
Appendix to Weakly Coupled Deep Q-Networks

A Proofs

A.1 Proof of Proposition 1

Proof. We prove part the first part of the proposition (weak duality) by induction. First, define

Q∗
0(s,a) = r(s,a) and Qλ

0 (s,a) = r(s,a) + λ⊺
[
b(w)−

∑N
i=1 d(si, ai)

]
,

and suppose we run value iteration for both systems:

Q∗
t+1(s,a) = r(s,a) + γ E

[
maxa′∈A(s′) Q

∗
t (s

′,a′)
]
,

Qλ
t+1(s,a) = r(s,a) + λ⊺

[
b(w)−

∑N
i=1 d(si, ai)

]
+ γ E

[
maxa′∈A Qλ

t (s
′,a′)

]
.

It is well-known that, by the value iteration algorithm’s convergence,

Q∗(s,a) = lim
t→∞

Q∗
t (s,a) and Qλ(s,a) = lim

t→∞
Qλ

t (s,a).

Consider a state s ∈ S and a feasible action a ∈ A(s). We have,

Qλ
0 (s,a) = r(s,a) + λ⊺

[
b(w)−

∑N
i=1 d(si, ai)

]
≥ r(s,a) = Q∗

0(s,a).

Suppose Qλ
t (s,a) ≥ Q∗

t (s,a) holds for all s ∈ S and a ∈ A(s) for some t > 0 (induction
hypothesis). Then,

Qλ
t+1(s,a) = r(s,a) + λ⊺

[
b(w)−

∑N
i=1 d(si, ai)

]
+ γ E

[
maxa′∈A Qλ

t (s
′,a′)

]
≥ r(s,a) + λ⊺

[
b(w)−

∑N
i=1 d(si, ai)

]
+ γ E

[
maxa′∈A(s′) Q

∗
t (s

′,a′)
]

≥ r(s,a) + γ E
[
maxa′∈A(s′) Q

∗
t (s

′,a′)
]
= Q∗

t+1(s,a).

Thus, it follows that Qλ(s,a) ≥ Q∗(s,a).

For the proof of the second part of the proposition, define

B0(w) = b(w) and Bt+1(w) = b(w) + γ E
[
Bt(w

′)
]
.

We use an induction proof. We have for all (s,a) ∈ S ×A,

Qλ
0 (s,a) = r(s,a) + λ⊺

[
b(w)−

N∑
i=1

d(si, ai)

]

=

N∑
i=1

[
ri(si, ai)− λ⊺d(si, ai)

]
+ λ⊺b(w) =

N∑
i=1

Qλ
0,i(si, ai) + λ⊺B0(w),

where Qλ
0,i(si, ai) = ri(si, ai)− λ⊺d(si, ai). Similarly, for all (s,a) ∈ S ×A,

Qλ
1 (s,a) = r(s,a) + λ⊺

[
b(w)−

N∑
i=1

d(si, ai)

]
+ γ E

[
maxa′∈A Qλ

0 (s
′,a′)

]
=

N∑
i=1

[
ri(si, ai)− λ⊺d(si, ai)

]
+ λ⊺b(w) + γ E

[
max
a′∈A

{
N∑
i=1

Qλ
0,i(s

′
i, a

′
i) + λ⊺B0(w

′)

}]

=

N∑
i=1

[
ri(si, ai)− λ⊺d(si, ai) + γ E

[
maxa′

i∈Ai
Qλ

0,i(s
′
i, a

′
i)
]]

+ λ⊺
(
b(w) + γ E

[
B0(w

′)
])

=

N∑
i=1

Qλ
1,i(si, ai) + λ⊺B1(w).
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Continuing in this manner, we arrive at Qλ
t (s,a) =

∑N
i=1 Q

λ
t,i(si, ai) + λ⊺Bt(w). Finally, we have

Qλ(s,a) = lim
t→∞

Qλ
t (s,a)

= lim
t→∞

N∑
i=1

Qλ
t,i(si, ai) + λ⊺Bt(w) =

N∑
i=1

Qλ
i (si, ai) + λ⊺B(w),

which follows by the convergence of value iteration.

A.2 Proof of Theorem 1

Proof. First, we define the Bellman operator H:

(HQ′)(s,a) = r(s,a) + γE [maxa′ Q′(s′,a′)] ,

which is known to be a γ-contraction mapping. Next we define the random noise term

ξn(s,a) = γmaxa′ Q′
n(s

′,a′)− γE [maxa′ Q′
n(s

′,a′)] . (19)

Analogously, for subproblem i ∈ {1, . . . , N}, define the subproblem Bellman operator

(HiQ
λ
i )(si, ai) = ri(si, ai)− λ⊺d(si, ai) + γE

[
maxa′

i
Qλ

i (s
′
i, a

′
i)
]
,

and random noise term

ξi,n(si, ai) = γmaxa′
i
Q′

i,n(s
′
i, a

′
i)− γE

[
maxa′

i
Q′

i,n(s
′
i, a

′
i)
]
. (20)

The update rules of WCQL can then be written as

Qn+1(s,a) = (1− αn(s,a))Q
′
n(s,a) + αn(s,a) [(HQ′

n)(s,a) + ξn+1(s,a)] ,

Qλ
i,n+1(si, ai) = Qλ

i,n(si, ai) + βn(si, ai)
[
(HiQ

′
i,n)(si, ai) + ξi,n+1(si, ai)

]
, (21)

Qλ∗

n+1(s,a) = min
λ∈Λ

λ⊺Bn(w) +

N∑
i=1

Qλ
i,n(si, ai),

Q′
n+1(s,a) = min(Qn+1(s,a), Q

λ∗

n+1(s,a)). (22)

Parts (i) and (ii). By the iteration described in (21), we know that for a fixed λ, we are running
Q-learning on an auxiliary MDP with Bellman operator Hi, which encodes a reward ri(si, ai) −
λ⊺d(si, ai) and the transition dynamics for subproblem i. By the standard result for asymptotic
convergence of Q-learning [6], we have

lim
n→∞

Qλ
i,n(si, ai) = Qλ

i (si, ai). (23)

We now prove the result in (ii): limn→∞ Qλ
n(s,a) ≥ Q∗(s,a). Recall that

Qλ
n(s,a) = λ⊺Bn(w) +

N∑
i=1

Qλ
i,n(si, ai).

By standard stochastic approximation theory, limn→∞ Bn(w) = B(w) for all w [38]. Combining
this with (23), we have limn→∞ Qλ

n(s,a) = Qλ(s,a) for all (s,a), and to conclude that this limit
is an upper bound on Q∗(s,a), we apply Proposition 1.

Part (iii). Assume without loss of generality that Q∗(s,a) = 0 for all state-action pairs (s,a). This
can be established by shifting the origin of the coordinate system. We also assume that αn(s,a) ≤ 1
for all (s,a) and n. We proceed via induction. Note that the iterates Q′

n(s,a) are bounded in
the sense that there exists a constant D0 = Rmax/(1 − γ), Rmax = max(s,a) |r(s,a)|, such that
|Q′

n(s,a)| ≤ D0 for all (s,a) and iterations n [17]. Define the sequence Dk+1 = (γ + ϵ)Dk,
such that γ + ϵ < 1 and ϵ > 0. Clearly, Dk → 0. Suppose that there exists a random variable nk,
representing an iteration threshold such that for all (s,a),

−Dk ≤ Q′
n(s,a) ≤ min{Dk, Q

λ∗

n (s,a)}, ∀n ≥ nk.
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We will show that there exists some iteration nk+1 such that

−Dk+1 ≤ Q′
n(s,a) ≤ min{Dk+1, Q

λ∗

n (s,a)} ∀ (s, a), n ≥ nk+1,

which implies that Q′
n(s,a) converges to Q∗(s,a) = 0 for all (s,a).

By part (ii), we know that for all η > 0, with probability 1, there exists some finite iteration n0 such
that for all n ≥ n0,

Q∗(s,a)− η ≤ Qλ∗

n (s,a). (24)

Now, we define an accumulated noise process started at nk by Wnk,nk
(s,a) = 0, and

Wn+1,nk
(s,a) = (1− αn(s,a))Wn,nk

(s,a) + αn(s,a) ξn+1(s,a), ∀n ≥ nk, (25)
where ξn(s,a) is as defined in (19). Let Fn be the entire history of the algorithm up to the point
where the step sizes at iteration n are selected. Using Corollary 4.1 in [6] which states that under
Assumption 2 on the step size αn(s,a), and if E[ξn(s,a) | Fn] = 0 and E[ξ2n(s,a) | Fn] ≤ An,
where the random variable An is bounded with probability 1, the sequence Wn+1,nk

(s,a) defined in
(25) converges to zero, with probability 1. From our definition of the stochastic approximation noise
ξn(s,a) in (19), we have

E[ξn(s,a) | Fn] = 0 and E[ξ2n(s,a) | Fn] ≤ C(1 + maxs′,a′ Q
′2
n (s′,a′)),

where C is a constant. Then, it follows that
lim
n→∞

Wn,nk
(s,a) = 0 ∀ (s,a), nk.

We use the following lemma from [6] to bound the accumulated noise.

Lemma A.1 (Lemma 4.2 in [6]). For every δ > 0, with probability one, there exists some n′ such
that |Wn,n′(s,a)| ≤ δ, for all n ≥ n′.

Now, by Lemma A.1, let nk′ ≥ max(nk, n0) such that, for all n ≥ nk′ we have
|Wn,nk′ (s,a)| ≤ γϵDk < γDk.

Let νk ≥ nk′ such that, for all n ≥ νk, by (24) we have

γϵDk − γDk ≤ Qλ∗

n (s,a).

Define another sequence Yn that starts at iteration νk.
Yνk

(s,a) = Dk and Yn+1(s,a) = (1− αn(s,a))Yn(s,a) + αn(s,a) γ Dk (26)
Note that it is easy to show that the sequence Yn(s,a) in (26) is decreasing, bounded below by γDk,
and converges to γDk as n → ∞. Now we state the following lemma.

Lemma A.2. For all state-action pairs (s,a) and iterations n ≥ νk, it holds that:

−Yn(s,a) +Wn,νk
(s,a) ≤ Q′

n(s,a) ≤ min{Qλ∗

n (s,a), Yn(s,a) +Wn,νk
(s,a)}. (27)

Proof. We focus on the right hand side inequality, the left hand side can be proved similarly. For the
base case n = νk, the statement holds because Yνk

(s,a) = Dk and Wνk,νk
(s,a) = 0. We assume it

is true for n and show that it continues to hold for n+ 1:
Qn+1(s,a) = (1− αn(s,a))Q

′
n(s,a) + αn(s,a) [(HQ′

n)(s,a) + ξn+1(s,a)]

≤ (1− αn(s,a))min{Qλ∗

n (s,a), Yn(s,a) +Wn,νk
(s,a)}

+ αn(s,a) (HQ′
n)(s,a) + αn(s,a) ξn+1(s,a)

≤ (1− αn(s,a)) (Yn(s,a) +Wn,νk
(s,a)) + αn(s,a) γDk + αn(s,a) ξn+1(s,a)

≤ Yn+1(s,a) +Wn+1,νk
(s,a),

where we used (HQ′
n) ≤ γ∥Q′

n∥ ≤ γDk. Now, we have

Q′
n+1(s,a) = min(Qλ∗

n+1(s,a), Qn+1(s,a))

≤ min{Qλ∗

n+1(s,a), Yn+1(s,a) +Wn+1,νk
(s,a)}.

The inequality holds because
Qn+1(s,a) ≤ Yn+1(s,a) +Wn+1,νk

(s,a),

which completes the proof.
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Since Yn(s,a) → γDk and Wn,νk
(s,a) → 0, we have

lim supn→∞∥Q′
n∥ ≤ γDk < Dk+1.

Therefore, there exists some time nk+1 such that

−Dk+1 ≤ Q′
n(s,a) ≤ min{Dk+1, Q

λ∗

n (s,a)} ∀ (s,a), n ≥ nk+1,

which completes the induction.

B Weakly Coupled Q-learning Algorithm Description

Algorithm 2 Weekly Coupled Q-learning

1: Input: Lagrange multiplier set Λ, initial state distribution S0.
2: Initialize Q-table estimates Q0, {Q0,i}Ni=1. Set Q′

0 = Q0.
3: for n = 0, 1, 2, . . . do
4: Take an ϵ-greedy behavioral action an with respect to Q′

n(sn,a).
5: // Estimate upper bound by combining subagents
6: for i = 1, 2, . . . , N do
7: Update each subproblem value functions Qλ

i,n+1 according to (7).
8: end for
9: Update right-hand-side estimate Bn+1(wn) according to (8).

10: Using (9) and (10), combine subproblems to obtain Qλ∗

n+1(sn,a) for all a ∈ A(sn).
11: // Main agent standard update, followed by projection
12: Do standard Q-learning update using (11) to obtain Qn+1.
13: Perform upper bound projection step: Q′

n+1(s,a) = Qλ∗

n+1(s,a) ∧Qn+1(s,a)
14: end for

C Weakly Coupled DQN Algorithm Implementation

In our implementation of WCDQN, the subproblem Qλ
i -network in Algorithm 1 follows the standard

network architecture as in [43], where given an input state si the network predicts the Q-values for
all actions. This mandates that all the subproblems have the same number of actions. To address
different subproblem action spaces, we can change the network architecture to receive the state-action
pair (si, ai) as input and output the predicted Q-value. This simple change does not interfere or affect
WCDQN’s main idea.

Our code is available at https://github.com/ibrahim-elshar/WCDQN_NeurIPS.

D Numerical Experiment Details

A discount factor of 0.9 is used for the EV charging problem and 0.99 for the multi-product inventory
and online stochastic ad matching problems. In the tabular setting, we use a polynomial learning rate
that depends on the state-action pairs visitation given by αn(s,a) = 1/νn(s,a)

r, where νn(s,a)
represent the number of times (s,a) has been visited up to iteration n, and r = 0.4. We also use
an ϵ-greedy exploration policy, given by ϵ(s) = 1/ν(s)e, where ν(s) is the number of times the
state s has been visited. We set e = 0.4. In the function approximation setting, we use an ϵ-greedy
policy that decays ϵ from 1 to 0.05 after 30, 000 steps. All state-action value functions are initialized
randomly. Experiments were ran on a shared memory cluster with dual 12-core Skylake CPU (Intel
Xeon Gold 6126 2.60 GHz) and 192 GB RAM/node.

D.1 EV charging deadline scheduling [63]

In this problem, there are in total three charging spots N = 3. Each spot represents a subproblem
with state (ct, Bt,i, Dt,i), where ct ∈ {0.2, 0.5, 0.8} is the exogenous electric cost, Bt,i ≤ 2 is the
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amount of charge required and Dt,i ≤ 4 is the remaining time until the EV leaves the system. The
state space size is 36 for each subproblem. At a given period t, the action of each subproblem is
whether to charge an EV occupying the charging spot at,i = 1 or not at,i = 0. A feasible action
is given by

∑N
i=1 at,i ≤ b(ct), where b(0.2) = 3, b(0.5) = 2, and b(0.8) = 1. The reward of each

subproblem is given by

ri
(
(ct, Bt,i, Dt,i), at,i

)
=


(1− ct) at,i if Bt,i > 0, Dt,i > 1,

(1− ct) at,i − F (Bt,i − at,i) if Bt,i > 0, Dt,i = 1,

0, otherwise,

where F (Bt,i−at,i) = 0.2 (Bt,i−at,i)
2 is a penalty function for failing to complete charging the EV

before the deadline. The endogenous state of each subproblem evolves such that (Bt+1,i, Dt+1,i) =
(Bt,i − at,i, Dt,i − 1) if Dt,i > 1, and (Bt+1,i, Dt+1,i) = (B,D) with probability q(D,B) if
Dt,i ≤ 1, where q(0, 0) = 0.3 and q(B,D) = 0.7/11 for all B > 0 and D > 0. The exogenous
state ct evolves following the transition probabilities given by:

q(ct+1 | ct) =

(
0.4 0.3 0.3
0.2 0.5 0.3
0.6 0.2 0.2

)
.

D.2 Multi-product inventory control with an exogenous production rate [27]

We consider manufacturing N = 10 products. The exogenous demand Dt,i for each product
i ∈ {1, 2, . . . , 10} follows a Poisson distribution with mean value µi. The maximum storage capacity
and the maximum number of allowable backorders (after which lost sales costs incur) for product i
are given by Ri and Mi, respectively.

The state for subproblem i is given by (xt,i, pt), where xt,i ∈ Xi = {−Mi,−Mi +1, . . . , Ri} is the
inventory level for product i, and pt is an exogenous and Markovian noise with support [0.8, 1]. A
negative stock level corresponds to the number of backorders. For subproblem i, the action at,i is the
number of resources allocated to the product i. The maximum number of resources available for all
products is U = 3, so feasible actions must satisfy

∑
i at,i ≤ 3.

Allocating a resource level at,i yields a production rate ρi(at,i, pt) = (12 pt at,i)/(5.971 + at,i).
The cost function for product i is ci(pt, xt,i, at,i) and represents the sum of the holding, backorders,
and lost sales costs. We let hi, bi, and li denote the per-unit holding, backorder, and lost sale costs,
respectively. The cost function ci(xt,i, pt, at,i) is given by,

ci(xt,i, pt, at,i) = hi(xt,i + ρi(at,i, pt))+ + bi(−xt,i − ρi(at,i, pt))+
+ li((Dt,i − xt,i − ρi(at,i, pt))+ −Mi)+,

where (.)+ = max(., 0). We summarize the cost parameters and the mean demand for each product
in Table 1. Finally, the transition for the inventory state of subproblem i is given by

xt+1,i = max
(
min(xt,i + ρi(at,i, pt)−Dt,i, Ri),−Mi

)
,

where the exogenous noise pt evolves according to a transition matrix sampled from a Dirichlet distri-
bution whose parameters are each sampled (once per replication) from a Uniform(1, 5) distribution.

Table 1: Multi-product inventory environment parameters

Product i 1 2 3 4 5 6 7 8 9 10

Storage capacity Ri 20 30 10 15 10 10 25 30 15 10
Maximum backorders Mi 5 5 5 5 5 5 5 5 5 5
Mean demand µi 0.3 0.7 0.5 1.0 1.4 0.9 1.1 1.2 0.3 0.6
Holding cost hi 0.1 0.2 0.05 0.3 0.2 0.5 0.3 0.4 0.15 0.12
Backorder cost bi 3.0 1.2 5.15 1.3 1.1 1.1 10.3 1.05 1. 3.1
Lost sales cost li 30.1 3.3 10.05 3.9 3.7 3.6 40.3 4.5 12.55 44.1
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D.3 Online stochastic ad matching [18]

In this problem, a platform needs to match N = 6 advertisers to arriving impressions [18]. An
impression et ∈ E = {1, 2, . . . , 5} arrives according to a discrete time Markov chain with transition
probabilities given by q(et+1 | et), where each row of the transition matrix q is sampled from a
Dirichlet distribution whose parameters are sampled (once per replication) from Uniform(1, 20).

The action at,i ∈ {0, 1} is whether to assign impression et to advertiser i or not. The platform can
assign an impression to at most one advertiser:

∑N
i=1 ai,t = 1.

The state of advertiser i, xi,t gives the number of remaining ads to display and evolves according
to xt+1,i = xt,i − at,i. The initial state is x0 = (10, 11, 12, 10, 14, 9). The reward obtained from
advertiser i in state st,i = (xt,i, et) is ri(st,i, at,i) = li,et min(xt,i, at,i), where the parameters li,et
are sampled (once per replication) from Uniform(1, 4).

D.4 Training parameters

Each method was trained for 6,000 episodes for the EV charging problem, 5,000 for the multi-product
inventory control problem, and 10,000 episodes for the online stochastic ad matching problem. The
episode lengths for the EV charging, online ad stochastic ad matching, and multi-product inventory
control problems are 50, 30, and 25, respectively. We performed 5 independent replications.

We use a neural network architecture that consists of two hidden layers, with 64 and 32 hidden units
respectively, for all algorithms. A rectified linear unit (ReLU) is used as the activation function
for each hidden layer. The Adam optimizer [36] with a learning rate of 1.0× 10−4 was used. For
OTDQN, we use the same parameter settings as in He et al. [25].

For WCDQN, we use a Lagrangian multiplier λ ∈ [0, 10], with a 0.01 discretization. We also used an
experience buffer of size 100,000 and initialized it with 10,000 experience tuples that were obtained
using a random policy. For the WCDQN algorithm, we set the penalty coefficient κU to 10, after
performing a small amount of manual hyperparameter tuning on the set {1, 2, 4, 10}.

D.5 Sensitivity analysis of WCQL with respect to the number of subproblems

We study the performance improvement from WCQL over vanilla Q-learning as the number of
subproblems increases for the EV charging problem. We only vary the number of subproblems (from
2 to 5) and keep all other settings as defined in Appendix D.1. The results, given in Table 2, show
that the benefits of WCQL become larger as the number of subproblems increases. This provides
some additional evidence for the practicality of our approach, especially in regimes where standard
methods fail.

Table 2: Cumulative reward and percent improvement of WCQL over QL on the EV-charging problem with a
different number of subproblems.

Algorithm
Number of Subproblems

2 3 4 5

QL 5.39 6.7 5.2 3.26
WCQL 5.35 7.14 6.28 4.66
Percent improvement -0.7% 6.6% 20.8% 42.9%

E Limitations and Future Work

One interesting direction to explore for future work is to address the limitation of learning the
Lagrangian upper bound using a fixed and finite set Λ. Instead, one can imagine the ability to learn
the optimal value of λ and concentrate the computational effort towards learning the Lagrangian
upper bound for this particular λ, which could potentially lead to tighter bounds. A possible approach
is to apply subgradient descent on λ, similar to what is done in Hawkins [24].
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