.47 5.03 35.22 44.56 39.20 49.49 61.85 61.83
SA 69.97 68.25 64.69 6.24 61.55 69.64 64.36 69.73 70.82 71.48

Table 16: Accuracies of 19 corruptions on ImageNet-C. For brevity, DA-PGD, DA-ZOO-Input,
DA-PL, and DA-Direct are abbreviated as D-PG, D-Z-I, D-PL, and D-Di, respectively. Note that
DINE and BETA are excluded because their required initialization of the target models violates the
setting of test-time adaptation.

C Deployed D-PG D-Z-I D-PL D-Di SODA SODA-R MA-SO

GN 8.98 6.72 10.52 10.38 9.18 26.72 40.99 34.85
ShN 11.48 9.39 6.14 12.93 9.97 28.46 43.24 40.46
IN 8.77 8.30 11.47 10.38 8.51 25.31 56.44 35.60
SpN 29.27 21.82 19.35 32.23 30.05 46.62 56.26 54.18
DB 21.99 1.29 2.42 21.73 17.47 24.52 31.43 43.98
GlB 7.35 2.30 0.74 6.78 1.69 7.84 0.62 38.46
MB 20.67 3.20 3.55 19.07 15.44 31.72 58.76 63.46
ZB 32.81 7.11 16.42 30.94 26.08 30.64 43.74 67.36
GaB 17.88 1.02 2.03 17.07 12.86 15.38 0.69 33.93
SW 34.92 1.33 14.55 33.98 31.15 51.58 59.39 63.52
FR 36.88 1.63 7.57 37.70 36.27 47.00 54.42 58.40
FG 57.72 0.91 32.85 58.07 57.87 60.92 60.45 73.17
BR 73.11 45.92 60.78 74.11 72.22 73.04 60.91 75.02
CT 70.92 0.13 50.83 75.02 75.18 74.72 61.71 69.21
ET 9.88 12.31 1.84 8.40 5.82 28.43 53.61 65.50
PX 7.29 22.29 3.38 6.74 4.49 53.99 58.25 66.37
JC 47.32 43.11 24.12 49.15 47.63 51.08 52.52 59.22
SP 33.03 19.70 14.93 34.61 30.26 54.21 66.05 65.92
SA 65.53 42.17 50.42 67.06 65.87 69.25 65.87 72.50
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Figure 9: Examples of test data and adapted data using SODA for 19 corruptions in CIFAR-10-C.
The bottom-right data is the original data in the CIFAR-10 test dataset without corruption.
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