
LayoutPrompter: Awaken the Design Ability of
Large Language Models

Jiawei Lin∗

Xi’an Jiaotong University
kylelin@stu.xjtu.edu.cn

Jiaqi Guo
Microsoft

jiaqiguo@microsoft.com

Shizhao Sun
Microsoft

shizsu@microsoft.com

Zijiang James Yang
Xi’an Jiaotong University
zijiang@xjtu.edu.cn

Jian-Guang Lou
Microsoft

jlou@microsoft.com

Dongmei Zhang
Microsoft

dongmeiz@microsoft.com

Abstract

Conditional graphic layout generation, which automatically maps user constraints
to high-quality layouts, has attracted widespread attention today. Although re-
cent works have achieved promising performance, the lack of versatility and data
efficiency hinders their practical applications. In this work, we propose Layout-
Prompter, which leverages large language models (LLMs) to address the above
problems through in-context learning. LayoutPrompter is made up of three key
components, namely input-output serialization, dynamic exemplar selection and
layout ranking. Specifically, the input-output serialization component meticulously
designs the input and output formats for each layout generation task. Dynamic
exemplar selection is responsible for selecting the most helpful prompting exem-
plars for a given input. And a layout ranker is used to pick the highest quality
layout from multiple outputs of LLMs. We conduct experiments on all existing
layout generation tasks using four public datasets. Despite the simplicity of our
approach, experimental results show that LayoutPrompter can compete with or
even outperform state-of-the-art approaches on these tasks without any model
training or fine-tuning. This demonstrates the effectiveness of this versatile and
training-free approach. In addition, the ablation studies show that LayoutPrompter
is significantly superior to the training-based baseline in a low-data regime, further
indicating the data efficiency of LayoutPrompter. Our project is available here.

1 Introduction

Layout, which consists of a set of well-arranged graphic elements, plays a critical role in graphic
design. To alleviate the workload of designers and allow non-expert users to engage in the design
process, numerous studies have delved into the automatic layout generation for diverse user needs [7,
15, 18, 19, 21, 22, 39] (i.e., layout constraints). Based on input layout constraints, existing conditional
layout generation tasks can be categorized into the following groups: constraint-explicit layout
generation (e.g., generating layouts conditioned on element types), content-aware layout generation,
and text-to-layout (see the left side of Figure 1 for constraint examples). Early works in this
field [7, 19, 21, 22] primarily focus on individual tasks and develop task-specific model architectures
and optimization methods. More recently, task-generic approaches [15, 12, 14] have emerged.
Compared to task-specific methods, they achieve greater flexibility and controllability on more tasks,
while maintaining the quality of the generated layouts.

∗Work done during an internship at Microsoft Research Asia.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/microsoft/LayoutGeneration/tree/main/LayoutPrompter

Constraint-Explicit Layout Generation

(a) Document Layout (b) Poster Layout

(c) Android Layout (d) Web Layout

Content-Aware Layout Generation

A page introducing the latest
from the ForTheDoers blog. The
page should have a title, and 3
groups to show 3 different posts.
Each group should have one
image, some text boxes to show
the time and headline of the post,
and one button to click to check
the post.

Text-to-Layout

LayoutPrompter

D
ynam

ic Exem
plar

Selection

Input-O
utput

Serialization

LLM
Generation Conditioned on Types toolbar icon

Generation Conditioned on Types and Sizes toolbar (90,12) Generation Conditioned on Relationships

toolbar icon toolbar top canvas icon small toolbar
Layout Completion toolbar (0,5,90,12)

Layout Refinement
toolbar (1,4,88,10) icon (0,6,14,11)

Generation Conditioned on
Types

toolbar icon

Generation Conditioned on
Types and Sizes

toolbar (90,12) icon (12,12)

Generation Conditioned on Relationships

toolbar icon toolbar top canvas icon small toolbar

Layout Completion
toolbar (0,5,90,12)

Layout Refinement
toolbar (1,4,88,10) icon (0,6,14,11)

Layout Ranker
Figure 1: LayoutPrompter is a versatile method for graphic layout generation, capable of solving
various conditional layout generation tasks (as illustrated on the left side) across a range of layout
domains (as illustrated on the right side) without any model training or fine-tuning.

Although state-of-the-art methods [15, 12, 14, 9, 24] have achieved promising results, they still suffer
from some limitations that impede their applications in real-world scenarios. First, the previous
approaches struggle to simultaneously cope with all the layout generation tasks depicted in Figure 1.
They are typically tailored for specific tasks and cannot be applied to others. For instance, the
state-of-the-art diffusion-based model LayoutDM [14] proposes to inject explicit layout constraints
through masking or logit adjustment during inference, but it fails to do so for implicit or vague
constraints, e.g., constraints expressed in natural language (i.e., text-to-layout). Consequently, distinct
models need to be deployed for different tasks, leading to inconvenience. This motivates us to explore
a more versatile approach for layout generation. Second, the existing methods are not data-efficient
either. They usually necessitate extensive constraint-layout pair data for model training. For example,
LayoutFormer++ [15] relies on the publaynet dataset [40] with a size of 300K for training to generate
aesthetically pleasing document layouts. However, collecting such large datasets for some low-
resource layout domains (e.g., poster layouts) is prohibitively expensive. Besides, even if such a
dataset is available, training is time-consuming and costly. Hence, there is a pressing need to develop
a data-efficient layout generation method.

In this work, we consider leveraging the powerful pre-trained large language models (LLMs) to
address the above problems. The intuition behind is as follows. First, recent research has shown the
versatility of LLMs in various tasks [28, 13, 1, 38]. By carefully designing input-output formats, these
tasks can be converted into sequence-to-sequence generation problems and effectively addressed by
LLMs. This emerging trend inspires us to utilize LLMs to tackle all conditional layout generation
tasks in a unified manner. Second, since the training corpus contains layout source code [28, 4]
(e.g., HTML code and XML code), LLMs have acquired some layout-related knowledge during
pre-training. For example, they may inherently possess the ability to align graphic elements and
avoid unnecessary overlap between them, which is beneficial for producing high-quality and visually
appealing layouts. Consequently, an LLMs-based approach holds promise to enhance data efficiency
compared to existing models that are trained from scratch. Third, an additional advantage of LLMs
lies in their remarkable in-context learning performance [3, 28, 36, 35, 13]. It means that instead
of fine-tuning LLMs individually for each layout generation task, we can simply prompt them to
perform the desired task with a few input-output demonstrations. This characteristic further allows
LLMs to generate layouts in a training-free manner without any parameter updates.

To this end, we propose LayoutPrompter (see Figure 1). It formulates all conditional layout generation
tasks as sequence-to-sequence transformation problems and leverages LLMs to tackle them through
in-context learning. To unleash the full potential of LLMs for layout generation, two key issues need
to be addressed. First, how to awaken the layout-related knowledge in LLMs for achieving decent
performance? Second, how to facilitate LLMs understanding diverse user constraints and layout
characteristics in distinct domains? LayoutPrompter tackles the two issues with the input-output
serialization module and the dynamic exemplar selection module, respectively. I. Input-Output
Serialization. Since prevalent LLMs can only read token sequences, this module is responsible for
representing user constraints and layouts as sequences so that LLMs can sufficiently exploit their

2

Methods Versatile Data-Efficient Training-Free

LayoutTransformer [7], BLT [19], and so on [9, 24, 16, 30] ✘ ✘ ✘

LayoutFormer++ [15], LayoutDM [14], LGDM [12] partially ✘ ✘

LayoutPrompter (ours) ✔ ✔ ✔

Table 1: A comparison between existing conditional layout generation methods and LayoutPrompter.

related knowledge. To represent input layout constraints as sequences, we borrow the successful
experience of LayoutFormer++ [15], where they present two simple but effective principles (i.e.,
constraint representation and constraint combination) to serialize constraints. We experimentally
find that the serialization scheme is also effective for LLMs. To represent layouts as sequences, our
principle is to convert them into a format resembling what LLMs have encountered during pre-training,
thereby leveraging the existing layout-related knowledge within LLMs. Specifically, we serialize the
layout into the corresponding source code (e.g., HTML) to obtain the output sequence. II. Dynamic
Exemplar Selection. This module is used to select prompting exemplars that have similar layout
constraints to the test samples. In contrast to random exemplars, dynamic exemplars ensure that LLMs
receive the most relevant context, so they can better comprehend the desired constraints and produce
plausible layouts accordingly. To support this technique, we develop an evaluation suite to measure
the constraint similarities between a given test sample and all candidate exemplars from the training
set. Then, we select those with the highest similarity scores as prompting exemplars. In addition,
we introduce a layout ranker to further improve LayoutPrompter’s performance. Considering that
LLMs can produce distinct outputs through sampling, we generate multiple layouts with the same
input constraints, and use the ranker to select the highest-quality one as the final output.

We conduct extensive experiments on various tasks and layout domains to evaluate LayoutPrompter.
Experimental results show that LayoutPrompter can tackle all existing conditional layout generation
tasks, demonstrating its versatility. Despite without any model training or fine-tuning, LayoutPrompter
is on par or even better than the state-of-the-art approaches. Besides, our ablation studies exhibit
that LayoutPrompter can still achieve good performance when there is only a small set of candidate
exemplars, indicating that it is superior to existing training-based methods in terms of data efficiency.
In summary, LayoutPrompter is a versatile, data-efficient and training-free layout generation method.

2 Related Work

Graphic Layout Generation. Automatic graphic layout generation is an emerging research topic
in recent years. To meet diverse user requirements, existing methods have defined various layout
generation tasks, including layout generation conditioned on element types [21, 19, 18], layout
generation conditioned on element types and sizes [19], layout generation conditioned on element
relationships [18, 21], layout completion [7, 23] and refinement [30]. In addition to these constraint-
explicit tasks, some works consider more challenging but useful tasks, such as content-aware layout
generation [39, 9] and text-to-layout [11, 24]. Content-aware layout generation aims at arranging
spatial space for pre-defined elements on a given canvas. The generated layouts not only need to
be visually pleasing, but also avoid salient areas of the canvas. Text-to-layout is to generate layouts
according to human language descriptions.

Early works in this field primarily focus on an individual task and propose task-specific approaches
based on Generative Adversarial Networks (GANs) [22, 9], Variational Autoencoders (VAEs) [21, 16]
and Transformers [19, 7, 11, 24, 30]. Recently, some general approaches [15, 12, 14, 37] have ap-
peared. LayoutFormer++ [15] proposes to represent various constraints as sequences and then
leverages a Transformer [32] encoder-decoder architecture to generate layouts from constraint se-
quences. [12, 14] develop diffusion-based models for constraint-explicit layout generation. However,
none of the existing methods can simultaneously handle all layout generation tasks. Furthermore,
these methods are highly dependent on large amounts of training data, which hinders their practical
applications. In this work, we introduce techniques such as dynamic exemplar selection, input-output
serialization and layout ranking to effectively utilize LLMs to overcome the above limitations, making
LayoutPrompter a versatile and data-efficient approach (see Table 1).

Large Language Models. Large language models (LLMs) with billions of parameters, such as
GPT [3, 28], PaLM [6] and LLaMa [31], have demonstrated excellent few-shot performance on

3

EXEMPLAR

Please generate a layout based on the given information.
Task Description: content-aware layout generation
Layout Domain: poster layout
Canvas Size: canvas width is 102px, canvas height is 150px

Content Constraint: left 26px, top 62px, width 50px, height 69px
Element Type Constraint: logo | text | text | text | underlay | textINPUT

CONSTRAINT

<html>
<body>
<div class='logo' style='left: 3px; top: 2px; width: 22px; height: 7px'></div>
<div class='text' style='left: 24px; top: 12px; width: 53px; height: 10px'></div>
<div class='text' style='left: 6px; top: 25px; width: 91px; height: 10px'></div>
<div class='text' style='left: 19px; top: 37px; width: 64px; height: 7px'></div>
<div class='underlay' style='left: 18px; top: 48px; width: 66px; height: 9px'></div>
<div class='text' style='left: 22px; top: 49px; width: 57px; height: 6px'></div>
</body>
</html>

OUTPUT
LAYOUT

DYNAMIC
EXEMPLARS

Preamble

Exemplar 1

Exemplar N

…

Input
Constraint

Output Layout

Input
Constraint

TEST
INPUT

+

Output Layout
TEST
OUTPUT

LLMINPUT

OUTPUT

IN-CONTEXT LEARNINGPREAMBLE

Input
Constraint

Output Layout

+

Ranker

✖ L

Figure 2: An overview of LayoutPrompter. The complete prompt consists of a task-specific preamble,
N in-context exemplars and a test input. The exemplars are dynamically retrieved from the training
set according to the test input. Subsequently, the prompt is fed into an LLM to generate L distinct
layouts. We employ a layout ranker to select the best one as the final output.

various natural language processing (NLP) tasks. Thanks to the emergent ability [33] brought by
the scale of model and data, they largely outperform prior supervised approaches and even match
human-level performance on some tasks, without any finetuning. The versatility and effectiveness of
LLMs inspire us to develop a layout generation method based on them.

Recent studies show that the prompting strategy plays a crucial role in model performance. For
example, chain-of-thought (CoT) prompting [34] is proposed to improve the reasoning ability of
LLMs by incorporating intermediate reasoning steps in the exemplars. Least-to-most prompting [41,
17] (also known as decomposed prompting) is introduced to solve complex multi-step reasoning tasks.
To enhance contextual knowledge, [26, 10] use a retrieval module to dynamically select in-context
exemplars. They experimentally find that exemplars semantically similar to test samples can better
unleash the model’s knowledge. Specifically, they use a sentence encoder to convert model inputs
to vector representations. Then, for each test sample, they retrieve the nearest neighbors in the
encoded sentence embedding space to construct prompts. Motivated by them, we propose a similar
prompting strategy in this work. Since the input of layout generation tasks is different from prior
works, we introduce a customized evaluation suite to measure sample distances. Experimental results
demonstrate its effectiveness in LayoutPrompter.

3 LayoutPrompter

In this section, we elaborate on LayoutPrompter, a versatile, data-efficient and training-free layout
generation method built upon LLMs. Our main contribution lies in proposing a set of useful techniques
for applying LLMs to layout generation. Specifically, to support sequence-to-sequence transformation
and make maximum use of the design knowledge within LLMs, we carefully consider the serialization
scheme that represents task inputs and outputs as sequences (Section 3.2). Moreover, to enhance
the comprehension of user-specified layout constraints, we propose a dynamic exemplar selection
module to retrieve the most relevant exemplars from the training set to perform in-context learning
(Section 3.3). Besides, a layout ranker is designed to evaluate layout quality and rank multiple layouts
generated under the same constraints, further improving model performance (Section 3.4).

3.1 Overview

Let’s consider a conditional layout generation task. We denote its training set as D = {(xj , yj)}Mj=1.
Here, (xj , yj) represents the j-th sample of D, which is an (input constraint, output layout) pair,
and M is the total number of samples. As illustrated in Figure 2, for a given test query xtest, the
in-context learning prompt P is composed by sequentially concatenating a task-specific preamble R,

4

N exemplars and the query itself:

P = [R;FX(xk1);FY (yk1); . . . ;FX(xkN
);FY (ykN

);FX(xtest)], {ki}Ni=1 = G(xtest,D). (1)

To be more specific, the preamble R provides the essential information about the target task, such
as the task description, layout domain and canvas size. FX(·) and FY (·) are serialization functions
that transform task input x and output y into sequences, respectively. G(·, ·) denotes an exemplar
selection function, which retrieves the in-context exemplars from D according to xtest. The details of
FX , FY and G will be elaborated in the following sections.

Notably, when the number of exemplars N is set to 0, few-shot in-context learning degenerates to
zero-shot learning, where LLMs predict the test output ytest solely based on the preamble R and xtest.
In our experiments (see Section B.2 in Appendix), we find that additional exemplar guidance can
help LLMs better comprehend the task and grasp the rough pattern of the required layouts. Hence,
we opt for few-shot learning (N > 0) instead of zero-shot learning (N = 0) in this work.

3.2 Input-Output Serialization

To begin, we first establish some notations. For each element e that constitutes a layout, we describe it
by its element type c, left coordinate l, top coordinate t, width w and height h, i.e., e = (c, l, t, w, h).
Here, c is a categorical attribute. The other four are numerical geometric attributes, which will be
discretized in the implementation (see Section A in Appendix).

Content-Aware Layout Generation

Saliency Detection

saliency bbox
(100,0,200,250) Text-to-Layout

T5

A page for the introduction of AmericaMall.
The page should have a logo and a brief
description. The logo…

sentence embedding

(a) (b)

Input Canvas
Output Saliency Map

& Bounding Box

(a) (b)

Figure 3: An input canvas is converted
into a saliency map.

Input Constraint Serialization. For constraint-explicit
layout generation, the input constraints are element-wise
constraints on e. We serialize such constraints in the
same way as LayoutFormer++ [15], where they repre-
sent each constraint as a sequence and then combine dif-
ferent constraints through concatenation. For example,
if x specifies the element types and sizes, FX(x) takes
the form of FX(x) = "c1w1h1|c2w2h2| . . . ". In this
work, we adopt these ready-made sequences for constraint-explicit layout generation tasks. Re-
garding content-aware layout generation, the image nature of the input canvas poses a unique
challenge for serialization, i.e., enabling LLMs that can only read text to perceive image content.
Inspired by DS-GAN [9], we recognize that the saliency map [8] can well capture the key con-
tent shape of a canvas while discarding other high-frequency, irrelevant details (see Figure 3). To
facilitate serialization, we further convert it into a rectified saliency map m = (lm, tm, wm, hm)
by detecting region boundaries with pixel values greater than a certain threshold. After prepro-
cessing, the input canvas x can be represented in a format understandable by LLMs: FX(x) =
"Content Constraint: left lmpx,top tmpx,width wmpx,height hmpx". For the text-
to-layout task, where natural language descriptions are used to generate layouts, the constraint
sequence is simply the input text itself.

Output Layout Serialization. For the output y, we propose to serialize it into the HTML format that
LLMs are more familiar with and good at, rather than the plain sequence used in prior works [15, 7].
Following common HTML representation, we denote the complete output sequence as a concatenation
of multiple HTML segments a: FY (y) = [a1; a2; . . .]. Here, the i-th segment ai represents the i-th
graphic element ei of y. It specifies the element attributes in the following format:

<div class="ci" style="left:lipx; top:tipx; width:wipx; height:hipx"></div>.
(2)

Thanks to the powerful in-context learning ability of LLMs, the test output ytest will be predicted in
the same HTML format, making it easy to extract the required element attributes from the output.
More input-output examples can be found in Section D of the supplementary material.

3.3 Dynamic Exemplar Selection

As mentioned above, G selects N in-context exemplars that have the most similar layout constraints
to xtest from D. The selected exemplars are randomly shuffled and combined to construct P (see
Equation 1), thereby enhancing LLMs’ understanding of various constraints. To achieve this, we
design an evaluation suite s to measure the constraint similarity between the test query xtest and each

5

RICO PubLayNet

Tasks Methods mIoU ↑ FID ↓ Align. ↓ Overlap ↓ Vio. % ↓ mIoU ↑ FID ↓ Align. ↓ Overlap ↓ Vio. % ↓

Gen-T
BLT 0.216 25.633 0.150 0.983 - 0.140 38.684 0.036 0.196 -
LayoutFormer++ 0.432 1.096 0.230 0.530 0. 0.348 8.411 0.020 0.008 0.
LayoutPrompter 0.429 3.233 0.109 0.505 0.64 0.382 3.022 0.037 0.047 0.50

Gen-TS
BLT 0.604 0.951 0.181 0.660 0. 0.428 7.914 0.021 0.419 0.
LayoutFormer++ 0.620 0.757 0.202 0.542 0. 0.471 0.720 0.024 0.037 0.
LayoutPrompter 0.552 1.458 0.145 0.544 0.18 0.453 1.067 0.049 0.091 0.

Gen-R
CLG-LO 0.286 8.898 0.311 0.615 3.66 0.277 19.738 0.123 0.200 6.66
LayoutFormer++ 0.424 5.972 0.332 0.537 11.84 0.353 4.954 0.025 0.076 3.9
LayoutPrompter 0.400 5.178 0.101 0.564 10.58 0.347 3.620 0.037 0.161 12.29

Completion
LayoutTransformer 0.363 6.679 0.194 0.478 - 0.077 14.769 0.019 0.0013 -
LayoutFormer++ 0.732 4.574 0.077 0.487 - 0.471 10.251 0.020 0.0022 -
LayoutPrompter 0.667 7.318 0.084 0.428 - 0.476 2.132 0.023 0.017 -

Refinement
RUITE 0.811 0.107 0.133 0.483 - 0.781 0.061 0.029 0.020 -
LayoutFormer++ 0.816 0.032 0.123 0.489 - 0.785 0.086 0.024 0.006 -
LayoutPrompter 0.745 0.978 0.159 0.478 - 0.647 0.278 0.072 0.048 -

Table 2: Quantitative comparison with baselines on constraint-explicit layout generation tasks. ↑
indicates larger values are better, ↓ indicates smaller values are better.

candidate exemplar (xj , yj) ∈ D. Then, G can be further expressed as a Top-k selection function:

G(xtest,D) ≜ Top-k(
⋃

(xj ,yj)∈D

{s(xtest, xj)}, N). (3)

Since we divide existing layout generation tasks into three categories, each with distinct input
constraints, their similarity measures have different representations. We’ll elaborate below.

Constraint-Explicit Layout Generation. As constraint-explicit layout generation tasks only consider
element-wise constraints, we define s(xtest, xj) using inter-element constraint similarities. Specifi-
cally, we construct a bipartite graph between xtest = {putest}Uu=1 and xj = {pvj}Vv=1, where p denotes
the element-wise constraint on e. U, V are the constraint numbers of xtest, xj . Then, the inter-element
similarity W (i.e., the weight of bipartite graph) and the overall constraint similarity s are defined as:

s(xtest, xj) ≜
1

|Mmax|
∑

(pu
test,p

v
j)∈Mmax

W (putest, p
v
j), W (putest, p

v
j) = 1(putest, p

v
j)2

−∥gu
test−gv

j ∥2 . (4)

Here, 1 is a 0-1 function equal to 1 if putest and pvj specify the same element type, and 0 otherwise.
This ensures that constraint similarity is only considered between elements with the same type. gu

test
and gv

j are specified geometric attributes of putest and pvj . Given the edge weight W of the bipartite
graph, we adopt Hungarian method [20] to obtain the maximum matching Mmax. And s(xtest, xj) is
calculated as the average weight of matched edges (as shown in Equation 4).

Content-Aware Layout Generation. The constraint of content-aware layout generation is the input
canvas. The similarity of two canvases xtest, xj is defined as the IoU (Intersection over Union) of
their rectified saliency maps (see Section 3.2) mtest,mj :

s(xtest, xj) ≜ IoU(mtest,mj) =
|mtest ∩mj |
|mtest ∪mj |

. (5)

Text-to-Layout. We leverage the CLIP [29] text encoder to encode input texts into embeddings. The
constraint similarity s(xtest, xj) is defined as the cosine similarity of input text embeddings ntest, nj :

s(xtest, xj) ≜
ntest · nj

∥ntest∥∥nj∥
. (6)

3.4 Layout Ranker

People usually judge the quality of generated layouts from two perspectives: (1) whether they are
visually pleasing; (2) whether they look like the real layouts. Therefore, our proposed layout ranker
follows the same principles to evaluate layout quality. To be more specific, it measures the quality of
an output layout using a combination of metrics:

q(ytest) = λ1Alignment(ytest) + λ2Overlap(ytest) + λ3(1− mIoU(ytest)). (7)

6

Dataset Domain Associated Task # Training Set # Test Set # Element Types

RICO Android constraint-explicit layout generation 31,694 3,729 25
PubLayNet document constraint-explicit layout generation 311,397 10,998 5

PosterLayout poster content-aware layout generation 9,974 905 3
WebUI web text-to-layout 3,835 487 10

Table 3: Dataset statistics. Note that these datasets are only used on specific tasks.

G
en

-T

RICO

image

text
button

text ×3

background

× 7

Layout
Former++

Layout
Prompter

image

text
button

text

input

× 2

Input
constraints

Layout
Former++

Layout
Prompter

Input
constraints

image

icon

text

× 2

text
button

× 6

toolbar

input × 3

(58,4)

(20,17)

(20,17)

(107,6)

(127,9)

(30,6)

image

text
button

text

× 2

(44,24)
(44,8)
(92,5)

(109,7)G
en

-T
S

icon

text

× 2

text
button

× 2

card

text
at the center of card

text
button

at the bottom of text

text
button
input

× 2

× 3

input
the equal size
with other

input

G
en

-R

PubLayNet
Layout

Former++
Layout

Prompter
Input

constraints

text × 7

title × 2

table

Layout
Former++

Layout
Prompter

Input
constraints

text × 6

title

figure × 2

text × 4

× 2table

(63,1)
(50,40)
(105,3)
(50,40)
(105,6)

(105,45)

text × 6

figure × 3

(50,5) (50,8)
(50,6) (50,34)

(50,21) (105,3)
(46,27) (47,23)
(98,27)

text × 6

figure

figure
larger than text

text

at the
bottom of canvas

text × 4

table

table
at the
center of canvas

text
at the top of table

C
om

pl
et

io
n

R
ef

in
em

en
t

Figure 4: Qualitative comparison between LayoutPrompter and the state-of-the-art baseline Layout-
Former++ [15] on constraint-explicit layout generation tasks (better view in color and 2× zoom).

Here, λ1, λ2 and λ3 are hyper-parameters to balance the importance of each metric. Alignment and
Overlap reflect quality from the perspective (1), while mIoU mainly focuses on perspective (2). We
will introduce them in Section 4.1. The output layout with the lowest q value (lower q indicates better
quality) is returned as the final output.

4 Experiments

4.1 Setups

Datasets. We conduct experiments on 4 datasets, including RICO [27], PubLayNet [40], Poster-
Layout [9] and WebUI [24]. Their statistics and usages are illustrated in Table 3. For RICO and
PubLayNet, we adopt the same dataset splits as LayoutFormer++ [15]. While for PosterLayout, the
training set includes 9,974 poster-layout pairs, and the remaining 905 posters are used for testing.
Regarding the WebUI dataset, we adopt the dataset splits provided by parse-then-place [24]. In all
cases, the in-context exemplars are retrieved from the full training set.

Baselines. Since constraint-explicit layout generation tasks have task-specific and task-generic
methods, we compare LayoutPrompter against both kinds of state-of-the-art methods on these
tasks. Concretely, we choose LayoutFormer++ [15] as the common task-generic baseline. The
task-specific baselines are (1) BLT [19] for generation conditioned on types (Gen-T), (2) BLT [19] for
generation conditioned on types with sizes (Gen-TS), (3) CLG-LO [18] for generation conditioned on
relationships (Gen-R), (4) LayoutTransformer [7] for completion, and (5) RUITE [30] for refinement.
Moreover, we compare LayoutPrompter with DS-GAN [9] and CGL-GAN [42] on content-aware
layout generation. We compare with Mockup [11] and parse-then-place [24] on text-to-layout.

7

Val ↑ Ove ↓ Ali ↓ Undl ↑ Unds ↑ Uti ↑ Occ ↓ Rea ↓

CGL-GAN 0.7066 0.0605 0.0062 0.8624 0.4043 0.2257 0.1546 0.1715
DS-GAN 0.8788 0.0220 0.0046 0.8315 0.4320 0.2541 0.2088 0.1874
LayoutPrompter (Ours) 0.9992 0.0036 0.0036 0.8986 0.8802 0.2597 0.0992 0.1723

Table 4: Quantitative comparison with baselines on content-aware layout generation task.

(a) (b) (c) (d) (e) (f) (g) (h)

D
S

-G
A

N
O

u
rs

Figure 5: Qualitative results generated by DS-GAN and LayoutPrompter on content-aware layout
generation. There are three element types, including logo (red), text (green) and underlay (yellow).

Evaluation Metrics. To evaluate the performance of LayoutPrompter and baselines, we use the
following quantitative metrics. For constraint-explicit layout generation and text-to-layout, we employ
four standard metrics. Alignment (Align.) [22] gauges how well the elements in a layout are aligned
with each other. Overlap [22] computes the overlapping area between two arbitrary elements in a
layout. Maximum IoU (mIoU) [18] calculates the highest Intersection over Union (IoU) between a
generated layout and real layouts. Fréchet Inception Distance (FID) [18] measures how similar the
distribution of the generated layouts is to that of real layouts. Additionally, we introduce another
metric Constraint Violation Rate (Vio. %) [15] to evaluate how well the generated layouts satisfy
their input constraints. It is the ratio of violated constraints to all constraints. In text-to-layout,
as a textual description may involve the type, position and size constraints of elements, we follow
parse-then-place [24] and further break down this metric into Type Vio. % and Pos & Size Vio. %.
As for content-aware layout generation, we adopt the eight metrics defined in DS-GAN [9]. Some
of them belong to graphic metrics, such as Val, Ove, Ali, Undl and Unds. Others are content-aware
metrics, including Uti, Occ and Rea. Please refer to [9] for more details.

Implementation Details. In this work, we conduct experiments on GPT-3 [3] text-davinci-003
model. We place N = 10 exemplars in the prompt P. For each test sample, we generate L = 10
different outputs ytest. The hyper-parameters involved in the layout ranker module are set to λ1 =
0.2,λ2 = 0.2, and λ3 = 0.6. When running GPT-3, we fix the parameters to the default values of the
OpenAI API, where the sampling temperature is 0.7 and the penalty-related parameters are set to 0.

4.2 Main Results

Tables 2, 4, 5 and Figures 4, 5, 6 show the quantitative and qualitative results on various layout
generation tasks (see more qualitative results in Section C of the supplementary material). Although
LayoutPrompter has not undergone model training and fine-tuning, the experimental results demon-
strate that it can achieve comparable or even better performance than baselines, which proves that
LayoutPrompter is a versatile and training-free layout generation approach. Below, we conduct a
detailed analysis of the experimental results.

Constraint-Explicit Layout Generation. Table 2 shows the quantitative results. On each constraint-
explicit layout generation task, LayoutPrompter is compared with a task-specific method and another
common baseline, LayoutFormer++ [15]. Although not trained on these downstream tasks, Lay-
outPrompter still exhibits competitive quantitative results. Furthermore, it even outperforms the
baselines on some metrics (e.g., Align. and Overlap on Gen-T task, RICO dataset). The corre-
sponding qualitative results are shown in Figure 4. Here, we only compare with the state-of-the-art
baseline (measured by quantitative metrics), LayoutFormer++. The qualitative comparison indicates

8

mIoU ↑ FID ↓ Align. ↓ Overlap ↓ Type Vio. % ↓ Pos & Size Vio. % ↓

Mockup 0.1927 37.0123 0.0059 0.4348 31.49 44.92
parse-then-place 0.6841 2.9592 0.0008 0.1380 11.36 19.14
LayoutPrompter (Ours) 0.3190 10.7706 0.0009 0.0892 15.09 23.78

Table 5: Quantitative comparison with baselines on text-to-layout.

(d) A footer page for an online store selling
jewelry. On the page, there should have four
lists of links for more info. In each list, there
should be a title and 4-6 links.

(e) A page to introduce payments to users.
There is a title 'accepted payments' on the top.
There are a lso four logos of payment
companies under it.

(f) A page for showing different work types.
There should be six groups. Each of them
includes one logo and one text which shows
the title of the work.

Mockup PTP Ours

(a) A page for advertising holiday photo cards.
The page should have an image showing the
card, a title "Holiday Photo Cards", a further
description, and a button "SHOP CARDS" for
the user to click to purchase cards.

(b) The page introducing the products to the
user. There should be three parts, and each
part includes one title, one picture of the
product, and one link for the user to click on
to view more about the product.

Mockup PTP Ours

(c) A page for navigation of Mailreach. The
page should have a logo of Mailreach, 5 links
for users to check the email spam test, blog,
features, pricing, and to log in, and a button
for users to click to sign up.

Mockup PTP Ours

Figure 6: Qualitative results of Mockup, parse-then-place (short as PTP) and LayoutPrompter on
text-to-layout (better view in color and 2× zoom).

that LayoutPrompter achieves as good controllability and generation quality as LayoutFormer++.
First, the layouts generated by our approach satisfy various input constraints well, including type
constraints, size constraints, relationship constraints, etc. Second, our approach can also produce
visually pleasing layouts with well-aligned elements and small overlapping areas. Both qualitative
and quantitative results demonstrate the effectiveness of LayoutPrompter.

Content-Aware Layout Generation. The quantitative and qualitative results are presented in Table 4
and Figure 5, respectively. Remarkably, LayoutPrompter surpasses the training-based baselines on
almost all metrics. This indicates that LayoutPrompter is capable of producing higher-quality and
more content-aware layouts compared to the baselines. The rendered results further validate the
conclusion. For example, in columns (f) and (g) of Figure 5, the layouts from DS-GAN [9] contain
serious misalignments and overlaps. And column (e) shows that DS-GAN sometimes fails to generate
content-aware layouts. In contrast, our approach can not only produce aesthetic layouts but also avoid
the most salient objects in the input canvas, such as the person, teddy bear, car, etc.

Text-to-Layout. The quantitative and qualitative comparisons are shown in Table 5 and Figure 6.
Since text-to-layout is one of the most challenging layout generation tasks, LayoutPrompter slightly
lags behind the current state-of-the-art method parse-then-place [24], especially on mIoU and FID
metrics. However, on the other four metrics, LayoutPrompter is comparable to the baselines. Thanks
to the excellent understanding capability of LLMs, our approach can better satisfy the constraints
specified in textual descriptions in some cases. For example, in cases (d) and (e) of Figure 6,
LayoutPrompter successfully generates 4-6 links and four logos, while parse-then-place makes wrong
predictions about the number of elements.

4.3 Ablation Studies

Effect of Introduced Components. LayoutPrompter has three key components, including input-
output serialization, dynamic exemplar selection and layout ranking. To investigate their effects, we
perform the following ablation studies (see Table 6). (1) Since LayoutFormer++ [15] has proven the
effectiveness of constraint sequences relative to other formats, we only study the effect of HTML
representation, which is not covered in previous works. Specifically, we replace HTML with a
plain sequence proposed by LayoutFormer++ [15] (denoted as w/o HTML) to represent the output
layout. This results in a significant drop in FID and overlap metrics on Gen-T. (2) To understand the
contribution of dynamic exemplar selection, we compare against its variant (w/o dynamic selection)
that adopts random sampling for exemplar retrieval. LayoutPrompter achieves significantly better
FID and mIoU across the board. Though the variant has better Align. and Overlap scores in some
tasks, its noticeably poor FID and mIoU scores indicate that it fails to acquire the layout patterns in
specific domains (e.g., the generated layout does not look like a real UI layout). (3) To understand the

9

RICO

Tasks Methods mIoU ↑ FID ↓ Align. ↓ Overlap ↓ Vio. % ↓

Gen-T

LayoutPrompter 0.429 3.233 0.109 0.505 0.64
w/o HTML 0.460 7.009 0.106 0.663 0.
w/o dynamic selection 0.251 8.154 0.053 0.399 0.24
w/o layout ranker 0.367 3.149 0.142 0.498 0.45

Gen-TS
LayoutPrompter 0.552 1.458 0.145 0.544 0.18

w/o dynamic selection 0.337 8.107 0.199 0.400 0.24
w/o layout ranker 0.505 1.528 0.153 0.549 0.13

Gen-R
LayoutPrompter 0.400 5.178 0.101 0.564 10.58

w/o dynamic selection 0.223 14.177 0.067 0.597 15.95
w/o layout ranker 0.341 5.282 0.137 0.545 6.54

Completion
LayoutPrompter 0.667 7.318 0.084 0.428 -

w/o dynamic selection 0.449 17.409 0.062 0.422 -
w/o layout ranker 0.580 11.194 0.093 0.451 -

Refinement
LayoutPrompter 0.745 0.978 0.159 0.478 -

w/o dynamic selection 0.662 1.718 0.208 0.468 -
w/o layout ranker 0.705 1.161 0.188 0.478 -

Table 6: Ablation studies of the introduced components on RICO.

LayoutFormer++ LayoutPrompter

Tasks # Training samples mIoU ↑ FID ↓ Align. ↓ Overlap ↓ Vio. % ↓ mIoU ↑ FID ↓ Align. ↓ Overlap ↓ Vio. % ↓

Gen-T

500 0.176 92.643 0.272 0.668 69.27 0.343 7.201 0.105 0.539 0.11
2,000 0.209 48.702 0.165 0.573 62.22 0.362 6.140 0.083 0.527 0.22
10,000 0.368 3.370 0.132 0.572 11.02 0.389 4.658 0.097 0.527 0.11
Full Set 0.432 1.096 0.230 0.530 0. 0.429 3.233 0.109 0.505 0.64

Gen-TS

500 0.171 79.641 0.301 0.808 74.66 0.405 4.068 0.130 0.596 0.13
2,000 0.249 39.673 0.209 0.655 53.07 0.424 3.460 0.143 0.604 0.06
10,000 0.529 2.395 0.215 0.596 1.86 0.464 2.606 0.138 0.580 0.06
Full Set 0.620 0.757 0.202 0.542 0. 0.552 1.458 0.145 0.544 0.18

Table 7: Ablation studies of training set size on RICO.

effect of the proposed layout ranker, we compare it against a variant (w/o layout ranker) that randomly
picks a layout from model outputs. We find that the layout ranker consistently yields improvements
on the mIoU and Align. metrics of all tasks.

Effect of Training Set Size. We switch training set sizes: 500, 2000, 10000 and full set (see
Table 7). In our approach, the training set represents the exemplar retrieval pool. The results show
that the performance of LayoutFormer++ drops rapidly as the training data decreases, but our method
is much slightly affected. When training samples are limited (e.g., 500 and 2000), our approach
significantly outperforms the training-based baseline on all metrics. These observations suggest that
LayoutPrompter is a more data-efficient approach, which is effective in low-resource scenarios. Due
to space limitations, more experimental results on stability, the effect of the number of examples, and
generalization ability can be found in Section B of the supplementary material.

5 Conclusion and Limitation

In this work, we concentrate on leveraging Large Language Models (LLMs) for conditional layout
generation to address issues present in existing methods. To enhance the performance of our approach,
we introduce three crucial components: input-output serialization, dynamic exemplar selection, and
layout ranking. We conduct experiments on 7 existing layout generation tasks using 4 public datasets.
Both qualitative and quantitative results highlight that LayoutPrompter is a versatile, data-efficient,
and training-free method capable of generating high-quality, constraint-compliant layouts. Despite
these promising results, there are still some limitations. First, the performance of our approach is
influenced by the number of elements in the layouts, with more elements leading to more failure cases.
Notably, this is not a problem specific to our approach and has been observed in prior work [2] as
well. Second, we have not studied whether LayoutPrompter is equally effective for other LLMs such
as PaLM and LLaMa. Third, with the rapid development of large multimodal models such as GPT-4V,
PaLI [5] and LLaVA [25], we get a promising chance to extend LayoutPrompter to supporting layout
constraints specified in a wide range of modalities. We leave them for future research.

10

References
[1] J.-B. Alayrac, J. Donahue, P. Luc, A. Miech, I. Barr, Y. Hasson, K. Lenc, A. Mensch, K. Millican,

M. Reynolds, et al. Flamingo: a visual language model for few-shot learning. Advances in
Neural Information Processing Systems, 35:23716–23736, 2022.

[2] D. M. Arroyo, J. Postels, and F. Tombari. Variational transformer networks for layout generation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 13642–13652, 2021.

[3] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances in neural
information processing systems, 33:1877–1901, 2020.

[4] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto, J. Kaplan, H. Edwards, Y. Burda,
N. Joseph, G. Brockman, A. Ray, R. Puri, G. Krueger, M. Petrov, H. Khlaaf, G. Sastry,
P. Mishkin, B. Chan, S. Gray, N. Ryder, M. Pavlov, A. Power, L. Kaiser, M. Bavarian, C. Winter,
P. Tillet, F. P. Such, D. Cummings, M. Plappert, F. Chantzis, E. Barnes, A. Herbert-Voss, W. H.
Guss, A. Nichol, A. Paino, N. Tezak, J. Tang, I. Babuschkin, S. Balaji, S. Jain, W. Saunders,
C. Hesse, A. N. Carr, J. Leike, J. Achiam, V. Misra, E. Morikawa, A. Radford, M. Knight,
M. Brundage, M. Murati, K. Mayer, P. Welinder, B. McGrew, D. Amodei, S. McCandlish,
I. Sutskever, and W. Zaremba. Evaluating large language models trained on code, 2021.

[5] X. Chen, X. Wang, S. Changpinyo, A. Piergiovanni, P. Padlewski, D. Salz, S. Goodman,
A. Grycner, B. Mustafa, L. Beyer, A. Kolesnikov, J. Puigcerver, N. Ding, K. Rong, H. Akbari,
G. Mishra, L. Xue, A. V. Thapliyal, J. Bradbury, W. Kuo, M. Seyedhosseini, C. Jia, B. K.
Ayan, C. R. Ruiz, A. P. Steiner, A. Angelova, X. Zhai, N. Houlsby, and R. Soricut. PaLI: A
jointly-scaled multilingual language-image model. In The Eleventh International Conference on
Learning Representations, 2023. URL https://openreview.net/forum?id=mWVoBz4W0u.

[6] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham, H. W.
Chung, C. Sutton, S. Gehrmann, et al. Palm: Scaling language modeling with pathways. arXiv
preprint arXiv:2204.02311, 2022.

[7] K. Gupta, J. Lazarow, A. Achille, L. S. Davis, V. Mahadevan, and A. Shrivastava. Layouttrans-
former: Layout generation and completion with self-attention. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 1004–1014, 2021.

[8] X. Hou and L. Zhang. Saliency detection: A spectral residual approach. In 2007 IEEE
Conference on computer vision and pattern recognition, pages 1–8. Ieee, 2007.

[9] H. Hsu, X. He, Y. Peng, H. Kong, and Q. Zhang. Posterlayout: A new benchmark and approach
for content-aware visual-textual presentation layout, 2023.

[10] Y. Hu, C.-H. Lee, T. Xie, T. Yu, N. A. Smith, and M. Ostendorf. In-context learning for few-shot
dialogue state tracking. arXiv preprint arXiv:2203.08568, 2022.

[11] F. Huang, G. Li, X. Zhou, J. F. Canny, and Y. Li. Creating user interface mock-ups from
high-level text descriptions with deep-learning models. arXiv preprint arXiv:2110.07775, 2021.

[12] M. Hui, Z. Zhang, X. Zhang, W. Xie, Y. Wang, and Y. Lu. Unifying layout generation with a
decoupled diffusion model, 2023.

[13] S. Imani, L. Du, and H. Shrivastava. Mathprompter: Mathematical reasoning using large
language models. arXiv preprint arXiv:2303.05398, 2023.

[14] N. Inoue, K. Kikuchi, E. Simo-Serra, M. Otani, and K. Yamaguchi. Layoutdm: Discrete
diffusion model for controllable layout generation. arXiv preprint arXiv:2303.08137, 2023.

[15] Z. Jiang, H. Deng, Z. Wu, J. Guo, S. Sun, V. Mijovic, Z. Yang, J.-G. Lou, and D. Zhang.
Unilayout: Taming unified sequence-to-sequence transformers for graphic layout generation.
arXiv preprint arXiv:2208.08037, 2022.

11

https://openreview.net/forum?id=mWVoBz4W0u

[16] A. A. Jyothi, T. Durand, J. He, L. Sigal, and G. Mori. Layoutvae: Stochastic scene layout
generation from a label set. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 9895–9904, 2019.

[17] T. Khot, H. Trivedi, M. Finlayson, Y. Fu, K. Richardson, P. Clark, and A. Sabharwal.
Decomposed prompting: A modular approach for solving complex tasks. arXiv preprint
arXiv:2210.02406, 2022.

[18] K. Kikuchi, E. Simo-Serra, M. Otani, and K. Yamaguchi. Constrained graphic layout generation
via latent optimization. In Proceedings of the 29th ACM International Conference on Multimedia,
pages 88–96, 2021.

[19] X. Kong, L. Jiang, H. Chang, H. Zhang, Y. Hao, H. Gong, and I. Essa. Blt: bidirectional layout
transformer for controllable layout generation. In Computer Vision–ECCV 2022: 17th European
Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XVII, pages 474–490.
Springer, 2022.

[20] H. W. Kuhn. The hungarian method for the assignment problem. Naval research logistics
quarterly, 2(1-2):83–97, 1955.

[21] H.-Y. Lee, L. Jiang, I. Essa, P. B. Le, H. Gong, M.-H. Yang, and W. Yang. Neural design
network: Graphic layout generation with constraints. In Computer Vision–ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part III 16, pages
491–506. Springer, 2020.

[22] J. Li, J. Yang, J. Zhang, C. Liu, C. Wang, and T. Xu. Attribute-conditioned layout gan for
automatic graphic design. IEEE Transactions on Visualization and Computer Graphics, 27(10):
4039–4048, 2020.

[23] Y. Li, J. Amelot, X. Zhou, S. Bengio, and S. Si. Auto completion of user interface layout design
using transformer-based tree decoders. arXiv preprint arXiv:2001.05308, 2020.

[24] J. Lin, J. Guo, S. Sun, W. Xu, T. Liu, J.-G. Lou, and D. Zhang. A parse-then-place approach
for generating graphic layouts from textual descriptions. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), 2023.

[25] H. Liu, C. Li, Q. Wu, and Y. J. Lee. Visual instruction tuning. In NeurIPS, 2023.

[26] J. Liu, D. Shen, Y. Zhang, B. Dolan, L. Carin, and W. Chen. What makes good in-context
examples for gpt-3? arXiv preprint arXiv:2101.06804, 2021.

[27] T. F. Liu, M. Craft, J. Situ, E. Yumer, R. Mech, and R. Kumar. Learning design semantics
for mobile apps. In Proceedings of the 31st Annual ACM Symposium on User Interface
Software and Technology, UIST ’18, page 569–579, New York, NY, USA, 2018. Association
for Computing Machinery. ISBN 9781450359481. doi: 10.1145/3242587.3242650. URL
https://doi.org/10.1145/3242587.3242650.

[28] OpenAI. Gpt-4 technical report, 2023.

[29] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language supervision.
In International conference on machine learning, pages 8748–8763. PMLR, 2021.

[30] S. Rahman, V. P. Sermuga Pandian, and M. Jarke. Ruite: Refining ui layout aesthetics using trans-
former encoder. In 26th International Conference on Intelligent User Interfaces-Companion,
pages 81–83, 2021.

[31] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal,
E. Hambro, F. Azhar, et al. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971, 2023.

[32] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. Attention is all you need. Advances in neural information processing systems,
30, 2017.

12

https://doi.org/10.1145/3242587.3242650

[33] J. Wei, Y. Tay, R. Bommasani, C. Raffel, B. Zoph, S. Borgeaud, D. Yogatama, M. Bosma,
D. Zhou, D. Metzler, et al. Emergent abilities of large language models. arXiv preprint
arXiv:2206.07682, 2022.

[34] J. Wei, X. Wang, D. Schuurmans, M. Bosma, E. Chi, Q. Le, and D. Zhou. Chain of thought
prompting elicits reasoning in large language models. arXiv preprint arXiv:2201.11903, 2022.

[35] K. Yang, D. Klein, N. Peng, and Y. Tian. Doc: Improving long story coherence with detailed
outline control. arXiv preprint arXiv:2212.10077, 2022.

[36] K. Yang, N. Peng, Y. Tian, and D. Klein. Re3: Generating longer stories with recursive
reprompting and revision. arXiv preprint arXiv:2210.06774, 2022.

[37] J. Zhang, J. Guo, S. Sun, J.-G. Lou, and D. Zhang. Layoutdiffusion: Improving graphic
layout generation by discrete diffusion probabilistic models. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), pages 7226–7236, October 2023.

[38] Z. Zhang, A. Zhang, M. Li, H. Zhao, G. Karypis, and A. Smola. Multimodal chain-of-thought
reasoning in language models. arXiv preprint arXiv:2302.00923, 2023.

[39] X. Zheng, X. Qiao, Y. Cao, and R. W. Lau. Content-aware generative modeling of graphic
design layouts. ACM Transactions on Graphics (TOG), 38(4):1–15, 2019.

[40] X. Zhong, J. Tang, and A. J. Yepes. Publaynet: largest dataset ever for document layout analysis,
2019.

[41] D. Zhou, N. Schärli, L. Hou, J. Wei, N. Scales, X. Wang, D. Schuurmans, O. Bousquet, Q. Le,
and E. Chi. Least-to-most prompting enables complex reasoning in large language models.
arXiv preprint arXiv:2205.10625, 2022.

[42] M. Zhou, C. Xu, Y. Ma, T. Ge, Y. Jiang, and W. Xu. Composition-aware graphic layout gan for
visual-textual presentation designs. arXiv preprint arXiv:2205.00303, 2022.

13

A Coordinate Discretization

In this work, element coordinates are scaled proportionally into a canvas of size CW × CH . We
follow the baselines to choose these two parameters. Specifically, in RICO, CW = 90px, CH =
160px. In PubLayNet, CW = 120px, CH = 160px. In PosterLayout, CW = 102px, CH = 150px.
In WebUI, CW = 120px, CH = 120px. Then, the coordinates are discretized to the nearest integers.

B Additional Experimental Results and Analysis

B.1 Stability of Generation Performance

The output of LLMs varies with the random seed and hyper-parameters (e.g., the temperature). That
is, for the same input constraint, LLMs are able to generate many completely different layouts.
Since the hyper-parameters are a trade-off between generation quality and diversity, we fix them
to the default values of OpenAI API and study the impact of random seeds on model performance.
Specifically, we run inference on the test set 10 times, each using a different random seed. Then,
we calculate the mean and variance of each quantitative metric (see Table 8). The small variances
indicate the stability of LayoutPrompter’s performance under different random seeds.

RICO PubLayNet

Tasks mIoU ↑ FID ↓ Align. ↓ Overlap ↓ Vio. % ↓ mIoU ↑ FID ↓ Align. ↓ Overlap ↓ Vio. % ↓

Gen-T 0.368±0.002 3.118±0.045 0.130±0.010 0.498±0.004 0.546±0.148 0.343±0.001 4.014±0.067 0.042±0.007 0.047±0.002 0.490±0.059
Gen-TS 0.504±0.001 1.489±0.037 0.155±0.003 0.550±0.005 0.134±0.025 0.393±0.001 2.016±0.024 0.050±0.008 0.098±0.002 0.

Table 8: Effect of random seeds. In this experiment, we disable the layout ranker to eliminate the
impact of the ranking mechanism on model performance.

B.2 Effect of Exemplar Number

We conduct ablation experiments on the number of prompting exemplars. Figure 7 shows the zero-
shot (N = 0) qualitative results on Gen-T. It is obvious that LLMs fail to generate reasonable layouts
in a zero-shot scheme. Table 9 exhibits the quantitative comparison of the Gen-T task on RICO. The
results indicate that the number of prompting exemplars mainly affects mIoU and FID. Specifically,
as the number of prompting exemplars increases, mIoU and FID get improved. In summary, the
number of exemplars has a positive effect on the performance of LayoutPrompter.

PubLayNet RICO

Figure 7: Zero-shot results on the Gen-T task.

RICO

Tasks # exemplar mIoU ↑ FID ↓ Align. ↓ Overlap ↓ Vio. % ↓

Gen-T

1 0.381 5.007 0.115 0.491 0.85
3 0.413 5.098 0.120 0.492 0.51
5 0.414 4.521 0.114 0.492 0.65
10 0.427 3.523 0.092 0.486 0.67

Table 9: Ablation studies on the number of prompting exemplars. We run experiments on 1,000 test
samples.

B.3 Generalization Ability

To investigate the generalization ability of LayoutPrompter, we compute the DocSim similarity
between the generated layouts and their prompting layouts (see Table 10). The DocSim of Layout-
Former++ is computed between the generated layouts and training layouts. The quantitative results
show that LayoutPrompter achieves competitive or even better scores compared to LayoutFormer++,

14

indicating that LayoutPrompter has a close generalization ability to the training-based method. In
addition, we exhibit the qualitative results of the generated layouts and their prompting layouts in
Figure 8. The results demonstrate that LayoutPrompter is capable of generating meaningful variations
different from the prompting ones.

Method RICO PubLayNet

LayoutFormer++ 0.8472 0.8266

LayoutPrompter 0.8563 0.8119

Table 10: DocSim on Gen-T task. The smaller the DocSim, the better the generalization ability.

Test Layout Retrieved Layouts Test Layout Retrieved Layouts

Pu
bL

ay
N

et
RI

CO

Generated Layouts Retrieved Layouts Generated Layouts Retrieved Layouts

Pu
bL

ay
N

et
RI

CO

Figure 8: Qualitative results of the generated layouts and corresponding retrieved layouts on Gen-T
task. Each case contains 2 generated layouts.

15

C Additional Qualitative Results

In this section, we present additional qualitative results of LayoutPrompter. These results further
demonstrate the versatility and effectiveness of our method, which can generate high-quality and
constraint-compliant layouts on multiple layout generation tasks.

C.1 Generation Conditioned on Element Types

Element Type Constraints

(4) background image, image, text button*5

(1) (2) (3) (4) (5) (6)

(1) icon, input, text*8, text button*3, toolbar

(3) icon, list item*6, text*7, toolbar
(2) background image, icon*5, image*3, slider, text*3, toolbar

(6) advertisement, icon*3, image*6, text, toolbar, web view*2
(5) background image, icon, image*2, text*3, text button*3

(a) RICO

Element Type Constraints
(4) figure, text*6, title*2

(1) (2) (3) (4) (5) (6)

(1) text*11, title*2

(3) table, text*5
(2) table, text*5, title

(6) figure, text*6, title*2
(5) table, text*6, title*2

(b) PubLayNet

Figure 9: Qualitative results of Gen-T on RICO and PubLayNet. The element type constraints are in
the table.

16

C.2 Generation Conditioned on Element Types and Sizes

Element Type and Size Constraints

(4) icon 7 7, image 69 39, text 90 5, text 90 6, text button 83 38

(1) (2) (3) (4) (5) (6)

(1) advertisement 70 10, background image 90 144, image 21 7, text 90 25, text 90 8, text button 54 10, text button
54 10, text button 8 7, text button 33 7, text button 54 10, web view 70 10, web view 70 10

(3) input 90 110, text 48 8, text 38 8, text button 28 9, text button 28 9, toolbar 90 16

(2) icon 12 12, text 29 5, text button 85 10, text button 85 10, toolbar 90 12

(6) image 71 60, text 81 9, text 76 26, text button 72 16

(5) input 53 11, on/off switch 85 11, radio button 17 11, radio button 19 11, text 15 13, text 74 5, text 26 4, text
button 15 9, text button 15 8, text button 45 7, text button 45 7

(a) RICO

Element Type and Size Constraints

(4) table 97 18, text 69 1, text 58 1, text 47 23, text 47 16, text 47 56, text 47 52, text 47 21, text 47 21, title 27 2

(1) (2) (3) (4) (5) (6)

(1) figure 90 56, table 99 46, text 99 4, text 32 1, text 99 3, text 47 11, text 47 11

(3) figure 47 64, table 97 33, text 89 2, text 39 5, text 47 81, text 44 15, text 47 4

(2) figure 65 74, text 99 13, text 47 16, text 47 39, text 47 23

(6) figure 101 44, figure 101 50, text 99 11, text 99 13

(5) figure 101 93, text 49 25, text 49 25, text 46 7, text 47 7

(b) PubLayNet

Figure 10: Qualitative results of Gen-TS on RICO and PubLayNet. The element type and size
constraints are in the table.

17

C.3 Generation Conditioned on Element Relationships

Element Relationship Constraints

(4) input*2, text*3, text button*4, text button 7 bottom canvas, text 2 equal input 0, text 4 top input 0, text button 6
smaller input 0, text 3 smaller input 1, text button 7 smaller input 1, text button 7 bottom input 1, text button 6
larger text 3, text button 6 bottom text 4

(1) (2) (3) (4) (5) (6)

(1) background image, image, text, text button*2, text 2 center canvas, text button 3 center canvas, text 2 smaller
background image 0

(3) icon, list item*6, text*7, toolbar, list item 2 top canvas, list item 4 center canvas, list item 6 center canvas, list item
1 bottom icon 0, list item 2 larger icon 0, list item 4 larger icon 0, text 7 right icon 0, toolbar 14 top list item 1, list
item 3 equal list item 2, list item 5 bottom list item 2, text 7 top list item 2, text 13 smaller list item 2, text 7 smaller
list item 3

(2) image, text*4, text button, text 4 bottom image 0, text 3 larger text 2, text button 5 bottom text 4

(6) icon*3, image, input*2, text button*3, toolbar, input 5 center canvas, text button 6 center canvas, icon 2 equal
icon 1, text button 6 larger icon 1, text button 8 larger icon 1, input 4 bottom image 3, text button 8 smaller image 3,
text button 7 bottom input 4, text button 8 larger input 5, text button 8 bottom input 5, text button 8 larger text
button 6

(5) image, text*3, text button*3, text 2 top canvas, text 3 bottom image 0, text 3 bottom text 2, text button 5 bottom
text 2, text button 5 top text 3

(a) RICO

Element Relationship Constraints

(4) text*13, title*2, title 13 top canvas, text 4 bottom text 0, text 2 bottom text 1, text 4 bottom text 1, text 6 smaller
text 1, text 9 larger text 1, title 13 top text 1, title 14 smaller text 1, title 13 smaller text 2, text 8 larger text 3, text 9
bottom text 3, text 6 bottom text 4, text 8 bottom text 4, text 10 larger text 4, text 9 bottom text 6, text 12 larger text
6, title 13 larger text 6, text 10 larger text 8, text 12 smaller text 9, text 12 smaller text 10, title 13 smaller text 10,
title 14 top text 10, text 12 smaller text 11

(1) (2) (3) (4) (5) (6)

(1) table, text*4, text 4 bottom text 1, text 4 smaller text 3

(3) figure, text*5, text 1 center canvas, text 5 bottom canvas, text 5 bottom text 2
(2) figure, text*3, text 2 smaller figure 0, text 2 bottom figure 0

(6) figure, list*2, text, text 3 bottom figure 0, list 2 right list 1

(5) figure, text*5, title, text 5 smaller figure 0, text 5 bottom figure 0, text 5 smaller text 2, title 6 bottom text 3, title
6 center text 5

(b) PubLayNet

Figure 11: Qualitative results of Gen-R on RICO and PubLayNet. The element relationship constraints
are in the table.

18

C.4 Layout Completion

(1) (2) (3) (4) (5) (6)

(7) (8) (9) (10) (11) (12)
(a) RICO

(1) (2) (3) (4) (5) (6)

(7) (8) (9) (10) (11) (12)
(b) PubLayNet

Figure 12: Qualitative results of completion on RICO and PubLayNet.

19

C.5 Layout Refinement

(1) (2) (3)

(4) (5) (6)
(a) RICO

(4) (5) (6)

(1) (2) (3)

(b) PubLayNet

Figure 13: Qualitative results of refinement on RICO and PubLayNet. Note that each group has two
layouts. The left one is the noisy layout, and the right one is the refined layout.

20

C.6 Content-Aware Layout Generation

(1) (2) (3) (4) (5) (6)

(7) (8) (9) (10) (11) (12)

Figure 14: Qualitative results of content-aware layout generation on PosterLayout.

C.7 Text-to-Layout

Textual Descriptions

(4) A page for introducing the home tours. The page should have a title, "home tours". Also, there are four groups
and each group has an image and a title.

(1) (2) (3) (4) (5) (6)

(1) A page to file an insurance claim. There should be two text boxes. One is for the title 'Need to file an insurance
claim' and the other is a short description. Two buttons are necessary to click to file or manage the claim.

(3) A page to introduce an online editor. The page should contain an image, and the slogan "Online Infographics,
Diagrams, & Charts Maker" to have a brief introduction, and a further description of the specific service of the editor.
Then a button is needed for the user to click to learn info.

(2) A footer page showing the homepage of a company. There should be five entries of text links. And the text links
should be unfolded. Users can get access to different info through these links.

(6) A header page for navigation of an online shop. The page should have an announcement to explain the product is
out of stock, a logo, and two links "HOME" and "BUY DITTO HANGERS" for the user to return to the homepage and
view products to shop. Also, two buttons for search and shopping cart are needed.

(5) A page for introducing the service provided by a website. The page should have three groups of information sets:
"Web Development" "Social Media", and "Link Building". Each group should include a small image, a title, a further
introduction, and a link "READ MORE" for more info by clicking it.

Figure 15: Qualitative results of text-to-layout on WebUI. The textual descriptions are in the table.

21

D Prompt Examples

Here, we show a prompt example for each layout generation task, including Gen-T (Table 11),
Gen-TS (Table 12), Gen-R (Table 13), completion (Table 14), refinement (Table 15), content-aware
layout generation (Table 16), and text-to-layout (Table 17).

Preamble
Please generate a layout based on the given information.
Task Description: generation conditioned on given element types
Layout Domain: android layout
Canvas Size: canvas width is 90px, canvas height is 160px

Exemplar 1
Element Type Constraint: image | image | image | image | text | text | text button
<html>
<body>
<div class="image" style="left:15px; top:42px; width:51px; height:82px"></div>
<div class="image" style="left:52px; top:77px; width:22px; height:50px"></div>
<div class="image" style="left:54px; top:96px; width:18px; height:14px"></div>
<div class="image" style="left:0px; top:143px; width:90px; height:1px"></div>
<div class="text" style="left:34px; top:15px; width:21px; height:7px"></div>
<div class="text" style="left:22px; top:22px; width:44px; height:9px"></div>
<div class="text button" style="left:2px; top:147px; width:41px; height:10px"></div>
</body>
</html>

Exemplar 2
Element Type Constraint: image | image | image | image | pager indicator | text | text | text button | text button | text button
<html>
<body>
<div class="image" style="left:0px; top:5px; width:90px; height:93px"></div>
<div class="image" style="left:30px; top:8px; width:29px; height:10px"></div>
<div class="image" style="left:38px; top:86px; width:12px; height:12px"></div>
<div class="image" style="left:32px; top:86px; width:24px; height:12px"></div>
<div class="pager indicator" style="left:0px; top:119px; width:90px; height:5px"></div>
<div class="text" style="left:0px; top:98px; width:90px; height:10px"></div>
<div class="text" style="left:0px; top:109px; width:90px; height:9px"></div>
<div class="text button" style="left:0px; top:124px; width:45px; height:10px"></div>
<div class="text button" style="left:45px; top:124px; width:45px; height:10px"></div>
<div class="text button" style="left:0px; top:138px; width:90px; height:11px"></div>
</body>
</html>

......

Test Sample
Element Type Constraint: icon | image | image | text | text | text button | toolbar
(Generated by LLMs)

Table 11: A prompt example of Gen-T on RICO.

22

Preamble
Please generate a layout based on the given information.
Task Description: generation conditioned on given element types and sizes
Layout Domain: android layout
Canvas Size: canvas width is 90px, canvas height is 160px

Exemplar 1
Element Type and Size Constraint: icon 12 12 | image 0 0 | input 81 10 | input 81 10 | text 81 4 |
text 22 4 | text button 85 10 | text button 10 4 | toolbar 90 12
<html>
<body>
<div class="icon" style="left:0px; top:5px; width:12px; height:12px"></div>
<div class="image" style="left:12px; top:11px; width:0px; height:0px"></div>
<div class="input" style="left:4px; top:40px; width:81px; height:10px"></div>
<div class="input" style="left:4px; top:28px; width:81px; height:10px"></div>
<div class="text" style="left:4px; top:23px; width:81px; height:4px"></div>
<div class="text" style="left:13px; top:9px; width:22px; height:4px"></div>
<div class="text button" style="left:2px; top:62px; width:85px; height:10px"></div>
<div class="text button" style="left:75px; top:43px; width:10px; height:4px"></div>
<div class="toolbar" style="left:0px; top:5px; width:90px; height:12px"></div>
</body>
</html>

Exemplar 2
Element Type and Size Constraint: card 86 41 | icon 12 12 | input 64 12 | input 78 12 | input 78 9 | input 61 9 |
text 15 5 | text button 25 7 | text button 13 7 | text button 62 3 | toolbar 90 12
<html>
<body>
<div class="card" style="left:1px; top:19px; width:86px; height:41px"></div>
<div class="icon" style="left:0px; top:5px; width:12px; height:12px"></div>
<div class="input" style="left:5px; top:36px; width:64px; height:12px"></div>
<div class="input" style="left:5px; top:23px; width:78px; height:12px"></div>
<div class="input" style="left:5px; top:23px; width:78px; height:9px"></div>
<div class="input" style="left:5px; top:36px; width:61px; height:9px"></div>
<div class="text" style="left:15px; top:8px; width:15px; height:5px"></div>
<div class="text button" style="left:60px; top:51px; width:25px; height:7px"></div>
<div class="text button" style="left:70px; top:38px; width:13px; height:7px"></div>
<div class="text button" style="left:13px; top:62px; width:62px; height:3px"></div>
<div class="toolbar" style="left:0px; top:5px; width:90px; height:12px"></div>
</body>
</html>

......

Test Sample
Element Type and Size Constraint: icon 12 12 | input 83 9 | input 83 9 | text 83 8 | text button 19 9 |
text button 77 5 | toolbar 90 12
(Generated by LLMs)

Table 12: A prompt example of Gen-TS on RICO.

23

Preamble
Please generate a layout based on the given information.
Task Description: generation conditioned on given element relationships
Layout Domain: android layout
Canvas Size: canvas width is 90px, canvas height is 160px

Exemplar 1
Element Type Constraint: image | image | image | text | text | text | text | text button | toolbar
Element Relationship Constraint: text 5 bottom canvas | image 1 larger image 0 | text 3 larger image 0 | text 5 larger image 0 | toolbar 8
larger image 0 | image 2 equal image 1 | text 4 smaller image 2 | text 6 smaller image 2 | toolbar 8 top text 4
<html>
<body>
<div class="image" style="left:0px; top:7px; width:7px; height:7px"></div>
<div class="image" style="left:31px; top:33px; width:28px; height:29px"></div>
<div class="image" style="left:30px; top:101px; width:28px; height:29px"></div>
<div class="text" style="left:8px; top:8px; width:28px; height:5px"></div>
<div class="text" style="left:24px; top:66px; width:40px; height:5px"></div>
<div class="text" style="left:18px; top:133px; width:52px; height:5px"></div>
<div class="text" style="left:18px; top:140px; width:51px; height:7px"></div>
<div class="text button" style="left:75px; top:5px; width:14px; height:11px"></div>
<div class="toolbar" style="left:0px; top:5px; width:90px; height:11px"></div>
</body>
</html>

Exemplar 2
Element Type Constraint: text | text | text | text | text button
Element Relationship Constraint: text 3 bottom text 0 | text 2 equal text 1
<html>
<body>
<div class="text" style="left:0px; top:7px; width:90px; height:5px"></div>
<div class="text" style="left:3px; top:19px; width:83px; height:30px"></div>
<div class="text" style="left:3px; top:57px; width:83px; height:30px"></div>
<div class="text" style="left:3px; top:95px; width:83px; height:52px"></div>
<div class="text button" style="left:0px; top:148px; width:90px; height:11px"></div>
</body>
</html>

......

Test Sample
Element Type Constraint: icon | image | text | text | text | text | text button | text button
Element Relationship Constraint: text 3 top canvas | text 5 top canvas | text 2 right icon 0 | text button 6 bottom icon 0 |
text 3 bottom image 1 | text button 7 bottom text 4
(Generated by LLMs)

Table 13: A prompt example of Gen-R on RICO.

24

Preamble
Please generate a layout based on the given information.
Task Description: layout completion
Layout Domain: android layout
Canvas Size: canvas width is 90px, canvas height is 160px

Exemplar 1
Partial Layout: image 21 5 47 40
<html>
<body>
<div class="image" style="left:21px; top:5px; width:47px; height:40px"></div>
<div class="text button" style="left:2px; top:53px; width:84px; height:15px"></div>
<div class="image" style="left:7px; top:74px; width:9px; height:5px"></div>
<div class="text" style="left:19px; top:74px; width:67px; height:5px"></div>
<div class="text button" style="left:2px; top:85px; width:84px; height:14px"></div>
<div class="text button" style="left:1px; top:104px; width:86px; height:12px"></div>
<div class="text button" style="left:1px; top:136px; width:86px; height:11px"></div>
</body>
</html>

Exemplar 2
Partial Layout: image 17 5 56 11
<html>
<body>
<div class="image" style="left:17px; top:5px; width:56px; height:11px"></div>
<div class="image" style="left:0px; top:17px; width:90px; height:48px"></div>
<div class="text" style="left:2px; top:65px; width:86px; height:48px"></div>
<div class="image" style="left:0px; top:108px; width:90px; height:5px"></div>
<div class="pager indicator" style="left:38px; top:114px; width:12px; height:8px"></div>
<div class="text button" style="left:3px; top:124px; width:82px; height:13px"></div>
<div class="text button" style="left:62px; top:137px; width:17px; height:10px"></div>
<div class="text" style="left:10px; top:140px; width:51px; height:6px"></div>
</body>
</html>

......

Test Sample
Partial Layout: image 12 10 65 32
(Generated by LLMs)

Table 14: A prompt example of layout completion on RICO.

25

Preamble
Please generate a layout based on the given information.
Task Description: layout refinement
Layout Domain: android layout
Canvas Size: canvas width is 90px, canvas height is 160px

Exemplar 1
Noise Layout: advertisement 11 18 70 11 | icon 76 5 11 11 | icon 0 6 12 10 | image 16 8 13 11 | text 30 3 21 5 |
text 29 11 23 4 | toolbar 0 5 88 16 | web view 9 16 69 12 | web view 11 17 70 12 | web view 0 20 90 140
<html>
<body>
<div class="advertisement" style="left:10px; top:18px; width:70px; height:11px"></div>
<div class="icon" style="left:77px; top:6px; width:12px; height:11px"></div>
<div class="icon" style="left:0px; top:5px; width:12px; height:13px"></div>
<div class="image" style="left:15px; top:6px; width:14px; height:11px"></div>
<div class="text" style="left:30px; top:6px; width:21px; height:6px"></div>
<div class="text" style="left:30px; top:12px; width:23px; height:5px"></div>
<div class="toolbar" style="left:0px; top:5px; width:90px; height:13px"></div>
<div class="web view" style="left:10px; top:18px; width:70px; height:11px"></div>
<div class="web view" style="left:10px; top:18px; width:70px; height:11px"></div>
<div class="web view" style="left:0px; top:18px; width:90px; height:141px"></div>
</body>
</html>

Exemplar 2
Noise Layout: advertisement 0 4 89 11 | background image 0 4 89 145 | icon 4 17 6 7 | icon 11 19 4 6 | image 1 8 5 5 |
image 0 13 20 10 | text 35 8 18 5 | text button 80 6 7 3 | text button 16 14 64 8 | text button 82 14 9 7 |
text button 10 29 68 11 | text button 0 39 88 12 | web view 10 2 69 12 | web view 9 6 69 10
<html>
<body>
<div class="advertisement" style="left:0px; top:5px; width:90px; height:10px"></div>
<div class="background image" style="left:0px; top:5px; width:90px; height:144px"></div>
<div class="icon" style="left:5px; top:19px; width:4px; height:4px"></div>
<div class="icon" style="left:11px; top:19px; width:4px; height:4px"></div>
<div class="image" style="left:2px; top:7px; width:5px; height:5px"></div>
<div class="image" style="left:0px; top:16px; width:21px; height:7px"></div>
<div class="text" style="left:35px; top:7px; width:18px; height:5px"></div>
<div class="text button" style="left:81px; top:8px; width:6px; height:5px"></div>
<div class="text button" style="left:16px; top:16px; width:63px; height:10px"></div>
<div class="text button" style="left:81px; top:16px; width:8px; height:7px"></div>
<div class="text button" style="left:11px; top:27px; width:68px; height:10px"></div>
<div class="text button" style="left:0px; top:41px; width:90px; height:11px"></div>
<div class="web view" style="left:10px; top:5px; width:70px; height:10px"></div>
<div class="web view" style="left:10px; top:5px; width:70px; height:10px"></div>
</body>
</html>

......

Test Sample
Noise Layout: icon 68 5 10 12 | icon 1 5 9 12 | icon 80 5 12 13 | text 14 7 56 2 | toolbar 0 5 90 10 |
web view 0 18 90 130 | web view 0 19 90 130
(Generated by LLMs)

Table 15: A prompt example of layout refinement on RICO.

26

Preamble
Please generate a layout based on the given information.
Task Description: content-aware layout generation
Layout Domain: poster layout
Canvas Size: canvas width is 102px, canvas height is 150px

Exemplar 1
Content Constraint: left 25px, top 25px, width 30px, height 12px
Element Type Constraint: logo | text | underlay | text | text
<html>
<body>
<div class="logo" style="left:34px; top:14px; width:66px; height:23px"></div>
<div class="text" style="left:10px; top:25px; width:94px; height:36px"></div>
<div class="underlay" style="left:18px; top:37px; width:85px; height:48px"></div>
<div class="text" style="left:36px; top:40px; width:64px; height:45px"></div>
<div class="text" style="left:28px; top:48px; width:74px; height:53px"></div>
</body>
</html>

Exemplar 2
Content Constraint: left 23px, top 60px, width 56px, height 69px
Element Type Constraint: logo | text | underlay | text
<html>
<body>
<div class="logo" style="left:35px; top:0px; width:66px; height:10px"></div>
<div class="text" style="left:15px; top:22px; width:86px; height:33px"></div>
<div class="underlay" style="left:29px; top:37px; width:73px; height:49px"></div>
<div class="text" style="left:35px; top:40px; width:67px; height:47px"></div>
</body>
</html>

......

Test Sample
Content Constraint: left 26px, top 62px, width 50px, height 60px
Element Type Constraint: logo | text | text | text | underlay | text
(Generated by LLMs)

Table 16: A prompt example of content-aware layout generation on PosterLayout.

27

Preamble
Please generate a layout based on the given information.
Task Description: text-to-layout
Layout Domain: web layout
Canvas Size: canvas width is 120px, canvas height is 120px

Exemplar 1
Text: A header page for the company Fashionably Latellc. On the page, there should include
a name of the company, three navigation links "Home" "Our Fashionably Items" and "Return/Refund Policy" for the user
to click to return to the homepage, view items of the company, and know the return or refund policy. Besides, it is necessary
to have three icons for login, search, and shopping cart.
<html>
<body>
<div class="icon" style="left:101px; top:3px; width:2px; height:2px"></div>
<div class="icon" style="left:106px; top:3px; width:2px; height:2px"></div>
<div class="icon" style="left:110px; top:2px; width:5px; height:5px"></div>
<div class="link" style="left:35px; top:3px; width:4px; height:2px"></div>
<div class="link" style="left:42px; top:3px; width:17px; height:2px"></div>
<div class="link" style="left:62px; top:3px; width:16px; height:2px"></div>
<div class="title" style="left:5px; top:3px; width:24px; height:3px"></div>
</body>
</html>

Exemplar 2
Text: A header page for a website Png AAA. There should have a logo on the left, and three
links "LOG IN" "SIGN UP", and "UPLOAD", so the user can click them to log in, create an account, and upload something.
<html>
<body>
<div class="link" style="left:88px; top:2px; width:5px; height:2px"></div>
<div class="link" style="left:97px; top:2px; width:6px; height:2px"></div>
<div class="link" style="left:110px; top:2px; width:6px; height:2px"></div>
<div class="logo" style="left:2px; top:1px; width:15px; height:4px"></div>
</body>
</html>

......

Test Sample
Text: A header page of the website "homment". On the page, there should include a logo
of the website. Five links ("Latest", "Top100", "About", "Register", and "Login") a button "Create" and an icon are on the page.
(Generated by LLMs)

Table 17: A prompt example of text-to-layout on WebUI.

28

	Introduction
	Related Work
	LayoutPrompter
	Overview
	Input-Output Serialization
	Dynamic Exemplar Selection
	Layout Ranker

	Experiments
	Setups
	Main Results
	Ablation Studies

	Conclusion and Limitation
	Coordinate Discretization
	Additional Experimental Results and Analysis
	Stability of Generation Performance
	Effect of Exemplar Number
	Generalization Ability

	Additional Qualitative Results
	Generation Conditioned on Element Types
	Generation Conditioned on Element Types and Sizes
	Generation Conditioned on Element Relationships
	Layout Completion
	Layout Refinement
	Content-Aware Layout Generation
	Text-to-Layout

	Prompt Examples

