
Weakly Coupled Deep Q-Networks

Ibrahim El Shar
Hitachi America Ltd., University of Pittsburgh

Sunnyvale, CA
ibrahim.elshar@hal.hitachi.com

Daniel Jiang
Meta, University of Pittsburgh

New York, NY
drjiang@meta.com

Abstract

We propose weakly coupled deep Q-networks (WCDQN), a novel deep rein-
forcement learning algorithm that enhances performance in a class of structured
problems called weakly coupled Markov decision processes (WCMDP). WCMDPs
consist of multiple independent subproblems connected by an action space con-
straint, which is a structural property that frequently emerges in practice. Despite
this appealing structure, WCMDPs quickly become intractable as the number of
subproblems grows. WCDQN employs a single network to train multiple DQN
“subagents,” one for each subproblem, and then combine their solutions to establish
an upper bound on the optimal action value. This guides the main DQN agent
towards optimality. We show that the tabular version, weakly coupled Q-learning
(WCQL), converges almost surely to the optimal action value. Numerical experi-
ments show faster convergence compared to DQN and related techniques in settings
with as many as 10 subproblems, 310 total actions, and a continuous state space.

1 Introduction

Despite achieving many noteworthy and highly visible successes, it remains widely acknowledged
that practical implementation of reinforcement learning (RL) is, in general, challenging [15]. This
is particularly true in real-world settings where, unlike in simulated settings, interactions with
the environment are costly to obtain. One promising path toward more sample-efficient learning
in real-world situations is to incorporate known structural properties of the underlying Markov
decision process (MDP) into the learning algorithm. As elegantly articulated by [44], structural
properties can be considered a type of “side information” that can be exploited by the RL agent
for its benefit. Instantiations of this concept are plentiful and diverse: examples include factored
decompositions [33, 10, 47], latent or contextual MDPs [21, 39, 52], block MDPs [14], linear MDPs
[32], shape-constrained value and/or policy functions [49, 37, 31], MDPs adhering to closure under
policy improvement [8], and multi-timescale or hierarchical MDPs [23, 13], to name just a few.

In this paper, we focus on a class of problems called weakly coupled MDPs (WCMDPs) and show
how one can leverage their inherent structure through a tailored RL approach. WCMDPs, often
studied in the field of operations research, consist of multiple subproblems that are independent from
each other except for a coupling constraint on the action space [24]. This type of weakly coupled
structure frequently emerges in practice, spanning domains like supply chain management [24],
recommender systems [65], online advertising [9], revenue management [53], and stochastic job
scheduling [63]. Such MDPs can quickly become intractable when RL algorithms are applied naively,
given that their state and action spaces grow exponentially with the number of subproblems [45].

One can compute an upper bound on the optimal value of a WCMDP by performing a Lagrangian re-
laxation on the action space coupling constraints. Importantly, the weakly coupled structure allows the
relaxed problem to be completely decomposed across the subproblems, which are significantly easier
to solve than the full MDP [24, 1]. Our goal in this paper is to devise a method that can integrate the
Lagrangian relaxation upper bounds into the widely adopted value-based RL approaches of Q-learning

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Figure 1: An illustration of our RL approach for WCMDPs. Our approach takes a single “full” transition τ (as
collected by a standard RL agent) and decomposes it into subproblem transitions τi that are passed to “subagents,”
which are powered by a single network and aim to solve the easier subproblems. The results of these subagents
are then used collectively to guide the main agent toward the optimal policy, whose actions need to satisfy
linking constraints. Here, we illustrate the case of a single linking constraint that requires the sum of the actions
to be bounded by a right-hand-side quantity b(w), where w is an exogenous state from the environment.

[59] and deep Q-networks (DQN) [43]. Our proposed method is, to our knowledge, the first to explore
the use of Lagrangian relaxations to tackle general WCMDPs in a fully model-free, deep RL setting.

Main contributions. We make the following methodological and empirical contributions.

1. First, we propose a novel deep RL algorithm, called weakly coupled deep Q-networks
(WCDQN), that exploits weakly coupled structure by using a set of subagents, each attached
to one of the subproblems, whose solutions are combined to help improve the performance
of main DQN agent; see Figure 1 for a high-level overview.

2. Second, we also propose and analyze a tabular version of our algorithm called weakly
coupled Q-learning (WCQL), which serves to conceptually motivate WCDQN. We show
that WCQL converges almost surely to the optimal action-value.

3. Finally, we conduct numerical experiments on a suite of realistic problems, including electric
vehicle charging station optimization, multi-product inventory control, and online stochastic
ad matching. The results show that our proposed algorithm outperform baselines by a
relatively large margin in settings with as many as 10 subproblems, 310 total actions, and a
continuous state space.

2 Related Literature

Weakly Coupled MDPs. This line of work began with [61] under the name of restless multi-armed
bandits (RMAB), where there are two actions (“active” or “passive”) for each subproblem (also
known as “project” or “arm”), under a budget constraint on the number of active arms at any given
time.1 As we will see soon, this is a special case of a WCMDP with two actions per subproblem and
a single budget constraint. A popular solution approach to RMABs is the Whittle index policy, which
was first proposed by [61] and uses the idea of ranking arms by their “marginal productivity.” The
policy has been extensively studied in the literature from both applied and theoretical perspectives
[20, 41, 29, 28, 42, 64]. Whittle conjectured in [61] that the Whittle index policy is asymptotically
optimal under a condition called indexability; later, [60] established that asymptotic optimality
requires indexability, but also another technical condition, both of which are difficult to verify.

1We note that WCMDPs should not be confused with constrained MDPs, where a budget constraint is
imposed on the overall cost of the policy in all periods [2].

2

As discussed in detail by [64], relying on the Whittle index policy in real-world problems can be
problematic due to hard-to-verify technical conditions (and if not met, computational robustness and
the heuristic’s original intuitive motivation may be lost).

A number of recent papers have considered using RL in the setting of RMABs, but nearly all of them
are based on Whittle indices [19, 46, 34, 35, 3, 50, 62], and are thus most useful when the indexability
condition can be verified. Exceptions are [34] and [35], which propose to run RL directly on the
Lagrangian relaxation of the true problem to obtain a “Lagrange policy.” Our paper is therefore
closest in spirit to these two works, but our methods target the optimal value and policy (with the help
of Lagrangian relaxation) rather than pursuing the Lagrange policy as the end goal (which does not
have optimality guarantees in general). Moreover, compared to the other RL approaches mentioned
above, we do not require the indexability condition and our method works for any WCMDP.

Relaxations of WCMDPs can be performed in several different ways, including approximate linear
programming (ALP) [1, 11], network relaxation [45], and Lagrangian relaxation [61, 53, 24, 7, 1,
54, 11]. Notably, [1] provided key results for the ALP and Lagrangian relaxation approaches, and
[11] gave theoretical justification for the closeness of the bounds obtained by the approximate linear
programming and Lagrangian relaxation approaches, an empirical observation made in [1]. Our work
focuses specifically on the Lagrangian relaxation approach, which relaxes the linking constraints on
the action space by introducing a penalty in the objective.

DQN and Q-learning. The Q-learning algorithm [59] is perhaps the most popular value-based
tabular RL algorithm [30, 55, 6], and the DQN approach of [43] extends the fundamental ideas behind
Q-learning to the case where Q-functions are approximated using deep neural networks, famously
demonstrated on a set of Atari games. Unfortunately, practical implementation of Q-learning, DQN,
and their extensions on real-world problems can be difficult due to the large number of samples
required for learning [44].

Various papers have attempted to extend and enhance the DQN algorithm. For example, to overcome
the over-estimation problem and improve stability, [57] proposes double DQN, which adapts the
tabular approach of double Q-learning from [22] to the deep RL setting. The main idea is to use a
different network for the action selection and evaluation steps. [51] modifies the experience replay
buffer sampling to prioritize certain tuples, and [58] adds a “dueling architecture” to double DQN
that combines two components, an estimator for the state value function and an estimator for the state-
dependent action advantage function. Other examples include bootstrapped DQN [48], amortized
Q-learning [56], distributional RL [5], and rainbow DQN [26].

Our approach, WCDQN, is also an enhancement of DQN, but differ from the above works in that
our focus is on modifying DQN to exploit the structure of a class of important problems that are
otherwise intractable, while the existing papers focus on improvements made to certain components
of the DQN algorithm (e.g., network architecture, experience replay buffer, exploration strategy).
In particular, it should be possible to integrate the main ideas of WCDQN into variations of DQN
without much additional work.

Use of constraints and projections in RL. WCDQN relies on constraining the learned Q-function
to satisfy a learned upper bound. The work of [25] uses a similar constrained optimization approach
to enforce upper and lower bounds on the optimal action value function in DQN. Their bounds are de-
rived by exploiting multistep returns of a general MDP, while ours are due to dynamically-computed
Lagrangian relaxations. [25] also does not provide any convergence guarantees for their approach.

In addition, [16] proposed a convergent variant of Q-learning that leverages upper and lower bounds
derived using the information relaxation technique of [12] to improve performance of tabular
Q-learning. Although our work shares the high-level idea of bounding Q-learning iterates, [16]
focused on problems with partially known transition models (which are necessary for information
relaxation) and the approach did not readily extend to the function approximation setting. Besides
focusing on a different set of problems (WCMDPs), our proposed approach is model-free and
naturally integrates with DQN.

3 Preliminaries

In this section, we give some background on WCMDPs, Q-learning, DQN, and the Lagrangian
relaxation approach. All proofs throughout the rest of the paper are given in Appendix A.

3

3.1 Weakly Coupled MDPs

We study an infinite horizon WCMDP with state space S = X ×W and finite action space A, where
X is the endogenous part (i.e., affected by the agent’s actions) and W is the exogenous part (i.e.,
unaffected by the agent’s actions) of the full state space. We use the general setup of WCMDPs
from [11]. A WCMDP can be decomposed into N subproblems. The state space of subproblem i is
denoted by Si = Xi ×W and the action space is denoted by Ai, such that

X = ⊗N
i=1Xi and A = ⊗N

i=1Ai.

In each period, the decision maker observes an exogenously and independently evolving state
w ∈ W , along with the endogenous states x = (x1, x2, . . . , xN), where xi ∈ Xi is associated with
subproblem i. Note that w is shared by all of the subproblems, and this is reflected in the notation
we use throughout the paper, where s = (x, w) ∈ S represents the full state and si = (xi, w) is
the state of subproblem i. In addition to the exogenous state w being shared across subproblems,
there also exist L linking or coupling constraints that connect the subproblems: they take the form∑N

i=1 d(si, ai) ≤ b(w), where d(si, ai), b(w) ∈ RL and ai ∈ Ai is the component of the action
associated with subproblem i. The set of feasible actions for state s is given by

A(s) =

{
a ∈ A :

N∑
i=1

d(si, ai) ≤ b(w)

}
. (1)

After observing state s = (x, w), the decision maker selects a feasible action a ∈ A(s).

The transition probabilities for the endogenous component is denoted p(x′ |x,a) and we assume
that transitions are conditionally independent across subproblems:

p(x′ |x,a) = ΠN
i=1 pi(x

′
i |xi, ai),

where pi(x
′
i |xi, ai) are the transition probabilities for subproblem i. The exogenous state transi-

tions according to q(w′ |w). Next, let ri(si, ai) be the reward of subproblem i and let r(s,a) =
{ri(si, ai)}Ni=1. The reward of the overall system is additive: r(s,a) =

∑N
i=1 ri(si, ai).

Given a discount factor γ ∈ [0, 1) and a feasible policy π : S → A that maps each state s to a feasible
action a ∈ A(s), the value (cumulative discounted reward) of following π when starting in state s and
taking a first action a is given by the action-value function Qπ(s,a) = E

[∑∞
t=0 γ

tr(st,at) |π, s0 =

s,a0 = a
]
. Our goal is to find an optimal policy π∗, i.e., one that maximizes V π(s) = Qπ(s, π(s)).

We let Q∗(s,a) = maxπ Q
π(s,a) and V ∗(s) = maxπ V

π(s) be the optimal action-value and value
functions, respectively. It is well-known that the optimal policy selects actions in accordance to
π∗(s) = argmaxa Q∗(s,a) and that the Bellman recursion holds:

Q∗(s,a) = r(s,a) + γ E
[
maxa′∈A(s′) Q

∗(s′,a′)
]
, (2)

where s′ = (x′, w′) is distributed according to p(· |x,a) and q(· |w).

3.2 Q-learning and DQN

The Q-learning algorithm of [59] is a tabular approach that attempts to learn the optimal action-value
function Q∗ using stochastic approximation on (2). Using a learning rate αn, the update of the
approximation Qn from iteration n to n+ 1 is:

Qn+1(sn,an) = Qn(sn,an) + αn(sn,an)
[
yn −Qn(sn,an)

]
,

where yn = rn + γmaxa′ Qn(sn+1,a
′) is the target value, computed using the observed reward rn

at (sn,an), the transition to sn+1, and the current value estimate Qn.

The DQN approach of [43] approximates Q∗ via a neural network Q(s,a; θ) with network weights
θ. The loss function used to learn θ is directly based on minimizing the discrepancy between the two
sides of (2):

l(θ) = Es,a∼ρ

[(
y −Q(s,a; θ)

)2]
,

where y = r(s,a) + γ E
[
maxa′ Q(s′,a′; θ−)

]
, θ− are frozen network weights from a previ-

ous iteration, and ρ is a behavioral distribution [43]. In practice, we sample experience tuples
(sn,an, rn, sn+1) from a replay buffer and perform a stochastic gradient update:

θn+1 = θn + αn

[
yn −Q(sn,an; θ)

]
∇θQ(sn,an; θ),

with yn = rn + γmaxa′ Q(sn+1,a
′; θ−). Note the resemblance of this update to that of Q-learning.

4

3.3 Lagrangian Relaxation

The Lagrangian relaxation approach decomposes WCMDPs by relaxing the linking constraints to
obtain separate, easier-to-solve subproblems [1]. The main idea is to dualize the linking constraints∑N

i=1 d(si, ai) ≤ b(w) using a penalty vector λ ∈ RL
+. The result is an augmented objective

consisting of the original objective plus additional terms that penalize constraint violations. The
Bellman equation of the relaxed MDP in (2) is given by:

Qλ(s,a) = r(s,a) + λ⊺

[
b(w)−

N∑
i=1

d(si, ai)

]
+ γ E

[
maxa′∈A Qλ(s′,a′)

]
. (3)

With the linking constraints removed, this relaxed MDP can be decomposed across subproblems, so
we are able to define the following recursion for each subproblem i:

Qλ
i (si, ai) = ri(si, ai)− λ⊺d(si, ai) + γ E

[
max
a′
i∈Ai

Qλ
i (s

′
i, a

′
i)

]
. (4)

It is well-known from classical results that any penalty vector λ ≥ 0 produces an MDP whose optimal
value function is an upper bound on the V ∗(s) [24, 1]. The upcoming proposition is a small extension
of these results to the case of action-value functions, which is necessarily for Q-learning.

Proposition 1. For any λ ≥ 0 and s ∈ S, it holds that Q∗(s,a) ≤ Qλ(s,a) for any a ∈ A(s). In
addition, the Lagrangian action-value function of (3) satisfies

Qλ(s,a) = λ⊺B(w) +

N∑
i=1

Qλ
i (si, ai) (5)

where Qλ
i (si, ai) is as defined in (4) and B(w) satisfies the recursion

B(w) = b(w) + γ E
[
B(w′)

]
, (6)

with the exogenous next state w′ is distributed according to q(· |w).

The first part of the proposition is often referred to as weak duality and the second part shows how the
Lagrangian relaxation can be solved by decomposing it across subproblems, dramatically reducing
the computational burden. The tightest upper bound is the solution of the Lagrangian dual problem,
Qλ∗

(s,a) = minλ≥0 Q
λ(s,a), where λ∗ is minimizer.

4 Weakly Coupled Q-learning

In this section, we introduce the tabular version of our RL algorithm, called weakly coupled
Q-learning (WCQL), which will illustrate the main concepts of the deep RL version, WCDQN.

4.1 Setup

We first state an assumption on when the linking constraint (1), which determines the feasible actions
given a state, is observed.

Assumption 1 (Linking constraint observability; general setting). Suppose that upon landing in a
state s = (x, w), the agent observes the possible constraint left-hand-side values d(si, ·) for every i,
along with the constraint right-hand-side b(w) ∈ RL.

Under Assumption 1, the agent is able to determine the feasible action set A(s) upon landing in
state s. Accordingly, it can always take a feasible action. In many cases, it is known in advance that
the feasible action set is of the multi-action RMAB form: there is a single linking constraint (i.e.,
L = 1) and the left-hand-side is the sum of subproblem actions (i.e., d(si, ai) = ai). In that case,
Assumption 1 reduces to the following simpler statement, which we state for completeness.

Assumption 1′ (Linking constraint observability; multi-action RMAB setting). Suppose that we
are in a multi-action RMAB setting. When the agent lands in a state s = (x, w), it observes the
constraint right-hand-side b(w) ∈ R.

5

In the numerical example applications of Section 6, for illustrative simplicity, we choose to focus on
single-constraint settings where Assumption 1′ is applicable. Note that the “difficulty” of WCMDPs
is largely determined by the number of subproblems and the size of the feasible set compared to
the full action space, not necessarily by the number of linking constraints. In each of our example
applications, Assumption 1 naturally holds: for example, in the EV charging problem, there are a
limited number of available charging stations (which is always observable).

An important part of WCQL is to track an estimate of Qλ∗
(s,a), the result of the Lagrangian dual

problem. To approximate this value, we replace the minimization over all λ ≥ 0 by optimization over
a finite set of possible multipliers Λ, which we consider as an input to our algorithm. In practice, we
find that it is most straightforward to use λ = λ′1, where 1 ∈ RL is the all ones vector and λ′ ∈ R,
but from the algorithm’s point of view, any set Λ of nonnegative multipliers will do.

We denote an experience tuple for the entire WCMDP by τ = (s,a, r, b, s′). Similarly, we let
τi = (si, ai, ri, s

′
i) be the experience relevant to subproblem i, as described in (4). Note that b is

excluded from τi because it does not enter subproblem Bellman recursion.

4.2 Algorithm Description

The WCQL algorithm can be decomposed into three main steps.

Subproblems and subagents. First, for each subproblem i ∈ {1, 2, . . . , N} and every λ ∈ Λ, we
attempt to learn an approximation of Qλ

i (si, ai) from (4), which are the Q-values of the unconstrained
subproblem associated with λ. We do this by running an instance of Q-learning with learning rate βn.
Letting Qλ

i,n be the estimate at iteration n, the update is given by:

Qλ
i,n+1(si, ai) = Qλ

i,n(si, ai) + βn(si, ai)
[
yλi,n −Qλ

i,n(si, ai)
]
, (7)

where the target value is defined as yλi,n = ri(si, ai)− λ⊺d(si, ai) + γmaxa′
i
Qλ

i,n(s
′
i, a

′
i).

Note that although we are running several Q-learning instances, they all make use of a common
experience tuple τ split across subproblems, where subproblem i receives the portion τi. We remind
the reader that each subproblem is dramatically simpler than the full MDP, since it operates on smaller
state and action spaces (Si and Ai) instead of S and A.

We refer to the subproblem Q-learning instances as subagents. Therefore, each subagent is associated
with a subproblem i and a penalty λ ∈ Λ and aims to learn Qλ

i .

Learning the Lagrangian bounds. Next, at the level of the “main” agent, we combine the approxi-
mations Qλ

i,n+1 learned by the subagents to form an estimate of the Lagrangian action-value function
Qλ, as defined in (5). To do so, we first estimate the quantity B(w) of Proposition 1. This can be
done using a stochastic approximation step with a learning rate ηn, as follows:

Bn+1(w) = Bn(w) + ηn(w)
[
b(w) + γBn(w

′)−Bn(w)
]
, (8)

where we recall that w and w′ come from the experience tuple τ , embedded within s and s′. Now,
using Proposition 1, we approximate Qλ(s,a) using

Qλ
n+1(s,a) = λ⊺Bn+1(w) +

N∑
i=1

Qλ
i,n+1(si, ai). (9)

Finally, we estimate an upper bound on Q∗ by taking the minimum over Λ:

Qλ∗

n+1(s,a) = min
λ∈Λ

Qλ
n+1(s,a). (10)

Q-learning guided by Lagrangian bounds. We would now like to make use of the learned upper
bound Qλ∗

n+1(s,a) when performing Q-learning on the full problem. Denote the WCQL estimate
of Q∗ at iteration n by Q′

n. We first make a standard update towards an intermediate value Qn+1

using learning rate αn:
Qn+1(s,a) = Q′

n(s,a) + αn(s,a)
[
yn −Q′

n(s,a)
]
. (11)

where yn = r(s,a) + γmaxa′∈A(s′) Q
′
n(s

′,a′). To incorporate the bounds that we previously
estimated, we then project Qn+1(s,a) to satisfy the estimated upper bound:

Q′
n+1(s,a) = Qλ∗

n+1(s,a) ∧Qn+1(s,a), (12)

6

where a ∧ b = min{a, b}. The agent now takes an action in the environment using a behavioral
policy, such as the ϵ-greedy policy on Q′

n+1(s,a).

The motivation behind this projection is as follows: since the subproblems are significantly smaller in
terms of state and action spaces compared to the main problem, the subagents are expected to quickly
converge. As a result, our upper bound estimates will get better, improving the the action-value
estimate of the main Q-learning agent through the projection step. In addition, WCQL can enable a
sort of “generalization” to unseen states by leveraging the weakly-coupled structure. The following
example illustrates this piece of intuition.

Example 1. Suppose a WCMDP has N = 3 subproblems with Si = {1, 2, 3} and Ai = {1, 2} for
each i, leading to 33 · 23 = 216 total state action pairs. For the sake of illustration, suppose that the
agent has visited states s = (1, 1, 1), s = (2, 2, 2), and s = (3, 3, 3) and both actions from each of
these states. This means that from the perspective of every subproblem i, the agent has visited all
state-action pairs in Si ×Ai, which is enough information to produce an estimate of Qλ

i (si, ai) for
all (si, ai) and, interestingly, an estimate of Qλ∗

(s,a) for every (s,a), despite having visited only a
small fraction (6/216) of the possible state-action pairs. This allows the main Q-learning agent to
make use of upper bound information at every state-action pair via the projection step (12). The main
intuition is that these upper bound values are likely to be more sensible than a randomly initialized
value, and therefore, can aid learning.

The above example is certainly contrived, but hopefully illustrates the benefits of decomposition and
subsequent projection. We note that, especially in settings where the limiting factor is the ability to
collect enough experience, one can trade-off extra computation to derive these bounds and improve
RL performance without the need to collect additional experience. The full pseudo-code of the
WCQL algorithm is available in Appendix B.

4.3 Convergence Analysis

In this section, we show that WCQL converges to Q∗ with probability one. First, we state a standard
assumption on learning rates and state visitation.

Assumption 2. We assume the following: (i)
∑∞

n=0 αn(s,a) = ∞,
∑∞

n=0 α
2
n(s,a) < ∞ for all

(s,a) ∈ S ×A; (ii) analogous conditions to (i) hold for {βn(si, ai)}n and {ηn(w)}n, and (iii) the
behavioral policy is such that all state-action pairs (s,a) are visited infinitely often w.p.1.

Theorem 1. Under Assumptions 1 and 2, the following statements hold with probability one.

(i) For each i and λ ∈ Λ, limn→∞ Qλ
i,n(si, ai) = Qλ

i (si, ai) for all (si, ai) ∈ Si ×Ai.

(ii) For each λ ∈ Λ, limn→∞ Qλ
n(s,a) ≥ Q∗(s,a) for all (s,a) ∈ S ×A.

(iii) limn→∞ Q′
n(s,a) = Q∗(s,a) for all (s,a) ∈ S ×A.

Theorem 1 ensures that each subagent’s value functions converge to the subproblem optimal value.
Furthermore, it shows that asymptotically, the Lagrangian action-value function given by (9) will be
an upper bound on the optimal action-value function Q∗ of the full problem and that our algorithm
will converge to Q∗.

5 Weakly Coupled DQN

In this section, we propose our main algorithm weakly coupled DQN (WCDQN), which integrates the
main idea of WCQL into a function approximation setting. WCDQN guides DQN using Lagrangian
relaxation bounds, implemented using a constrained optimization approach.

Networks. Analogous to WCQL, WCDQN has a main network Q′(s,a; θ) that learns the action
value of the full problem. In addition to the main network, WCDQN uses a subagent network
Qλ

i (si, ai; θU) network to learn the subproblem action-value functions Qλ
i . As in standard DQN, we

also have θ− and θ−U , which are versions of θ and θU frozen from a previous iteration and used for
computing target values [43]. The inputs to this network are (i, λ, si, ai), meaning that we can use a
single network to learn the action-value function for all subproblems and λ ∈ Λ simultaneously. The

7

Lagrangian upper bound and the best upper bound estimates are:

Qλ(s,a; θ−U) = λ⊺B(w) +

N∑
i=1

Qλ
i (si, ai; θ

−
U) and Qλ∗

(s,a; θ−U) = min
λ∈Λ

Qλ(s,a; θ−U). (13)

Loss functions. Before diving into the training process, we describe the loss functions used to train
each network, as they are instructive toward understanding the main idea behind WCDQN (and
how it differs from standard DQN). Consider a behavioral distribution ρ for state-action pairs and a
distribution µ over the multipliers Λ.

lU (θU) = Es,a∼ρ,λ∼µ

[∑N
i=1

(
yλi −Qλ

i (si, ai; θU)
)2]

, (14)

where the (ideal) target value is

yλi = ri(si,ai)− λai + γ E
[
maxa′

i∈Ai
Qλ

i (s
′
i, a

′
i; θ

−
U)
]
. (15)

For the main agent, we propose a loss function that adds a soft penalty for violating the upper bound:

l(θ) = Es,a∼ρ,λ∼µ

[(
y −Q′(s,a; θ)

)2
+ κU

(
Q′(s,a; θ)− yU

)2
+

]
, (16)

where (·)+ = max(·, 0), κU is a coefficient for the soft penalty, and

y = r(s,a) + γE
[
maxa′∈A(s′) Q

′(s′,a′; θ−)
]
, (17)

yU = r(s,a) + γE
[
maxa′∈A Qλ∗

(s′,a′; θ−U)
]
. (18)

The penalty encourages the network to satisfy the bounds obtained from the Lagrangian relaxation.

Training process. The training process resembles DQN, with a few modifications. At any iteration,
we first take an action using an ϵ-greedy policy using the main network over the feasible actions,
store the obtained transition experience τ in the buffer, and update the estimate of B(w) following
(8).2 Each network is then updated by taking a stochastic gradient descent step on its associated loss
function, where the expectations are approximated by sampling minibatches of experience tuples τ
and λ. The penalty coefficient κU can either be held constant to a positive value or annealed using a
schedule throughout the training. The full details are shown in Algorithm 1 and some further details
are given in Appendix C.

6 Numerical Experiments

In this section, we evaluate our algorithms on three different WCMDPs. First, we evaluate WCQL on
an electric vehicle (EV) deadline scheduling problem with multiple charging spots and compare its
performance with several other tabular algorithms: Q-learning (QL), Double Q-learning (Double-QL)
[22], speedy Q-learning (SQL) [4], bias-corrected Q-learning (BCQL) [40], and Lagrange policy Q-
learning (Lagrangian QL) [34]. We then evaluate WCDQN on two problems, multi-product inventory
control and online stochastic ad matching, and compare against standard DQN, Double-DQN, and
the optimality-tightening DQN (OTDQN) algorithm3 of He et al. [25] as baselines. Further details on
environment and algorithmic parameters are in Appendix D.

EV charging deadline scheduling [63]. In this problem, a decision maker is responsible for charging
electric vehicles (EV) at a charging service center that consists of N = 3 charging spots. An EV enters
the system when a charging spot is available and announces the amount of electricity it needs to be
charged, denoted Bt, along with the time that it will leave the system, denoted Dt. The decision maker
also faces exogenous, random Markovian processing costs ct. At each period, the action is to decide
which EVs to charge in accordance with the period’s capacity constraint. For each unit of power pro-
vided to an EV, the service center receives a reward 1− ct. However, if the EV leaves the system with
an unfulfilled charge, a penalty is assessed. The goal is to maximize the revenue minus penalty costs.

2Here we use a tabular representation for B(w) since our example applications do not necessarily have a
large exogenous space W . When required, WCDQN can be extended to use function approximation (i.e., neural
networks) to learn B(w).

3We include OTDQN as a baseline because it also makes use of constrained optimization during training.

8

Algorithm 1 Weekly Coupled DQN

1: Input: Lagrange multiplier set Λ and a distribution µ over Λ, penalty coefficient κU , initialized
replay buffer D, target network update frequency Ctarget, initial state distribution S0.

2: Initialize main Q-network Q′(·, · ; θ) and subagent network Qλ
i (·, · ; θU)

3: Initialize target network weights θ− = θ and θ−U = θU .
4: for n = 0, 1, 2, . . . do
5: Take an ϵ-greedy behavioral action an with respect to the main network Q′(sn,a; θ).
6: Store the observed transition τn into the replay buffer D.
7: // Update subagents and combine results to estimate upper bound
8: Sample a minibatch of transitions τ from D along with a sample of λ from µ.
9: for i = 1, 2, . . . , N do

10: Compute targets yλi using (15) and take an optimization step on subagent loss (14).
11: end for
12: Update right-hand-side estimate Bn+1(wn) according to (8).
13: Using (13), combine subproblems to obtain Lagrangian upper bound Qλ∗

(s,a; θ−U).
14: // Main agent update with upper bound penalty loss
15: Compute y and yU using (17) and (18), then take an optimization step on the main loss (16).
16: Update θ− = θ and θ−U = θU every Ctarget steps.
17: end for

Multi-product inventory control with an exogenous production rate [27]. Consider the problem
of resource allocation for a facility that manufactures N = 10 products. Each product i has an
independent exogenous demand given by Di, i = 1, . . . , N . To meet these demands, the products
are made to stock. Limited storage Ri is available for each product, and holding a unit of inventory
per period incurs a cost hi. Unmet demand is backordered at a cost bi if the number of backorders
is less than the maximum number of allowable backorders Mi. Otherwise, it is lost with a penalty
cost li. The DM needs to allocate a resource level ai ∈ {0, 1, . . . , U} for product i from a shared
finite resource quantity U in response to changes in the stock level of each product, denoted by
xi ∈ Xi = {−Mi,−Mi + 1, . . . , Ri}. A negative stock level corresponds to the number of
backorders. Allocating a resource level ai yields a production rate given by a function ρi(ai, pi)
where pi is an exogenous Markovian noise that affects the production rate. The goal is to minimize
the total cost, which consists of holding, back-ordering, and lost sales costs.

Online stochastic ad matching [18]. We study the problem of matching N = 6 advertisers to
arriving impressions. In each period, an impression of type et arrives according to a Markov chain.
An action at,i ∈ {0, 1} assigns impression et to advertiser i, with a constraint that exactly one
advertiser is selected:

∑N
i=1 at,i = 1. Advertiser states represent the number of remaining ads to

display and evolves according to st+1,i = st,i − at,i. The objective is to maximize the discounted
sum of expected rewards for all advertisers.

In Figure 2, we show how WCQL’s projection method helps it learn a more accurate Q function more
quickly than competing tabular methods. The first panel, Figure 2A, shows an example evolution
of WCQL’s projected value function Q′, along with the evolution of the upper bound. We compare
this to the evolution of the action-value function in absence of the projection step. In the second
panel, Figure 2B, we plot the relative error between the learned value functions of various algorithms
compared to the optimal value function. Both plots are from the EV charging example. Detailed
descriptions of the results are given in the figure’s caption.

The results of our numerical experiments are shown in Figure 3. We see that in both the tabular
and the function approximation cases, our algorithms outperformed the baselines, with WCQL
and WCDQN achieving the best mean episode total rewards amongst all problems. From Figure
3A, we see that although the difference between WCQL and Lagrangian QL is small towards the
end of the training process, there are stark differences earlier on. In particular, the performance
curve of WCQL shows significantly lower variance, suggesting more robustness across random
seeds. Given that WCQL and Lagrangian QL differ only in the projection step, we can attribute the
improved stability to the guidance provided by the Lagrangian bounds. Figure 3B shows that for the
multi-product inventory problem, the OTDQN, DQN, and Double DQN baselines show extremely
noisy performance compared to WCDQN, whose significantly better and stable performance is likely

9

10
2

10
3

10
4

10
5

Steps

10

5

0

5

10

15

20

25

Q
-v

al
ue

Q * [s, a]
Q[s, a]
QL[s, a]
Q * [s, a]

(A) WCQL learning process illustration

0 5 10 15 20 25 30
Episodes (x200)

1.0

1.2

1.4

1.6

1.8

R
el

at
iv

e
E

rr
or

QL
Double-QL
SQL
BCQL
WCQL

(B) Relative error comparison

Figure 2: Behavior of WCQL’s learning process compared to other tabular methods. In Figure 2A, we show
an example of the evolution of quantities associated with WCQL for a randomly selected state-action pair in
the EV charging problem: upper bound (blue), WCQL Q-value (orange line with ‘x’ marks indicating the points
projected by the bound), standard Q-learning (green) and the optimal action-value (red). Note that sometimes the
orange line appears above the blue line since WCQL’s projection step is asynchronous, i.e., the projections are
made only if the state is visited by the behavioral policy. Notice at the last marker, the bound moved the Q-value
in orange to a “good” value, relatively nearby the optimal value. WCQL’s Q-value then evolves on its own and
eventually converges. On the other hand, standard QL (green), which follows the same behavior policy as WCQL,
is still far from optimal. In Figure 2B, we show the relative error, defined as ∥Vn − V ∗∥2/∥V ∗∥2, where Vn

and V ∗ are the state value functions derived from Q-iterate on iteration n and Q∗, respectively. WCQL exhibits
the steepest decline in relative error compared to the other algorithms. Note that since Lagrangian QL acts based
on the Q-values of the subproblems, there is no Q-value for this algorithm on which to compute a relative error.

due to the use of faster converging subagents and better use of the collected experience. Similarly,
in the online stochastic ad matching problem, WCDQN significantly outperforms all the baselines.

0 10 20 30 40 50 60
Episodes (x100)

5.5

6.0

6.5

7.0

7.5

To
ta

l R
ew

ar
d

QL
Double-QL
SQL
BCQL
Lagrangian QL
WCQL

(A) EV charging

0 10 20 30 40 50
Episodes (x100)

1400

1200

1000

800

600

400

To
ta

l R
ew

ar
d

DQN
Double DQN
OTDQN
WCDQN

(B) Multi-product inventory control

0 20 40 60 80 100
Episodes (x100)

60

70

80

90

100

To
ta

l R
ew

ar
d

DQN
Double DQN
OTDQN
WCDQN

(C) Online ad matching

Figure 3: Benchmarking results for the WCQL (EV charging) and WCDQN (multi-product inventory control,
online ad matching) against baseline methods. The plots show mean total rewards and their 95% confidence
intervals across 5 independent replications.

7 Conclusion

In this study, we propose the WCQL algorithm for learning in weakly coupled MDPs and we show
that our algorithm converges to the optimal action-value function. We then propose WCDQN, which
extends the idea behind the WCQL algorithm to the function approximation case. Our algorithms are
model-free and learn upper bounds on the optimal action-value using a combination of a Lagrangian
relaxation and Q-learning. These bounds are then used within a constrained optimization approach to
improve performance and make learning more efficient. Our approaches significantly outperforms
competing approaches on several benchmark environments.

10

Acknowledgments and Disclosure of Funding

This research was supported in part by the University of Pittsburgh Center for Research Computing,
RRID:SCR_022735, through the resources provided. Specifically, this work used the H2P cluster,
which is supported by NSF award number OAC-2117681.

References
[1] Daniel Adelman and Adam J Mersereau. Relaxations of weakly coupled stochastic dynamic

programs. Operations Research, 56(3):712–727, 2008.

[2] Eitan Altman. Constrained Markov decision processes. Routledge, 2021.

[3] Konstantin E Avrachenkov and Vivek S Borkar. Whittle index based Q-learning for restless
bandits with average reward. Automatica, 139:110186, 2022.

[4] M. G. Azar, R. Munos, M. Ghavamzadaeh, and H. J. Kappen. Speedy Q-learning. In Advances
in Neural Information Processing Systems 24, 2011.

[5] Marc G Bellemare, Will Dabney, and Mark Rowland. Distributional reinforcement learning.
MIT Press, 2023.

[6] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-dynamic programming, volume 5. Athena Scientific
Belmont, MA, 1996.

[7] Dimitris Bertsimas and Adam J Mersereau. A learning approach for interactive marketing to a
customer segment. Operations Research, 55(6):1120–1135, 2007.

[8] Jalaj Bhandari and Daniel Russo. Global optimality guarantees for policy gradient methods.
arXiv preprint arXiv:1906.01786, 2019.

[9] Craig Boutilier and Tyler Lu. Budget allocation using weakly coupled, constrained Markov
decision processes. 2016.

[10] Craig Boutilier, Richard Dearden, and Moisés Goldszmidt. Stochastic dynamic programming
with factored representations. Artificial Intelligence, 121(1-2):49–107, 2000.

[11] David B Brown and Jingwei Zhang. On the strength of relaxations of weakly coupled stochastic
dynamic programs. Operations Research, 2022.

[12] David B Brown, James E Smith, and Peng Sun. Information relaxations and duality in stochastic
dynamic programs. Operations Research, 58(4-part-1):785–801, 2010.

[13] Hyeong Soo Chang, Pedram Jaefari Fard, Steven I Marcus, and Mark Shayman. Multitime scale
Markov decision processes. IEEE Transactions on Automatic Control, 48(6):976–987, 2003.

[14] Simon Du, Akshay Krishnamurthy, Nan Jiang, Alekh Agarwal, Miroslav Dudik, and John
Langford. Provably efficient RL with rich observations via latent state decoding. In International
Conference on Machine Learning, pages 1665–1674. PMLR, 2019.

[15] Gabriel Dulac-Arnold, Nir Levine, Daniel J Mankowitz, Jerry Li, Cosmin Paduraru, Sven Gowal,
and Todd Hester. Challenges of real-world reinforcement learning: definitions, benchmarks and
analysis. Machine Learning, 110(9):2419–2468, 2021.

[16] Ibrahim El Shar and Daniel Jiang. Lookahead-bounded Q-learning. In International Conference
on Machine Learning, pages 8665–8675. PMLR, 2020.

[17] Eyal Even-Dar, Yishay Mansour, and Peter Bartlett. Learning rates for Q-learning. Journal of
Machine Learning Research, 5(1), 2003.

[18] Jon Feldman, Aranyak Mehta, Vahab Mirrokni, and Shan Muthukrishnan. Online stochastic
matching: Beating 1-1/e. In 2009 50th Annual IEEE Symposium on Foundations of Computer
Science, pages 117–126. IEEE, 2009.

11

[19] Jing Fu, Yoni Nazarathy, Sarat Moka, and Peter G Taylor. Towards Q-learning the Whittle index
for restless bandits. In 2019 Australian & New Zealand Control Conference (ANZCC), pages
249–254. IEEE, 2019.

[20] Kevin D Glazebrook, Diego Ruiz-Hernandez, and Christopher Kirkbride. Some indexable
families of restless bandit problems. Advances in Applied Probability, 38(3):643–672, 2006.

[21] Assaf Hallak, Dotan Di Castro, and Shie Mannor. Contextual Markov decision processes. arXiv
preprint arXiv:1502.02259, 2015.

[22] Hado Hasselt. Double Q-learning. Advances in Neural Information Processing Systems, 23,
2010.

[23] Milos Hauskrecht, Nicolas Meuleau, Leslie Pack Kaelbling, Thomas Dean, and Craig Boutilier.
Hierarchical solution of Markov decision processes using macro-actions. In Uncertainty in
Artificial Intelligence, pages 220–229, 1998.

[24] Jeffrey Thomas Hawkins. A Langrangian decomposition approach to weakly coupled dynamic
optimization problems and its applications. PhD thesis, Massachusetts Institute of Technology,
2003.

[25] Frank S He, Yang Liu, Alexander G Schwing, and Jian Peng. Learning to play in a day: Faster
deep reinforcement learning by optimality tightening. arXiv preprint arXiv:1611.01606, 2016.

[26] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney,
Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improve-
ments in deep reinforcement learning. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

[27] David J Hodge and Kevin D Glazebrook. Dynamic resource allocation in a multi-product
make-to-stock production system. Queueing Systems, 67(4):333–364, 2011.

[28] Yu-Pin Hsu. Age of information: Whittle index for scheduling stochastic arrivals. In 2018 IEEE
International Symposium on Information Theory (ISIT), pages 2634–2638. IEEE, 2018.

[29] Weici Hu and Peter Frazier. An asymptotically optimal index policy for finite-horizon restless
bandits. arXiv preprint arXiv:1707.00205, 2017.

[30] T. Jaakkola, M. I. Jordan, and S. P. Singh. Convergence of stochastic iterative dynamic
programming algorithms. In Advances in Neural Information Processing Systems, pages
703–710, 1994.

[31] Daniel R Jiang and Warren B Powell. An approximate dynamic programming algorithm for
monotone value functions. Operations Research, 63(6):1489–1511, 2015.

[32] Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforcement
learning with linear function approximation. In Conference on Learning Theory, pages 2137–
2143. PMLR, 2020.

[33] Michael Kearns and Daphne Koller. Efficient reinforcement learning in factored MDPs. In
IJCAI, volume 16, pages 740–747, 1999.

[34] Jackson A Killian, Arpita Biswas, Sanket Shah, and Milind Tambe. Q-learning Lagrange
policies for multi-action restless bandits. In Proceedings of the 27th ACM SIGKDD Conference
on Knowledge Discovery & Data Mining, pages 871–881, 2021.

[35] Jackson A Killian, Lily Xu, Arpita Biswas, and Milind Tambe. Robust restless bandits: Tackling
interval uncertainty with deep reinforcement learning. arXiv preprint arXiv:2107.01689, 2021.

[36] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[37] Sumit Kunnumkal and Huseyin Topaloglu. Using stochastic approximation methods to compute
optimal base-stock levels in inventory control problems. Operations Research, 56(3):646–664,
2008.

12

[38] Harold Kushner and G George Yin. Stochastic approximation and recursive algorithms and
applications, volume 35. Springer Science & Business Media, 2003.

[39] Jeongyeol Kwon, Yonathan Efroni, Constantine Caramanis, and Shie Mannor. RL for latent
MDPs: Regret guarantees and a lower bound. Advances in Neural Information Processing
Systems, 34:24523–24534, 2021.

[40] D. Lee and W. B. Powell. Bias-corrected Q-learning with multistate extension. IEEE Transac-
tions on Automatic Control, 2019.

[41] Keqin Liu and Qing Zhao. Indexability of restless bandit problems and optimality of Whittle
index for dynamic multichannel access. IEEE Transactions on Information Theory, 56(11):
5547–5567, 2010.

[42] Rahul Meshram, D Manjunath, and Aditya Gopalan. On the Whittle index for restless multi-
armed hidden Markov bandits. IEEE Transactions on Automatic Control, 63(9):3046–3053,
2018.

[43] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.
Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[44] Aditya Mohan, Amy Zhang, and Marius Lindauer. Structure in reinforcement learning: A
survey and open problems. arXiv preprint arXiv:2306.16021, 2023.

[45] Selvaprabu Nadarajah and Andre Augusto Cire. Self-adapting network relaxations for weakly
coupled Markov decision processes. Available at SSRN, 2021.

[46] Khaled Nakhleh, Santosh Ganji, Ping-Chun Hsieh, I Hou, Srinivas Shakkottai, et al. Neurwin:
Neural Whittle index network for restless bandits via deep RL. Advances in Neural Information
Processing Systems, 34:828–839, 2021.

[47] Ian Osband and Benjamin Van Roy. Near-optimal reinforcement learning in factored MDPs.
Advances in Neural Information Processing Systems, 27, 2014.

[48] Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped DQN. Advances in Neural Information Processing Systems, 29, 2016.

[49] Warren Powell, Andrzej Ruszczyński, and Huseyin Topaloglu. Learning algorithms for separable
approximations of discrete stochastic optimization problems. Mathematics of Operations
Research, 29(4):814–836, 2004.

[50] Francisco Robledo, Vivek Borkar, Urtzi Ayesta, and Konstantin Avrachenkov. QWI: Q-learning
with whittle index. ACM SIGMETRICS Performance Evaluation Review, 49(2):47–50, 2022.

[51] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay.
arXiv preprint arXiv:1511.05952, 2015.

[52] Lauren N Steimle, David L Kaufman, and Brian T Denton. Multi-model Markov decision
processes. IISE Transactions, 53(10):1124–1139, 2021.

[53] Kalyan Talluri and Garrett Van Ryzin. An analysis of bid-price controls for network revenue
management. Management Science, 44(11-part-1):1577–1593, 1998.

[54] Huseyin Topaloglu. Using Lagrangian relaxation to compute capacity-dependent bid prices in
network revenue management. Operations Research, 57(3):637–649, 2009.

[55] J. N. Tsitsiklis. Asynchronous stochastic approximation and Q-learning. Machine Learning, 16
(3):185–202, 1994.

[56] Tom Van de Wiele, David Warde-Farley, Andriy Mnih, and Volodymyr Mnih. Q-learning in enor-
mous action spaces via amortized approximate maximization. arXiv preprint arXiv:2001.08116,
2020.

[57] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double
Q-learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 30, 2016.

13

[58] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Freitas.
Dueling network architectures for deep reinforcement learning. In International Conference on
Machine Learning, pages 1995–2003. PMLR, 2016.

[59] C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, King’s College, Cambridge,
UK, 1989.

[60] Richard R Weber and Gideon Weiss. On an index policy for restless bandits. Journal of Applied
Probability, 27(3):637–648, 1990.

[61] Peter Whittle. Restless bandits: Activity allocation in a changing world. Journal of Applied
Probability, 25(A):287–298, 1988.

[62] Guojun Xiong, Shufan Wang, and Jian Li. Learning infinite-horizon average-reward restless
multi-action bandits via index awareness. Advances in Neural Information Processing Systems,
35:17911–17925, 2022.

[63] Zhe Yu, Yunjian Xu, and Lang Tong. Deadline scheduling as restless bandits. IEEE Transactions
on Automatic Control, 63(8):2343–2358, 2018.

[64] Xiangyu Zhang and Peter I Frazier. Near-optimality for infinite-horizon restless bandits with
many arms. arXiv preprint arXiv:2203.15853, 2022.

[65] Jiahong Zhou, Shunhui Mao, Guoliang Yang, Bo Tang, Qianlong Xie, Lebin Lin, Xingxing
Wang, and Dong Wang. RL-MPCA: A reinforcement learning based multi-phase computation
allocation approach for recommender systems. In Proceedings of the ACM Web Conference
2023, pages 3214–3224, 2023.

14

Appendix to Weakly Coupled Deep Q-Networks

A Proofs

A.1 Proof of Proposition 1

Proof. We prove part the first part of the proposition (weak duality) by induction. First, define

Q∗
0(s,a) = r(s,a) and Qλ

0 (s,a) = r(s,a) + λ⊺
[
b(w)−

∑N
i=1 d(si, ai)

]
,

and suppose we run value iteration for both systems:

Q∗
t+1(s,a) = r(s,a) + γ E

[
maxa′∈A(s′) Q

∗
t (s

′,a′)
]
,

Qλ
t+1(s,a) = r(s,a) + λ⊺

[
b(w)−

∑N
i=1 d(si, ai)

]
+ γ E

[
maxa′∈A Qλ

t (s
′,a′)

]
.

It is well-known that, by the value iteration algorithm’s convergence,

Q∗(s,a) = lim
t→∞

Q∗
t (s,a) and Qλ(s,a) = lim

t→∞
Qλ

t (s,a).

Consider a state s ∈ S and a feasible action a ∈ A(s). We have,

Qλ
0 (s,a) = r(s,a) + λ⊺

[
b(w)−

∑N
i=1 d(si, ai)

]
≥ r(s,a) = Q∗

0(s,a).

Suppose Qλ
t (s,a) ≥ Q∗

t (s,a) holds for all s ∈ S and a ∈ A(s) for some t > 0 (induction
hypothesis). Then,

Qλ
t+1(s,a) = r(s,a) + λ⊺

[
b(w)−

∑N
i=1 d(si, ai)

]
+ γ E

[
maxa′∈A Qλ

t (s
′,a′)

]
≥ r(s,a) + λ⊺

[
b(w)−

∑N
i=1 d(si, ai)

]
+ γ E

[
maxa′∈A(s′) Q

∗
t (s

′,a′)
]

≥ r(s,a) + γ E
[
maxa′∈A(s′) Q

∗
t (s

′,a′)
]
= Q∗

t+1(s,a).

Thus, it follows that Qλ(s,a) ≥ Q∗(s,a).

For the proof of the second part of the proposition, define

B0(w) = b(w) and Bt+1(w) = b(w) + γ E
[
Bt(w

′)
]
.

We use an induction proof. We have for all (s,a) ∈ S ×A,

Qλ
0 (s,a) = r(s,a) + λ⊺

[
b(w)−

N∑
i=1

d(si, ai)

]

=

N∑
i=1

[
ri(si, ai)− λ⊺d(si, ai)

]
+ λ⊺b(w) =

N∑
i=1

Qλ
0,i(si, ai) + λ⊺B0(w),

where Qλ
0,i(si, ai) = ri(si, ai)− λ⊺d(si, ai). Similarly, for all (s,a) ∈ S ×A,

Qλ
1 (s,a) = r(s,a) + λ⊺

[
b(w)−

N∑
i=1

d(si, ai)

]
+ γ E

[
maxa′∈A Qλ

0 (s
′,a′)

]
=

N∑
i=1

[
ri(si, ai)− λ⊺d(si, ai)

]
+ λ⊺b(w) + γ E

[
max
a′∈A

{
N∑
i=1

Qλ
0,i(s

′
i, a

′
i) + λ⊺B0(w

′)

}]

=

N∑
i=1

[
ri(si, ai)− λ⊺d(si, ai) + γ E

[
maxa′

i∈Ai
Qλ

0,i(s
′
i, a

′
i)
]]

+ λ⊺
(
b(w) + γ E

[
B0(w

′)
])

=

N∑
i=1

Qλ
1,i(si, ai) + λ⊺B1(w).

15

Continuing in this manner, we arrive at Qλ
t (s,a) =

∑N
i=1 Q

λ
t,i(si, ai) + λ⊺Bt(w). Finally, we have

Qλ(s,a) = lim
t→∞

Qλ
t (s,a)

= lim
t→∞

N∑
i=1

Qλ
t,i(si, ai) + λ⊺Bt(w) =

N∑
i=1

Qλ
i (si, ai) + λ⊺B(w),

which follows by the convergence of value iteration.

A.2 Proof of Theorem 1

Proof. First, we define the Bellman operator H:

(HQ′)(s,a) = r(s,a) + γE [maxa′ Q′(s′,a′)] ,

which is known to be a γ-contraction mapping. Next we define the random noise term

ξn(s,a) = γmaxa′ Q′
n(s

′,a′)− γE [maxa′ Q′
n(s

′,a′)] . (19)

Analogously, for subproblem i ∈ {1, . . . , N}, define the subproblem Bellman operator

(HiQ
λ
i)(si, ai) = ri(si, ai)− λ⊺d(si, ai) + γE

[
maxa′

i
Qλ

i (s
′
i, a

′
i)
]
,

and random noise term

ξi,n(si, ai) = γmaxa′
i
Q′

i,n(s
′
i, a

′
i)− γE

[
maxa′

i
Q′

i,n(s
′
i, a

′
i)
]
. (20)

The update rules of WCQL can then be written as

Qn+1(s,a) = (1− αn(s,a))Q
′
n(s,a) + αn(s,a) [(HQ′

n)(s,a) + ξn+1(s,a)] ,

Qλ
i,n+1(si, ai) = Qλ

i,n(si, ai) + βn(si, ai)
[
(HiQ

′
i,n)(si, ai) + ξi,n+1(si, ai)

]
, (21)

Qλ∗

n+1(s,a) = min
λ∈Λ

λ⊺Bn(w) +

N∑
i=1

Qλ
i,n(si, ai),

Q′
n+1(s,a) = min(Qn+1(s,a), Q

λ∗

n+1(s,a)). (22)

Parts (i) and (ii). By the iteration described in (21), we know that for a fixed λ, we are running
Q-learning on an auxiliary MDP with Bellman operator Hi, which encodes a reward ri(si, ai) −
λ⊺d(si, ai) and the transition dynamics for subproblem i. By the standard result for asymptotic
convergence of Q-learning [6], we have

lim
n→∞

Qλ
i,n(si, ai) = Qλ

i (si, ai). (23)

We now prove the result in (ii): limn→∞ Qλ
n(s,a) ≥ Q∗(s,a). Recall that

Qλ
n(s,a) = λ⊺Bn(w) +

N∑
i=1

Qλ
i,n(si, ai).

By standard stochastic approximation theory, limn→∞ Bn(w) = B(w) for all w [38]. Combining
this with (23), we have limn→∞ Qλ

n(s,a) = Qλ(s,a) for all (s,a), and to conclude that this limit
is an upper bound on Q∗(s,a), we apply Proposition 1.

Part (iii). Assume without loss of generality that Q∗(s,a) = 0 for all state-action pairs (s,a). This
can be established by shifting the origin of the coordinate system. We also assume that αn(s,a) ≤ 1
for all (s,a) and n. We proceed via induction. Note that the iterates Q′

n(s,a) are bounded in
the sense that there exists a constant D0 = Rmax/(1 − γ), Rmax = max(s,a) |r(s,a)|, such that
|Q′

n(s,a)| ≤ D0 for all (s,a) and iterations n [17]. Define the sequence Dk+1 = (γ + ϵ)Dk,
such that γ + ϵ < 1 and ϵ > 0. Clearly, Dk → 0. Suppose that there exists a random variable nk,
representing an iteration threshold such that for all (s,a),

−Dk ≤ Q′
n(s,a) ≤ min{Dk, Q

λ∗

n (s,a)}, ∀n ≥ nk.

16

We will show that there exists some iteration nk+1 such that

−Dk+1 ≤ Q′
n(s,a) ≤ min{Dk+1, Q

λ∗

n (s,a)} ∀ (s, a), n ≥ nk+1,

which implies that Q′
n(s,a) converges to Q∗(s,a) = 0 for all (s,a).

By part (ii), we know that for all η > 0, with probability 1, there exists some finite iteration n0 such
that for all n ≥ n0,

Q∗(s,a)− η ≤ Qλ∗

n (s,a). (24)

Now, we define an accumulated noise process started at nk by Wnk,nk
(s,a) = 0, and

Wn+1,nk
(s,a) = (1− αn(s,a))Wn,nk

(s,a) + αn(s,a) ξn+1(s,a), ∀n ≥ nk, (25)
where ξn(s,a) is as defined in (19). Let Fn be the entire history of the algorithm up to the point
where the step sizes at iteration n are selected. Using Corollary 4.1 in [6] which states that under
Assumption 2 on the step size αn(s,a), and if E[ξn(s,a) | Fn] = 0 and E[ξ2n(s,a) | Fn] ≤ An,
where the random variable An is bounded with probability 1, the sequence Wn+1,nk

(s,a) defined in
(25) converges to zero, with probability 1. From our definition of the stochastic approximation noise
ξn(s,a) in (19), we have

E[ξn(s,a) | Fn] = 0 and E[ξ2n(s,a) | Fn] ≤ C(1 + maxs′,a′ Q
′2
n (s′,a′)),

where C is a constant. Then, it follows that
lim
n→∞

Wn,nk
(s,a) = 0 ∀ (s,a), nk.

We use the following lemma from [6] to bound the accumulated noise.

Lemma A.1 (Lemma 4.2 in [6]). For every δ > 0, with probability one, there exists some n′ such
that |Wn,n′(s,a)| ≤ δ, for all n ≥ n′.

Now, by Lemma A.1, let nk′ ≥ max(nk, n0) such that, for all n ≥ nk′ we have
|Wn,nk′ (s,a)| ≤ γϵDk < γDk.

Let νk ≥ nk′ such that, for all n ≥ νk, by (24) we have

γϵDk − γDk ≤ Qλ∗

n (s,a).

Define another sequence Yn that starts at iteration νk.
Yνk

(s,a) = Dk and Yn+1(s,a) = (1− αn(s,a))Yn(s,a) + αn(s,a) γ Dk (26)
Note that it is easy to show that the sequence Yn(s,a) in (26) is decreasing, bounded below by γDk,
and converges to γDk as n → ∞. Now we state the following lemma.

Lemma A.2. For all state-action pairs (s,a) and iterations n ≥ νk, it holds that:

−Yn(s,a) +Wn,νk
(s,a) ≤ Q′

n(s,a) ≤ min{Qλ∗

n (s,a), Yn(s,a) +Wn,νk
(s,a)}. (27)

Proof. We focus on the right hand side inequality, the left hand side can be proved similarly. For the
base case n = νk, the statement holds because Yνk

(s,a) = Dk and Wνk,νk
(s,a) = 0. We assume it

is true for n and show that it continues to hold for n+ 1:
Qn+1(s,a) = (1− αn(s,a))Q

′
n(s,a) + αn(s,a) [(HQ′

n)(s,a) + ξn+1(s,a)]

≤ (1− αn(s,a))min{Qλ∗

n (s,a), Yn(s,a) +Wn,νk
(s,a)}

+ αn(s,a) (HQ′
n)(s,a) + αn(s,a) ξn+1(s,a)

≤ (1− αn(s,a)) (Yn(s,a) +Wn,νk
(s,a)) + αn(s,a) γDk + αn(s,a) ξn+1(s,a)

≤ Yn+1(s,a) +Wn+1,νk
(s,a),

where we used (HQ′
n) ≤ γ∥Q′

n∥ ≤ γDk. Now, we have

Q′
n+1(s,a) = min(Qλ∗

n+1(s,a), Qn+1(s,a))

≤ min{Qλ∗

n+1(s,a), Yn+1(s,a) +Wn+1,νk
(s,a)}.

The inequality holds because
Qn+1(s,a) ≤ Yn+1(s,a) +Wn+1,νk

(s,a),

which completes the proof.

17

Since Yn(s,a) → γDk and Wn,νk
(s,a) → 0, we have

lim supn→∞∥Q′
n∥ ≤ γDk < Dk+1.

Therefore, there exists some time nk+1 such that

−Dk+1 ≤ Q′
n(s,a) ≤ min{Dk+1, Q

λ∗

n (s,a)} ∀ (s,a), n ≥ nk+1,

which completes the induction.

B Weakly Coupled Q-learning Algorithm Description

Algorithm 2 Weekly Coupled Q-learning

1: Input: Lagrange multiplier set Λ, initial state distribution S0.
2: Initialize Q-table estimates Q0, {Q0,i}Ni=1. Set Q′

0 = Q0.
3: for n = 0, 1, 2, . . . do
4: Take an ϵ-greedy behavioral action an with respect to Q′

n(sn,a).
5: // Estimate upper bound by combining subagents
6: for i = 1, 2, . . . , N do
7: Update each subproblem value functions Qλ

i,n+1 according to (7).
8: end for
9: Update right-hand-side estimate Bn+1(wn) according to (8).

10: Using (9) and (10), combine subproblems to obtain Qλ∗

n+1(sn,a) for all a ∈ A(sn).
11: // Main agent standard update, followed by projection
12: Do standard Q-learning update using (11) to obtain Qn+1.
13: Perform upper bound projection step: Q′

n+1(s,a) = Qλ∗

n+1(s,a) ∧Qn+1(s,a)
14: end for

C Weakly Coupled DQN Algorithm Implementation

In our implementation of WCDQN, the subproblem Qλ
i -network in Algorithm 1 follows the standard

network architecture as in [43], where given an input state si the network predicts the Q-values for
all actions. This mandates that all the subproblems have the same number of actions. To address
different subproblem action spaces, we can change the network architecture to receive the state-action
pair (si, ai) as input and output the predicted Q-value. This simple change does not interfere or affect
WCDQN’s main idea.

Our code is available at https://github.com/ibrahim-elshar/WCDQN_NeurIPS.

D Numerical Experiment Details

A discount factor of 0.9 is used for the EV charging problem and 0.99 for the multi-product inventory
and online stochastic ad matching problems. In the tabular setting, we use a polynomial learning rate
that depends on the state-action pairs visitation given by αn(s,a) = 1/νn(s,a)

r, where νn(s,a)
represent the number of times (s,a) has been visited up to iteration n, and r = 0.4. We also use
an ϵ-greedy exploration policy, given by ϵ(s) = 1/ν(s)e, where ν(s) is the number of times the
state s has been visited. We set e = 0.4. In the function approximation setting, we use an ϵ-greedy
policy that decays ϵ from 1 to 0.05 after 30, 000 steps. All state-action value functions are initialized
randomly. Experiments were ran on a shared memory cluster with dual 12-core Skylake CPU (Intel
Xeon Gold 6126 2.60 GHz) and 192 GB RAM/node.

D.1 EV charging deadline scheduling [63]

In this problem, there are in total three charging spots N = 3. Each spot represents a subproblem
with state (ct, Bt,i, Dt,i), where ct ∈ {0.2, 0.5, 0.8} is the exogenous electric cost, Bt,i ≤ 2 is the

18

https://github.com/ibrahim-elshar/WCDQN_NeurIPS

amount of charge required and Dt,i ≤ 4 is the remaining time until the EV leaves the system. The
state space size is 36 for each subproblem. At a given period t, the action of each subproblem is
whether to charge an EV occupying the charging spot at,i = 1 or not at,i = 0. A feasible action
is given by

∑N
i=1 at,i ≤ b(ct), where b(0.2) = 3, b(0.5) = 2, and b(0.8) = 1. The reward of each

subproblem is given by

ri
(
(ct, Bt,i, Dt,i), at,i

)
=

(1− ct) at,i if Bt,i > 0, Dt,i > 1,

(1− ct) at,i − F (Bt,i − at,i) if Bt,i > 0, Dt,i = 1,

0, otherwise,

where F (Bt,i−at,i) = 0.2 (Bt,i−at,i)
2 is a penalty function for failing to complete charging the EV

before the deadline. The endogenous state of each subproblem evolves such that (Bt+1,i, Dt+1,i) =
(Bt,i − at,i, Dt,i − 1) if Dt,i > 1, and (Bt+1,i, Dt+1,i) = (B,D) with probability q(D,B) if
Dt,i ≤ 1, where q(0, 0) = 0.3 and q(B,D) = 0.7/11 for all B > 0 and D > 0. The exogenous
state ct evolves following the transition probabilities given by:

q(ct+1 | ct) =

(
0.4 0.3 0.3
0.2 0.5 0.3
0.6 0.2 0.2

)
.

D.2 Multi-product inventory control with an exogenous production rate [27]

We consider manufacturing N = 10 products. The exogenous demand Dt,i for each product
i ∈ {1, 2, . . . , 10} follows a Poisson distribution with mean value µi. The maximum storage capacity
and the maximum number of allowable backorders (after which lost sales costs incur) for product i
are given by Ri and Mi, respectively.

The state for subproblem i is given by (xt,i, pt), where xt,i ∈ Xi = {−Mi,−Mi +1, . . . , Ri} is the
inventory level for product i, and pt is an exogenous and Markovian noise with support [0.8, 1]. A
negative stock level corresponds to the number of backorders. For subproblem i, the action at,i is the
number of resources allocated to the product i. The maximum number of resources available for all
products is U = 3, so feasible actions must satisfy

∑
i at,i ≤ 3.

Allocating a resource level at,i yields a production rate ρi(at,i, pt) = (12 pt at,i)/(5.971 + at,i).
The cost function for product i is ci(pt, xt,i, at,i) and represents the sum of the holding, backorders,
and lost sales costs. We let hi, bi, and li denote the per-unit holding, backorder, and lost sale costs,
respectively. The cost function ci(xt,i, pt, at,i) is given by,

ci(xt,i, pt, at,i) = hi(xt,i + ρi(at,i, pt))+ + bi(−xt,i − ρi(at,i, pt))+
+ li((Dt,i − xt,i − ρi(at,i, pt))+ −Mi)+,

where (.)+ = max(., 0). We summarize the cost parameters and the mean demand for each product
in Table 1. Finally, the transition for the inventory state of subproblem i is given by

xt+1,i = max
(
min(xt,i + ρi(at,i, pt)−Dt,i, Ri),−Mi

)
,

where the exogenous noise pt evolves according to a transition matrix sampled from a Dirichlet distri-
bution whose parameters are each sampled (once per replication) from a Uniform(1, 5) distribution.

Table 1: Multi-product inventory environment parameters

Product i 1 2 3 4 5 6 7 8 9 10

Storage capacity Ri 20 30 10 15 10 10 25 30 15 10
Maximum backorders Mi 5 5 5 5 5 5 5 5 5 5
Mean demand µi 0.3 0.7 0.5 1.0 1.4 0.9 1.1 1.2 0.3 0.6
Holding cost hi 0.1 0.2 0.05 0.3 0.2 0.5 0.3 0.4 0.15 0.12
Backorder cost bi 3.0 1.2 5.15 1.3 1.1 1.1 10.3 1.05 1. 3.1
Lost sales cost li 30.1 3.3 10.05 3.9 3.7 3.6 40.3 4.5 12.55 44.1

19

D.3 Online stochastic ad matching [18]

In this problem, a platform needs to match N = 6 advertisers to arriving impressions [18]. An
impression et ∈ E = {1, 2, . . . , 5} arrives according to a discrete time Markov chain with transition
probabilities given by q(et+1 | et), where each row of the transition matrix q is sampled from a
Dirichlet distribution whose parameters are sampled (once per replication) from Uniform(1, 20).

The action at,i ∈ {0, 1} is whether to assign impression et to advertiser i or not. The platform can
assign an impression to at most one advertiser:

∑N
i=1 ai,t = 1.

The state of advertiser i, xi,t gives the number of remaining ads to display and evolves according
to xt+1,i = xt,i − at,i. The initial state is x0 = (10, 11, 12, 10, 14, 9). The reward obtained from
advertiser i in state st,i = (xt,i, et) is ri(st,i, at,i) = li,et min(xt,i, at,i), where the parameters li,et
are sampled (once per replication) from Uniform(1, 4).

D.4 Training parameters

Each method was trained for 6,000 episodes for the EV charging problem, 5,000 for the multi-product
inventory control problem, and 10,000 episodes for the online stochastic ad matching problem. The
episode lengths for the EV charging, online ad stochastic ad matching, and multi-product inventory
control problems are 50, 30, and 25, respectively. We performed 5 independent replications.

We use a neural network architecture that consists of two hidden layers, with 64 and 32 hidden units
respectively, for all algorithms. A rectified linear unit (ReLU) is used as the activation function
for each hidden layer. The Adam optimizer [36] with a learning rate of 1.0× 10−4 was used. For
OTDQN, we use the same parameter settings as in He et al. [25].

For WCDQN, we use a Lagrangian multiplier λ ∈ [0, 10], with a 0.01 discretization. We also used an
experience buffer of size 100,000 and initialized it with 10,000 experience tuples that were obtained
using a random policy. For the WCDQN algorithm, we set the penalty coefficient κU to 10, after
performing a small amount of manual hyperparameter tuning on the set {1, 2, 4, 10}.

D.5 Sensitivity analysis of WCQL with respect to the number of subproblems

We study the performance improvement from WCQL over vanilla Q-learning as the number of
subproblems increases for the EV charging problem. We only vary the number of subproblems (from
2 to 5) and keep all other settings as defined in Appendix D.1. The results, given in Table 2, show
that the benefits of WCQL become larger as the number of subproblems increases. This provides
some additional evidence for the practicality of our approach, especially in regimes where standard
methods fail.

Table 2: Cumulative reward and percent improvement of WCQL over QL on the EV-charging problem with a
different number of subproblems.

Algorithm
Number of Subproblems

2 3 4 5

QL 5.39 6.7 5.2 3.26
WCQL 5.35 7.14 6.28 4.66
Percent improvement -0.7% 6.6% 20.8% 42.9%

E Limitations and Future Work

One interesting direction to explore for future work is to address the limitation of learning the
Lagrangian upper bound using a fixed and finite set Λ. Instead, one can imagine the ability to learn
the optimal value of λ and concentrate the computational effort towards learning the Lagrangian
upper bound for this particular λ, which could potentially lead to tighter bounds. A possible approach
is to apply subgradient descent on λ, similar to what is done in Hawkins [24].

20

	Introduction
	Related Literature
	Preliminaries
	Weakly Coupled MDPs
	Q-learning and DQN
	Lagrangian Relaxation

	Weakly Coupled Q-learning
	Setup
	Algorithm Description
	Convergence Analysis

	Weakly Coupled DQN
	Numerical Experiments
	Conclusion
	Proofs
	Proof of Proposition 1
	Proof of Theorem 1

	Weakly Coupled Q-learning Algorithm Description
	Weakly Coupled DQN Algorithm Implementation
	Numerical Experiment Details
	EV charging deadline scheduling yu2018deadline
	Multi-product inventory control with an exogenous production rate hodge2011dynamic
	Online stochastic ad matching feldman2009online
	Training parameters
	Sensitivity analysis of WCQL with respect to the number of subproblems

	Limitations and Future Work

