
Appendix

Available dataset and code The code corresponding to the two-dimensional solid mechanics case
(Tensile2d) described in Section 4.1 is available at https://gitlab.com/drti/mmgp [3]. A
documentation is available at https://mmgp.readthedocs.io/ [2], where details are provided on
how to download the dataset Tensile2d and reproduce the corresponding numerical experiments.

Details regarding the datasets are provided in Appendix A. Morphing strategies and dimensionality
reduction techniques are described in Appendices B and C. Details about the GNNs baselines are
given in Appendix D. Finally, additional results about the considered experiments are gathered in
Appendix E.

A Datasets

This section provides additional details regarding the synthetic datasets Tensile2d and Rotor37.
Regarding the AirfRANS dataset, the reader is referred to [14].

A.1 Rotor37 dataset

Examples of input geometries are shown in Figure 6 together with the associated output pressure
fields. While the geometrical variabilities are moderate, it can be seen that they have a significant
impact on the output pressure field. A design of experiment for the input parameters of this problem
are generated with maximum projection LHS method [43]. For each input mesh and set of input
parameters, a three-dimensional aerodynamics problem is solved with RANS, as illustrated in, e.g. [8].
The output scalars of the problem are obtained by post-processing the three-dimensional velocity.

Figure 6: (Rotor37) Four geometries with their corresponding output pressure fields. The first panel
shows the mesh, and the second to last panels show a superposition of the corresponding geometry
and the mesh of the first one.

A.2 Tensile2d dataset

Examples of input geometries are shown in Figure 7. A two-dimensional boundary value problem
in solid mechanics is considered, under the assumption of small perturbations (see, e.g. [12]). The
partial differential equation is supplemented with Dirichlet and Neumann boundary conditions: the
displacement on the lower boundary is fixed, while a uniform pressure is applied at the top. The input
parameters of the problem are chosen to be the magnitude of the applied pressure and 5 parameters
involved in the elasto-visco-plastic constitutive law of the material [50]. The outputs of the problem
are chosen as the components of the displacement field, u and v, the entries of the Cauchy stress
tensor, σ11, σ22, σ12, and the cumulative plastic strain p. We also consider 4 output scalars obtained
by post-processing the fields of interest: the maximum plastic strain pmax accross the geometry, the
maximum vertical displacement vmax at the top of the geometry, and the maximum normal stress
σmax
22 and Von Mises stress σmax

v accross the geometry. It is worth emphasizing that the cumulative
plastic strain p is challenging to predict, as illustrated in Section E.

16



Figure 7: (Tensile2d) Illustration of the four input meshes that are used in Figure 5.

B Morphing strategies

In this section, we briefly describe the Tutte’s barycentric mapping [71] and the radial basis function
morphing [9, 21] used in the considered experiments.

Tutte’s barycentric mapping. For this method, we are limited to connected triangular surface
meshes of fixed topology, either in a 2D or in a 3D ambient space. Tutte’s barycentric mapping starts
by setting the value of the displacement of the boundary points of the mesh (usually onto the unit
disk), and solve for the value at all the remaining nodes of the mesh. The physical features available
on the mesh, and inherited from the problem, are used in the specification of the displacement of the
boundary nodes.

We recall that xI , I = 1 . . . N , denote the mesh nodes coordinates. We assume that the numbering
of the nodes starts with the interior points of the mesh 1 . . . Nint, and ends with the Nb nodes on
its boundary Nint + 1 . . . N . The morphed mesh node coordinates are denoted by xI , I = 1 . . . N .
The coordinates of the boundary of the morphed mesh being known, we denote xbI = xI+Nint

,
I = 1 . . . Nb. Then the following sparse linear system is solved for the morphing of the interior
points:

xI −
1

d(I)

∑

J∈N (I)∩J1,NintK

xJ = −
1

d(I)

∑

J∈N (I)∩JNint,NK

xbJ−Nint
,

where N (I) and d(I) are respectively the neighbors and the number of neighbors of the node I in
the graph (or in the mesh following its connectivity).

In the 2D solid mechanics case Tensile2d, we know the rank of the point separating the left and
the bottom faces which we map onto the point (0, 1) of the target unit disk. The linear density of
nodes on the boundary of the target unit disk is chosen to be the same as the one of the mesh sample
(relative to the length of the boundary), see Figure 8 for an illustration.

Figure 8: (Tensile2d) Illustration of the Tutte’s barycentric mapping used in the morphing stage.

From [27, corollary 2], the morphing described above is called a parametrization, and defines an
isomorphic deterministic transformation of the considered triangular surface meshM, into a plane

triangular meshM of the unit disk. Notice that although these morphing techniques are called “mesh
parametrization”, this do not mean that we need to know any parametrization of the shape: these are
deterministic transformations of the meshes, requiring no other information than the nodes locations
and the triangles connectivities.

17



This method is taken from the computer graphics community and has been improved over the years.
In [78], a quality indicator called stretch metric is optimized during an iterative procedure, to obtain
more regular morphed mesh. Recently in [31], a procedure was proposed to drastically improve mesh
parametrization, even in difficult cases where some triangles are overlapping. It should be noted that
such iterative procedures come with the additional cost of solving a series of sparse linear systems.

Radial Basis Function morphing. In the same fashion as Tutte’s barycentric mapping, RBF
morphing methods start by setting the value of the displacement at some particular nodes of the mesh
(here the boundary points of the mesh, but interior points can be considered as well with RBF), and
solve for the location at all the remaining nodes of the mesh. The physical features available on the
mesh are also used in the specification of the displacement of the boundary points. RBF morphing
methods are compatible with 2D and 3D structured and unstructured meshes, do not require any mesh
connectivity information, and can be easily implemented in parallel for partitioned meshes.

We use the RBF morphing method as proposed in [21]. Once the mapping for the Nb boundary points
of ranks Nint + 1 . . . N is fixed, then the interior points 1 ≤ I ≤ Nint are mapped such as

xI =

Nb∑

J=1

αJφ(‖xI − xbJ‖), 1 ≤ I ≤ Nint,

where φ is a radial basis function with compact support and αJ are determined by the interpolation
conditions. More precisely, we choose the radial basis function with compact support φ(ξ) =

(1− ξ)
4
(4ξ + 1) and support radius equal to half of the mesh diameter, and interpolation conditions

means that the morphing is known at the boundary points:

MRBFα = xb,

where MRBFI,J
= φ(‖xbI − xbJ‖), 1 ≤ I, J ≤ Nb.

For the AirfRANS dataset, we make use of the physical properties of the boundary condition to morph
each mesh onto the first geometry of the training set. Referring to Figure 9 (bottom), we know which
nodes lie the external boundary (in black), airfoil extrado (in red), airfoil intrado (in blue) and which
nodes define the leading and trailing points (green crosses). We choose to keep the points at the
external boundary fixed (zero mapping), map the leading and trailing edge to the ones of the mesh of
the first training sample, and map the points on the extrado and intrado along the ones of the mesh of
the first training sample while conserving local node density (relative to the length of the boundary).
A zoom of the RBF morphing close to the airfoil for test sample 787 is illustrated in Figure 10.

Figure 9: (AirfRANS) RBF morphing for test sample 787; (top) complete mesh morphing, (bottom)
illustration of the mapping of the boundary points.

Notice that while Tutte’s barycentric mapping requires solving a sparse linear system of rather large
size Nint, RBF morphing requires solving a dense linear system of smaller size Nb. RBF morphing
methods dealing with complex non-homogeneous domains have been proposed in [15].

18



Figure 10: (AirfRANS) Zoom of the RBF morphing close to the airfoil for test sample 787.

Other methods. In [23], the morphing is computed by means of solving an elastic problem.
See also [6, 70] for literature reviews on mesh morphing methods. Mesh deformation algorithms
compatible with topology changes have been proposed [80].

C Dimensionality reduction

The principal component analysis can be replaced by more effective dimensionality reduction
techniques such as the snapshot-POD. The latter is a variant where the underlying ℓ2-scalar product

used to compute the coefficients of the empirical covariance matrices is replaced by the L2(M
c
)-inner

product. Define the symmetric positive-definite matrix M ∈ R
Nc×Nc , such that

MIJ =

∫

M
c
ϕc
I(x)ϕ

c
J(x)dx .

In general, a quadrature formula, in the form of a weighted sum over function evaluations on the
common mesh, is chosen such that the integral are computed exactly for functions in the span of the
finite element basis. Then, the empirical covariance matrix is computed as

(
(Ũi

k)
T
MŨ

j
k

)

i,j
=

Nc∑

I,J=1

∫

M
c
U

i

k(x
c
I)ϕ

c
I(x)U

j

k(x
c
J)ϕ

c
J(x)dx =

∫

M
c
P (U

i

k)(x)P (U
j

k)(x)dx ,

which corresponds to the continuous formula for the computation of the correlations of the fields of
interest transported and interpolated on the common morphed mesh. Hence, the empirical covariance
matrix can take into account any heterogeneity of the common morphed mesh, which may occur after
morphing. The same construction can be made for the spatial coordinate field, while its derivation
is more technical, because it involves vector fields instead of scalar fields. The computation of the
empirical covariance matrix can be easily be parallelized on numerous computer nodes, provided that
the common morphed mesh has been partitioned in subdomains, which enable efficient dimensionality
reduction for meshes up to millions of degrees of freedom, see [20].

Other linear or nonlinear dimension reduction techniques can be considered, like mRMR feature
selection [22, 62], kernel-PCA [68] or neural network-based autoencoders [48].

D Architectures and hyperparameters of GNN-based baselines

D.1 Graph convolutional neural network

A graph convolutional neural network (GCNN) [67] has been implemented using PyTorch
Geometric [26] with the Graph U-Net [29] architecture and the following specifications: (i) topk
pooling [29, 47] layers with a pooling ratio of 0.5 to progressively aggregate information over nodes
of the graph, (ii) feature sizes progressively increased after each topk pooling, i.e., 16, 32, 64, 96
and 128, (iii) between each pooling, residual convolution blocks [40] are added to combine two
consecutive normalization-activation-convolution layers, (iv) BatchNorm [42] layers are introduced,
and (v) LeakyReLU [57] activations are used with slope of 0.1 on negative values.

19



A weighted multi-loss L that combines scalars and fields is used, and defined as

L ((U,w) , (U′,w′)) = λscalarsLMSE (w,w′) + λfields

d∑

k=1

LMSE (Uk,U
′
k) ,

where λscalars and λfields are two positive hyperparameters. For gradient descent, an Adam opti-
mizer [45] is used with a cosine-annealing learning rate scheduler [55]. The following hyperparam-
eters are optimized by grid search: (i) the learning rate, 13 values between 1.0 and 0.0001, (ii) the
weight λfield ∈ {1, 10, 100, 1000}, and (iv) the type of convolution, chosen between GATConv [72],
GeneralConv [79], ResGatedGraphConv [16] and SGConv [77]. There are many other hyperparame-
ters that could be tuned, as the number of layers or the number of features on each layer. The chosen
hyperparameters are summarized in Table 4 for each experiment. In the case of the Rotor37 problem,

Table 4: Chosen hyperparameters for the GCNN architectures.

Dataset Learning rate λfield Convolution

Rotor37 0.02 10.0 GeneralConv
Tensile2d 0.01 100.0 GeneralConv
AirfRANS 0.005 10.0 GeneralConv

the outwards normals to the surface of the compressor blade are added as input features to input
graphs. Similarly, for the Tensile2d and AirfRANS problems, the signed distance function is added
as an input feature.

D.2 MeshGraphNets

The MGN model [63] is taken from Nvidia’s Modulus [4] package that implements various deep sur-
rogate models for physics-based simulations. The same set of hyperparameters is used for all the con-
sidered regression problems, which is chosen after conducting a grid search over the learning rate, the
number of hidden nodes and edges features, the number of processor steps. The learning rate is set to
0.001, the numbers of hidden features hidden_dim_node_encoder, hidden_dim_edge_encoder,
and hidden_dim_node_decoder are all set to 16. The number of processor steps is chosen as 10.
The rest of the MGNs hyperparameters are left to the default values used in the Modulus package.
The batch size is set to 1, the activation is chosen as the LeakyReLU activation with a 0.05 slope, and
1, 000 epochs are performed for training the network. For scalar outputs, a readout layer taken from
[46] is added to the model. The input nodes features are given by the spatial coordinates of the nodes,
and possible additional fields such as the signed distance function (for the Tensile2d and AirfRANS
problems), or the outward normals (for the Rotor37 problem). Given two node coordinates xi and
xj , the edges features are chosen as exp(−‖xi − xj‖

2
2/(2h

2)), where h denotes the median of the
edge lengths in the mesh.

For each considered regression problem, it is found that it is more effective to train two MGNs models,
one dedicated to handling output fields and the other specialized for output scalars, respectively.
Nevertheless, better hyperparameter tuning and more effective readout layers could lead to different
conclusions regarding this matter.

D.3 Training on AirfRANS

As mentioned in Section 4.1, training GNNs on the AirfRANS dataset is computationally expensive
due to the sizes of the input meshes. For this reason, the GNN-based baselines are trained on the
AirfRANS-remeshed dataset (see Table 1) obtained by coarsening the input meshes (see Figure 11)
and the associated output fields. Once trained, predictions on the initial fine meshes are obtained
through finite element interpolation. It should be underlined that this strategy may hinder the
performance of the GNN-based baselines, as the reconstructed fields are obtained by finite element
interpolation.

E Additional results

This section gathers additional results about the experiments considered in Section 4.

20



Figure 11: (AirfRANS) Example of an original mesh from the dataset (left) and the corresponding
coarsened mesh in the AirfRANS-remeshed dataset (right).

E.1 Out-of-distribution inputs

Figures 12, 13, and 14 show histograms of the logarithm of the predictive variance for the output
scalars of interest on different sets of samples. The aim is to empirically assess if the MMGP model
is able to identify out-of-distribution (OOD) inputs by attributing higher predictive variances. In
the case of the Rotor37 problem, three OODs samples are generated such that the support of the
covariates (µ1, µ2, andM) are disjoint with the support of the training distributions. It can be seen
that the variances of the OOD samples are higher than the ones of the in-distribution samples. Similar
observations are made for the Tensile2d and AirfRANS problems. While such an analysis can help
to identify OOD inputs, it should be underlined that the predictive uncertainties of Gaussian processes
are only valid under the Gaussian a priori assumption, which may not be verified in practice. For
instance, the ellipsoid geometry has a similar variance as the in-distribution samples in Figure 13.

E.2 Predicted output fields

Tensile2d dataset. For reproducibility matters, we mention that for the field p and the scalar pmax,
the denominators in the formulae RRMSEf and RRMSEs has been replaced by 1 when its value is
below 1e− 6 for preventing division by zero, which corresponds to replacing the relative error by the
absolute error for samples that do not feature plastic behaviors.

In Figures 15-18, we illustrate the MMGP prediction, variance and relative error for all the considered
fields: u, v, p (evrcum), σ11, σ12 and σ22, for respectively the first training inputs, first test inputs, and
two out-of-distribution geometries (ellipsoid and wedge). In particular, the wedge cut-off geometry
features stress concentrations that are not present in the training set. We notice that the predictions
for selected train and test inputs (Figures 15 and 16) are accurate, with small relative errors and
relatively small predictive variances, except for some small areas where the considered fields have
larger magnitudes. As expected, the predictions for the ellipsoid and wedge cases (Figures 17 and 18)
are less accurate than for in-distribution shapes, but the predictive variances are larger, which confirms
that MMGP informs that, locally, the prediction cannot be trusted. This phenomenon is particularly
strong for the wedge case, that largely differs from the training set shapes.

In Figures 19 and 20, we consider all the output interest fields. The 2D domain is visualized in 3D,
in the form of three surfaces: a transparent blue for the 0.025-quantile, a white for the reference
prediction and a transparent red for the 0.975-quantile. The point-wise 95% confidence interval is
the distance (along the out-of-plane axis) between the transparent blue and red surfaces. We notice
that the 95% confidence intervals are very small for the train and test inputs, larger for the ellipsoid
case, and much larger for the wedge case (in particular σ22). Not surprisingly, for the OOD shapes

21



Figure 12: (Rotor37) Histograms of log(variance) of MMGP predictions for the output scalars of
interest on four sets: in grey the testing set (in distribution), in green and red respectively two sets
where the input pressure µ1 and rotation speed µ2 are taken OOD, and in blue a set of geometry taken
OOD.

ellipsoid and wedge, some surfaces intersect, meaning that, locally, the reference solution is not
inside the 95% confidence interval.

In Figure 21, we illustrate the finite element error occurring when predicting σ11 with respect to the
95% confidence interval for samples taken from the training and testing sets. We notice that on the
training set, the finite element error magnitude is comparable to the 95% confidence interval, which
is very small on training samples. On the testing set, the 95% confidence interval is larger, and the
finite element error magnitude can be neglected.

AirfRANS dataset. Figures 22 and 23 illustrate reference, MMGP prediction and relative errors
for the fields of interest u, v and p on respectively test sample 430 and train sample 93. In the first
row, zooms are provided close to the trailing edge to illustrate the accuracy of the prediction in the
thin boundary layer. Relative errors have larger magnitudes on spatially restricted areas. We notice
that on train sample 93, the areas with low relative error are larger than for test sample 430.

In Table 5, we compare MMGP and our trained GCNN and MGN, as well as the four models
trained in [14], for the scalars of interest drag coefficient CD and lift coefficient CL, computed
by post-processing the predicted fields instead of directly predicting them as output scalars. This
post-processing consists in integrating the reference and predicted wall shear stress (from the velocity)
and pressure fields around the surface of the airfoil. The models from [14] are a MLP (a classical
Multi-Layer Perceptron), a GraphSAGE [38], a PointNet [64] and a Graph U-Net [29] and the
corresponding results are taken from [14, Table 19] (“full dataset” setting that we considered in
this work). Refer to [14, appendix L] for a description of the used architecture. The limits of this
comparison are (i) the mesh supporting the fields are not the same (they have been coarsen in [14] by
process different from ours), (ii) the scalar integration routine are not identical (we integrate using

22



Figure 13: (Tensile2d) Histograms of log(variance) of MMGP predictions in grey for the output
scalars of interest on the testing set (in distribution). The variance of the MMGP prediction is
identified for various configurations: the ellipsoid and wedge cases (where all the nongeometrical
parameters are taken at the center of the training intervals), and 5 settings where the same geometry
is taken in the testing set and the input pressure varies (the training interval is [−50,−40]).

finite element representations). Within these limits, MMGP appears competitive with respects to the
models of [14] and our trained GCNN and MGN.

Table 5: (AirfRANS) Relative errors (Spearman’s rank correlation) for the predicted drag coefficient
CD (ρD) and lift coefficient CL (ρD) for the four models of [14, Table 19], as well as GCNN, MGN
and MMGP. These scalars of interest are computed as a postprocessing of the predicted fields (best is
bold).

Model
Relative error Spearman’s correlation

CD CL ρD ρL

MLP 6.2e+0 (9e-1) 2.1e-1 (3e-2) 0.25 (9e-2) 0.9932 (2e-3)
GraphSAGE 7.4e+0 (1e+0) 1.5e-1 (3e-2) 0.19 (7e-2) 0.9964 (7e-4)

PointNet 1.7e+1 (1e+0) 2.0e-1 (3e-2) 0.07 (6e-2) 0.9919 (2e-3)
Graph U-Net 1.3e+1 (9e-1) 1.7e-1 (2e-2) 0.09 (5e-2) 0.9949 (1e-3)

GCNN 3.6e+0 (7e-1) 2.5e-1 (4e-2) 0.002 (2e-1) 0.9773 (4e-3)
MGN 3.3e+0 (6e-1) 2.6e-1 (8e-2) 0.04 (3e-1) 0.9761 (5e-3)

MMGP 7.6e-1 (4e-4) 2.8e-2 (4e-5) 0.71 (1e-4) 0.9992 (2e-6)

23



Figure 14: (AirfRANS) Histograms of log(variance) of MMGP predictions in grey for the output
scalars of interest on the testing set (in distribution). The variance of the MMGP prediction is
identified for various configurations, where the same geometry is taken in the testing set and the inlet
velocity (iv) and angle of attack (aoa) varies (only iv=45, 70, 90 and aoa=-0.04, 0.07, 0.18 are in the
training intervals).

Figure 15: (Tensile2d) MMGP prediction for the first training input, where: U1, U2, evrcum, sig11,
sig22, and sig12 correspond to u, v, p, σ11, σ22, and σ12, respectively.

24



Figure 16: (Tensile2d) MMGP prediction for the first test input, where: U1, U2, evrcum, sig11,
sig22, and sig12 correspond to u, v, p, σ11, σ22, and σ12, respectively.

Figure 17: (Tensile2d) MMGP prediction for an OOD ellipsoid geometry, where: U1, U2, evrcum,
sig11, sig22, and sig12 correspond to u, v, p, σ11, σ22, and σ12, respectively.

25



Figure 18: (Tensile2d) MMGP prediction for an OOD wedge cut-off geometry, where: U1, U2,
evrcum, sig11, sig22, and sig12 correspond to u, v, p, σ11, σ22, and σ12, respectively.

Figure 19: (Tensile2d) MMGP: train0, test1, ellipsoid and wedge cases, confidence intervals for u,
v and p visualized as surfaces (for each field, the deformation factor is taken identical through the
cases).

26



Figure 20: (Tensile2d) MMGP: train0, test1, ellipsoid and wedge cases, confidence intervals for
σ11, σ12 and σ22 visualized as surfaces (for each field, the deformation factor is taken identical
through the cases).

Figure 21: (Tensile2d) Finite element interpolation error for the prediction of σ11 compared to the
95% confidence interval for a sample from (left): the training set, (right) the testing set.

27



Figure 22: (AirfRANS) Test sample 430, fields of interest u (UX), v (UY ) and p: (left) reference,
(middle) MMGP prediction, (right) relative error.

Figure 23: (AirfRANS) Train sample 93, fields of interest u (UX), v (UY ) and p: (left) reference,
(middle) MMGP prediction, (right) relative error.

28


