
A Appendix

A.1 Derivations

In the following subsections, we provide theoretical derivations. In Section A.1.1, we discuss
the asymptotic convergence properties as well as the assumptions of score-matching methods. In
Section A.1.2, we elaborate on the formulation of EBFlow (i.e., Eqs. (8) and (9)), and provide a
explanation of their interpretation. Finally, in Section A.1.3, we present a theoretical analysis of KL
divergence and Fisher divergence, and discuss the underlying mechanism behind the proposed MaP
technique.

A.1.1 Asymptotic Convergence Property of Score Matching

In this subsection, we provide a formal description of the consistency property of score match-
ing. The description follows [16] and the notations are replaced with those used in this paper.
The regularity conditions for p(· ; ✓) are defined in Assumptions A.1⇠A.7. In the following para-
graph, the parameter space is defined as ⇥. In addition, s(x; ✓) , @

@x log p(x; ✓) = �
@

@xE(x; ✓)

represents the score function. L̂SM(✓) , 1
N

P
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k=1 f(xk; ✓) denotes an unbiased estimator of

LSM(✓), where f(x; ✓) , 1
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@xE(x; ✓)
��2 � Tr
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⌘
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and {x1, · · · ,xN} represents a collection of i.i.d. samples drawn from px. For notational simplicity,
we denote @h(x; ✓) , @

@xh(x; ✓) and @ihj(x; ✓) , @

@xi
hj(x; ✓), where hj(x; ✓) denotes the j-th

element of h.
Assumption A.1. (Positiveness) p(x; ✓) > 0 and px(x) > 0, 8✓ 2 ⇥, 8x 2 RD.
Assumption A.2. (Regularity of the score functions) The parameterized score function s(x; ✓)
and the true score function @

@x log px(x) are both continuous and differentiable. In addition, their
expectations Epx(x) [s(x; ✓)] and Epx(x)

⇥
@

@x log px(x)
⇤

are finite. (i.e., Epx(x) [s(x; ✓)] < 1 and
Epx(x)

⇥
@

@x log px(x)
⇤
< 1)

Assumption A.3. (Boundary condition) limkxk!1 px(x)s(x; ✓) = 0, 8✓ 2 ⇥.
Assumption A.4. (Compactness) The parameter space ⇥ is compact.
Assumption A.5. (Identifiability) There exists a set of parameters ✓⇤ such that px(x) = p(x; ✓⇤),
where ✓

⇤
2 ⇥, 8x 2 RD.

Assumption A.6. (Uniqueness) ✓ 6= ✓
⇤
, p(x; ✓) 6= p(x; ✓⇤), where ✓, ✓

⇤
2 ⇥, x 2 RD.

Assumption A.7. (Lipschitzness of f ) The function f is Lipschitz continuous w.r.t. ✓, i.e.,
|f(x; ✓1)� f(x; ✓2)|  L(x) k✓1 � ✓2k2, 8✓1, ✓2 2 ⇥, where L(x) represents a Lipschitz con-
stant satisfying Epx(x) [L(x)] < 1.
Theorem A.8. (Consistency of a score-matching estimator [16]) The score-matching estimator

✓N , argmin✓2⇥L̂SM is consistent, i.e.,

✓N
p
�! ✓

⇤
, as N ! 1.

Assumptions A.1⇠A.3 are the conditions that ensure @

@✓
DF [px(x)kp(x; ✓)] =

@

@✓
LSM(✓). Assump-

tions A.4⇠A.7 lead to the uniform convergence property [16] of a score-matching estimator, which
gives rise to the consistency property. The detailed derivation can be found in Corollary 1 in [16]. In
the following Lemma A.9 and Proposition A.10, we examine the sufficient condition for g and pu to
satisfy Assumption A.7.

Lemma A.9. (Sufficient condition for the Lipschitzness of f ) The function f(x; ✓) = 1
2 ks(x; ✓)k

2 +
Tr
�

@

@xs(x; ✓)
�

is Lipschitz continuous if the score function s(x; ✓) satisfies the following conditions:

8✓, ✓1, ✓2 2 ⇥, 8i 2 {1, · · · , D},

ks(x; ✓)k2  L1(x),

ks(x; ✓1)� s(x; ✓2)k2  L2(x) k✓1 � ✓2k2 ,

k@is(x; ✓1)� @is(x; ✓2)k2  L3(x) k✓1 � ✓2k2 ,

where L1, L2, and L3 are Lipschitz constants satisfying Epx(x) [L1(x)] < 1, Epx(x) [L2(x)] < 1,

and Epx(x) [L3(x)] < 1.
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Proof. The Lipschitzness of f can be guaranteed by ensuring the Lipschitzness of ks(x; ✓)k22 and
Tr (@s(x; ✓)).

Step 1. (Lipschitzness of ks(x; ✓)k22)
���ks(x; ✓1)k22 � ks(x; ✓2)k

2
2

���

=
��s(x; ✓1)T s(x; ✓1)� s(x; ✓2)

T
s(x; ✓2)

��

=
���s(x; ✓1)T s(x; ✓1)� s(x; ✓1)

T
s(x; ✓2)

�
+
�
s(x; ✓1)

T
s(x; ✓2)� s(x; ✓2)

T
s(x; ✓2)

���

=
��s(x; ✓1)T (s(x; ✓1)� s(x; ✓2)) + s(x; ✓2)

T (s(x; ✓1)� s(x; ✓2))
��

(i)

��s(x; ✓1)T (s(x; ✓1)� s(x; ✓2))

��+
��s(x; ✓2)T (s(x; ✓1)� s(x; ✓2))

��
(ii)
 ks(x; ✓1)k2 ks(x; ✓1)� s(x; ✓2)k2 + ks(x; ✓2)k2 ks(x; ✓1)� s(x; ✓2)k2
(iii)
 L1(x) ks(x; ✓1)� s(x; ✓2)k2 + L1(x) ks(x; ✓1)� s(x; ✓2)k2
(iii)
 2L1(x)L2(x) k✓1 � ✓2k2 ,

where (i) is based on triangle inequality, (ii) is due to Cauchy–Schwarz inequality, and (iii) follows
from the listed assumptions.

Step 2. (Lipschitzness of Tr (@s(x; ✓)))

|Tr (@s(x; ✓1))� Tr (@s(x; ✓2))| = |Tr (@s(x; ✓1)� @s(x; ✓2))|

(i)
 D k@s(x; ✓1)� @s(x; ✓2)k2
(ii)
 D

sX

i

k@is(x; ✓1)� @is(✓2)k
2
2

(iii)
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q
DL

2
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2
2

= D

p

DL3(x) k✓1 � ✓2k2

where (i) holds by Von Neumann’s trace inequality. (ii) is due to the property kAk2 

qP
i
kaik

2
2,

where ai is the column vector of A. (iii) holds by the listed assumptions.

Based on Steps 1 and 2, the Lipschitzness of f is guaranteed, since
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 L1(x)L2(x) k✓1 � ✓2k2 +D

p

DL3(x) k✓1 � ✓2k2

=
⇣
L1(x)L2(x) +D

p

DL3(x)
⌘
k✓1 � ✓2k2 .

Proposition A.10. (Sufficient condition for the Lipschitzness of f ) The function f is Lipschitz

continuous if g(x; ✓) has bounded first, second, and third-order derivatives, i.e., 8i, j 2 {1, · · · , D},

8✓ 2 ⇥.

kJg(x; ✓)k2  l1(x), k@iJg(x; ✓)k2  l2(x), k@i@jJg(x; ✓)k2  l3(x),

and smooth enough on ⇥, i.e., ✓1, ✓2 2 ⇥:

kg(x; ✓1)� g(x; ✓2)k2  r0(x) k✓1 � ✓2k2 ,
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kJg(x; ✓1)� Jg(x; ✓2)k2  r1(x) k✓1 � ✓2k2 ,

k@iJg(x; ✓1)� @iJg(x; ✓2)k2  r2(x) k✓1 � ✓2k2 .

k@i@jJg(x; ✓1)� @i@jJg(x; ✓2)k2  r3(x) k✓1 � ✓2k2 .

In addition, it satisfies the following conditions:

��J�1
g

(x; ✓)
��
2
 l

0

1(x),
��@iJ�1

g
(x; ✓)

��
2
 l

0

2(x),
��J�1

g
(x; ✓1)� J�1

g
(x; ✓2)

��
2
 r

0

1(x) k✓1 � ✓2k2 ,

��@iJ�1
g

(x; ✓1)� @iJ
�1
g

(x; ✓2)
��
2
 r

0

2(x) k✓1 � ✓2k2 ,

where J�1
g

represents the inverse matrix of Jg . Furthermore, the prior distribution pu satisfies:

ksu(u)k  t1, k@isu(u)k  t2

ksu(u1)� su(u2)k2  t3 ku1 � u2k2 ,

k@isu(u1)� @isu(u2)k2  t4 ku1 � u2k2 ,

where su(u) , @

@u log pu(u) is the score function of pu. The Lipschitz constants listed above (i.e.,

l1 ⇠ l3, r0 ⇠ r3, l
0

1 ⇠ l
0

2, and r
0

1 ⇠ r
0

2) have finite expectations.

Proof. We show that the sufficient conditions stated in Lemma A.9 can be satisfied using the
conditions listed above.

Step 1. (Sufficient condition of ks(x; ✓)k2  L1(x))

Since ks(x; ✓)k2 =
�� @

@x log pu(g(x; ✓)) +
@

@x log |detJg(x; ✓)|
��
2


�� @

@x log pu(g(x; ✓))
��
2
+�� @

@x log |detJg(x; ✓)|
��
2
, we first demonstrate that

�� @

@x log pu(g(x; ✓))
��
2

and�� @

@x log |detJg(x; ✓)|
��
2

are both bounded.

(1.1)
�� @

@x log pu(g(x; ✓))
��
2

is bounded:
����

@

@x
log pu(g(x; ✓))

����
2

=
���(su(g(x; ✓)))T Jg(x; ✓)

���
2
 ksu(g(x; ✓))k2 kJg(x; ✓)k2  t1l1(x).

(1.2)
�� @

@x log |detJg(x; ✓)|
�� is bounded:

����
@

@x
log |detJg(x; ✓)|

���� =

����|detJg(x; ✓)|
�1 @

@x
|detJg(x; ✓)|

����

=

����(detJg(x; ✓))
�1 @

@x
detJg(x; ✓)

����
(i)
=
���(detJg(x; ✓))

�1 detJg(x; ✓)v(x; ✓)
���

= kv(x; ✓)k ,

where (i) is derived using Jacobi’s formula, and vi(x; ✓) = Tr
�
J�1
g

(x; ✓)@iJg(x; ✓)
�
.

kv(x; ✓)k =

sX

i

�
Tr
�
J�1
g (x; ✓)@iJg(x; ✓)

��2

(i)


sX

i

D2
��J�1

g (x; ✓)@iJg(x; ✓)
��2
2

(ii)


sX

i

D2
��J�1

g (x; ✓)
��2
2
k@iJg(x; ✓)k

2
2

(iii)


sX

i

D2l
02
1 (x)l22(x)

=
p

D3l
0

1(x)l2(x),
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where (i) holds by Von Neumann’s trace inequality, (ii) is due to the property of matrix norm, and
(iii) is follows from the listed assumptions.

Step 2. (Sufficient condition of the Lipschitzness of s(x; ✓))

Since s(x; ✓) = @

@x log pu(g(x; ✓))+
@

@x log |detJg(x; ✓)|, we demonstrate that @

@x log pu(g(x; ✓))
and @

@x log |detJg(x; ✓)| are both Lipschitz continuous on ⇥.

(2.1) Lipschitzness of @

@x log pu(g(x; ✓)):
����

@

@x
log pu(g(x; ✓1))�

@

@x
log pu(g(x; ✓2))

����
2

=
���(su(g(x; ✓1)))T Jg(x; ✓1)� (su(g(x; ✓2)))

T Jg(x; ✓2)
���
2

(i)
 ksu(g(x; ✓1))k2 kJg(x; ✓1)� Jg(x; ✓2)k2 + ksu(g(x; ✓1))� su(g(x; ✓2))k2 kJg(x; ✓2)k2
(ii)
 t1r1(x) k✓1 � ✓2k2 + t2l1(x) kg(x; ✓1)� g(x; ✓2)k2
(ii)
 t1r1(x) k✓1 � ✓2k2 + t2l1(x)r0(x) k✓1 � ✓2k2

= (t1r1(x) + t2l1(x)r0(x)) k✓1 � ✓2k2 ,

where (i) is obtained using a similar derivation to Step 1 in Lemma A.9, while (ii) follows from the
listed assumptions.

(2.2) Lipschitzness of @

@x log |detJg(x; ✓)|:

Let M(i,x; ✓) , J�1
g

(x; ✓1)@iJg(x; ✓). We first demonstrate that M is Lipschitz continuous:

kM(i,x; ✓1)�M(i,x; ✓2)k2
=
��J�1

g
(x; ✓1)@iJg(x; ✓1)� J�1

g
(x; ✓2)@iJg(x; ✓2)

��
2

(i)

��J�1

g
(x; ✓1)

��
2
k(@iJg(x; ✓1)� @iJg(x; ✓2))k2 +

��J�1
g

(x; ✓1)� J�1
g

(x; ✓2)
��
2
k@iJg(x; ✓2)k2

(ii)
 l

0

1(x)r2(x) k✓1 � ✓2k2 + l2(x)r
0

1(x) k✓1 � ✓2k2

=
⇣
l
0

1(x)r2(x) + l2(x)r
0

1(x)
⌘
k✓1 � ✓2k2 ,

where (i) is obtained by an analogous derivation of the step 1 in Lemma A.9, and (ii) holds by the
listed assumption.

The Lipschitzness of M leads to the Lipschitzness of @

@x log |detJg(x; ✓)|, since:
����

@

@x
log |detJg(x; ✓1)|�

@

@x
log |detJg(x; ✓2)|

����
2

= kv(x; ✓1)� v(x; ✓2)k2

=

sX

i

(Tr (M(i,x; ✓1))� Tr (M(i,x; ✓2)))
2

=

sX

i

(Tr (M(i,x; ✓1)�M(i,x; ✓2)))
2

(i)


sX

i

D2 kM(i,x; ✓1)�M(i,x; ✓2)k
2
2

(ii)


sX

i

D2
�
l
0
1(x)r2(x) + l2(x)r

0
1(x)

�2
k✓1 � ✓2k

2
2

=
p

D3
⇣
l
0

1(x)r2(x) + l2(x)r
0

1(x)
⌘
k✓1 � ✓2k2 ,
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where (i) holds by Von Neumann’s trace inequality, (ii) is due to the Lipschitzness of M.

Step 3. (Sufficient condition of the Lipschitzness of @is(x; ✓))

@is(x; ✓) can be decomposed as (@isu(g(x; ✓)))
T Jg(x; ✓), (su(g(x; ✓)))

T
@iJg(x; ✓), and

@i [v(x; ✓)] as follows:

@is(x; ✓) = @i

h
(su(g(x; ✓)))

T Jg(x; ✓)
i
+ @i [v(x; ✓)]

=
h
(@isu(g(x; ✓)))

T Jg(x; ✓)
i
+
h
(su(g(x; ✓)))

T
@iJg(x; ✓)

i
+ @i [v(x; ✓)] .

(3.1) The Lipschitzness of (@isu(g(x; ✓)))
T Jg(x; ✓) and (su(g(x; ✓)))

T
@iJg(x; ✓) can be derived

using proofs similar to that in Step 2.1:
���(@isu(g(x; ✓1)))T Jg(x; ✓1)� (@isu(g(x; ✓2)))

T Jg(x; ✓2)
���
2
 (t2r1(x) + t4r0(x)l1(x)) k✓1 � ✓2k2 ,

���(su(g(x; ✓1)))T @iJg(x; ✓1)� (su(g(x; ✓2)))
T
@iJg(x; ✓2)

���
2
 (t1r2(x) + t3r0(x)l2(x)) k✓1 � ✓2k2 .

(3.2) Lipschitzness of @i [v(x; ✓)]:

Let @i [vj(x; ✓)] , @iTr (M(j,x; ✓)) = Tr (@iM(j,x; ✓)). We first show that @iM(j,x; ✓) can be
decomposed as:

@iM(j,x; ✓) = @i

�
J�1
g

(x; ✓)@jJg(x; ✓)
�
=
�
@iJ

�1
g

(x; ✓)@jJg(x; ✓)
�
+
�
J�1
g

(x; ✓)@i@jJg(x; ✓)
�

The Lipschitz constant of @iM equals to
⇣
l
0

2(x)r2(x) + l2(x)r
0

2(x)
⌘
+
⇣
l
0

1(x)r3(x) + l3(x)r
0

1(x)
⌘

based on a similar derivation as in Step 3.1. The Lipschitzness of @iM(j,x; ✓) leads to the Lipschitz-
ness of @i [v(x; ✓)]:

k@i [v(x; ✓1)]� @i [v(x; ✓2)]k2

=

sX

j

(Tr (@iM(j,x; ✓1))� Tr (@iM(j,x; ✓2)))
2

=

sX

j

Tr (@iM(j,x; ✓1)� @iM(j,x; ✓2))
2

(i)


sX

j

D2 k@iM(j,x; ✓1)� @iM(j,x; ✓2)k
2
2

(ii)


sX

j

D2
�
l
0
2(x)r2(x) + l2(x)r

0
2(x) + l

0
1(x)r3(x) + l3(x)r

0
1(x)

�2
k✓1 � ✓2)k

2
2

=
p

D3
⇣
l
0

2(x)r2(x) + l2(x)r
0

2(x) + l
0

1(x)r3(x) + l3(x)r
0

1(x)
⌘
k✓1 � ✓2)k2

where (i) holds by Von Neumann’s trace inequality, (ii) is due to the Lipschitzness of @iM.

A.1.2 Derivation of Eqs. (8) and (9)

Energy-based models are formulated based on the observation that any continuous pdf p(x; ✓)
can be expressed as a Boltzmann distribution exp (�E(x; ✓))Z�1(✓) [13], where the energy
function E(· ; ✓) can be modeled as any scalar-valued continuous function. In EBFlow, the en-
ergy function E(x; ✓) is selected as � log(pu (g(x; ✓))

Q
gi2Sn

|det(Jgi(xi�1 ; ✓))|) according to
Eq. (9). This suggests that the normalizing constant Z(✓) =

R
exp (�E(x; ✓)) dx is equal to

(
Q

gi2Sl
|det(Jgi(✓))|)

�1 according to Lemma A.11.
Lemma A.11.

✓ Y

gi2Sl

|det(Jgi(✓))|

◆�1

=

Z

x2RD

pu (g(x; ✓))
Y

gi2Sn

|det(Jgi(xi�1; ✓))| dx. (A1)
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Proof.

1 =

Z

x2RD

p(x; ✓)dx

=

Z

x2RD

pu (g(x; ✓))
Y

gi2Sn

��det(Jgj (xi�1; ✓))
��
Y

gi2Sl

|det(Jgi(✓))| dx

=
Y

gi2Sl

|det(Jgi(✓))|

Z

x2RD

pu (g(x; ✓))
Y

gi2Sn

|det(Jgi(xi�1; ✓))| dx

By multiplying
⇣Q

gi2Sl
|det(Jgi(✓))|

⌘�1
to both sides of the equation, we arrive at the conclusion:

✓ Y

gi2Sl

|det(Jgi(✓))|

◆�1

=

Z

x2RD

pu (g(x; ✓))
Y

gi2Sn

|det(Jgi(xi�1; ✓))| dx.

pdf (model)

point-wise
density 
evaluation

variable

pdf (data)

point-wise
density 
evaluation

Fisher divergence
(Lemma A.13)

KL divergence
(Lemma A.12)

(in general)(in general)

Figure A1: An illustration of the relationship between the variables discussed in Proposition 4.1,
Lemma A.12, and Lemma A.13. x represents a random vector sampled from the data distribution
px. {gi}

L

i=1 is a series of transformations. xj , gj � · · · � g1(x), and pxj is its pdf. pj(xj) =

pu(gL � · · · � gj+1(xj))
Q

L

i=j+1 |det (Jgi)|, where pu is a prior distribution. The properties of
KL divergence and Fisher divergence presented in the last two rows are derived in Lemmas A.12
and A.13.

A.1.3 Theoretical Analyses of KL Divergence and Fisher Divergence

In this section, we provide formal derivations for Proposition 4.1, Lemma A.12, and Lemma A.13.
To ensure a clear presentation, we provide a visualization of the relationship between the variables
used in the subsequent derivations in Fig. A1.

Lemma A.12. Let pxj be the pdf of the latent variable of xj , gj�· · ·�g1(x) indexed by j. In addition,

let pj(·) be a pdf modeled as pu(gL � · · · � gj+1(·))
Q

L

i=j+1 |det (Jgi)|, where j 2 {0, · · · , L� 1}.

It follows that:

DKL

⇥
pxjkpj

⇤
= DKL [pxkp0] , 8j 2 {1, · · · , L� 1}. (A2)
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Proof. The equivalence DKL [pxkp0] = DKL

⇥
pxjkpj

⇤
holds for any j 2 {1, · · · , L� 1} since:

DKL [pxkp0]

= Epx(x)


log

✓
px(x)

p0(x)

◆�

= Epx(x)

"
log

 
pxj (gj � · · · � g1(x))

Q
j

i=1 |det (Jgi)|

pu(gL � · · · � g1(x))
Q

L

i=1 |det (Jgi)|

!#

= Epx(x)

"
log

 
pxj (gj � · · · � g1(x))

pu(gL � · · · � g1(x))
Q

L

i=j+1 |det (Jgi)|

!#

(i)
= Epxj (xj)

"
log

 
pxj (xj)

pu(gL � · · · � gj+1(xj))
Q

L

i=j+1 |det (Jgi)|

!#

= DKL

⇥
pxjkpj

⇤
,

where (i) is due to the property that Epx(x)[f � gj � · · · � g1(x)] = Epxj (xj)[f(xj)] for a given
function f . Therefore, DKL

⇥
pxjkpj

⇤
= DKL [pxkp0], 8j 2 {1, · · · , L� 1}.

Lemma A.13. Let pxj be the pdf of the latent variable of xj , gj�· · ·�g1(x) indexed by j. In addition,

let pj(·) be a pdf modeled as pu(gL � · · · � gj+1(·))
Q

L

i=j+1 |det (Jgi)|, where j 2 {0, · · · , L� 1}.

It follows that:
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Proof. Based on the definition, the Fisher divergence between px and p0 is written as:
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where (i) is due to the chain rule, and (ii) is because Epx(x)[f � gj � · · · � g1(x)] = Epxj (xj)[f(xj)]

for a given function f .
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Remark A.14. Lemma A.13 implies that DF

⇥
pxjkpj

⇤
6= DF [pxkp0] in general, as the latter contains

an additional multiplier
Q

j

i=1 Jgi as shown below:
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Proposition 4.1. Let pxj be the pdf of the latent variable of xj , gj � · · · � g1(x) indexed by

j. In addition, let pj(·) be a pdf modeled as pu(gL � · · · � gj+1(·))
Q

L

i=j+1 |det (Jgi)|, where

j 2 {0, · · · , L� 1}. It follows that:
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Proof. Based on Remark A.14, the following holds:
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where (i) and (ii) both result from the positiveness condition presented in Assumption A.1. Specif-
ically, for (i), pxj (xj) = px(g

�1
1 � · · · � g
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j

(xj))
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> 0. Meanwhile (ii) holds since
Q

j

i=1 |det (Jgi)| > 0

and thus all of the singular values of
Q

j

i=1 Jgi are non-zero.

A.2 Experimental Setups

In this section, we elaborate on the experimental setups and provide the detailed configurations
for the experiments presented in Section 5 of the main manuscript. The code implementation for
the experiments is provided in the following repository: https://github.com/chen-hao-chao/
ebflow. Our code implementation is developed based on [7, 17, 44].

A.2.1 Experimental Setups for the Two-Dimensional Synthetic Datasets

Datasets. In Section 5.1, we present the experimental results on three two-dimensional synthetic
datasets: Sine, Swirl, and Checkerboard. The Sine dataset is generated by sampling data points
from the set {(4w � 2, sin(12w � 6)) |w 2 [0, 1]}. The Swirl dataset is generated by sampling data
points from the set {(�⇡

p
w cos(⇡

p
w),⇡

p
w sin(⇡

p
w)) |w 2 [0, 1]}. The Checkerboard dataset

is generated by sampling data points from the set {(4w�2, t�2s+b4w�2cmod2) |w 2 [0, 1], t 2
[0, 1], s 2 {0, 1}}, where b·c is a floor function, and mod represents the modulo operation.

To establish px for all three datasets, we smooth a Dirac function using a Gaussian kernel. Specifically,
we define the Dirac function as p̂(x̂) , 1

M

P
M

i=1 �(
��x̂� x̂(i)

��), where {x̂(i)
}
M

i=1 are M uniformly-
sampled data points. The data distribution is defined as px(x) ,

R
p̂(x̂)N (x|x̂, �̂2I)dx̂ =

1
M

P
M

i=1 N (x|x̂(i)
, �̂

2I). The closed-form expressions for px(x) and @

@x log px(x) can be ob-
tained using the derivation in [45]. In the experiments, M is set as 50, 000, and �̂ is fixed at 0.375
for all three datasets.
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Implementation Details. The model architecture of g(· ; ✓) consists of ten Glow blocks [4]. Each
block comprises an actnorm [4] layer, a fully-connected layer, and an affine coupling layer. Table A2
provides the formal definitions of these operations. pu(·) is implemented as an isotropic Gaussian with
zero mean and unit variance. To determine the best hyperparameters, we perform a grid search over
the following optimizers, learning rates, and gradient clipping values based on the evaluation results
in terms of the KL divergence. The optimizers include Adam [46], AdamW [47], and RMSProp.
The learning rate and gradient clipping values are selected from (5e-3, 1e-3, 5e-4, 1e-4) and (None,
2.5, 10.0), respectively. Table A1 summarizes the selected hyperparameters. The optimization
processes of Sine and Swirl datasets require 50,000 training iterations for convergence, while that of
the Checkerboard dataset requires 100,000 iterations. The batch size is fixed at 5,000 for all setups.

A.2.2 Experimental Setups for the Real-world Datasets

Datasets. The experiments presented in Section 5.2 are performed on the MNIST [19] and CIFAR-
10 [37] datasets. The training and test sets of MNIST and CIFAR-10 contain 50,000 and 10,000
images, respectively. The data are smoothed using the uniform dequantization method presented
in [1]. The observable parts (i.e., xO) of the images in Fig. 5 are produced using the pre-trained
model in [48].

Implementation Details. In Sections 5.2 and 5.4, we adopt three types of model architectures:
FC-based [7], CNN-based, and Glow [4] models. The FC-based model contains two fully-connected
layers and a smoothed leaky ReLU non-linearity [7] in between, which is identical to [7]. The CNN-
based model consists of three convolutional blocks and two squeezing operations [2] between every
convolutional block. Each convolutional block contains two convolutional layers and a smoothed
leaky ReLU in between. The Glow model adopted in Section 5.4 is composed of 16 Glow blocks.
Each of the Glow block consists of an actnorm [4] layer, a convolutional layer, and an affine coupling
layer. The squeezing operation is inserted between every eight blocks. The operations used in
these models are summarized in Table A2. The smoothness factor ↵ of Smooth Leaky ReLU is
set to 0.3 and 0.6 for models trained on MNIST and CIFAR-10, respectively. The scaling and
transition functions s(· ; ✓) and t(· ; ✓) of the affine coupling layers are convolutional blocks with
ReLU activation functions. The prior distribution pu(·) is implemented as an isotropic Gaussian
with zero mean and unit variance. The FC-based and CNN-based models are trained with RMSProp
using a learning rate initialized at 1e-4 and a batch size of 100. The Glow model is trained with
an Adam optimizer using a learning rate initialized at 1e-4 and a batch size of 100. The gradient
clipping value is set to 500 during the training for the Glow model. The learning rate scheduler
MultiStepLR in PyTorch is used for gradually decreasing the learning rates. The hyper-parameters
{�, ⇠} used in DSM and FDSSM are selected based on a grid search over {0.05, 0.1, 0.5, 1.0}. The
selected {�, ⇠} are {1.0, 1.0} and {0.1, 0.1} for the MNIST and CIFAR-10 datasets, respectively.
The parameter m in EMA is set to 0.999. The algorithms are implemented using PyTorch [39].
The gradients w.r.t. x and ✓ are both calculated using automatic differential tools [40] provided by
PyTorch [39]. The runtime is evaluated on Tesla V100 NVIDIA GPUs. In the experiments performed
on CIFAR-10 and CelebA using score-matching methods, the energy function (i.e., Epx(x) [E(x; ✓)])
is added as a regularization loss with a balancing factor fixed at 0.001 during the optimization
processes. The results in Fig. 2 (b) are smoothed with the exponential moving average function used
in Tensorboard [49], i.e., w ⇥ di�1 + (1� w)⇥ di, where w is set to 0.45 and di represents the
evaluation result at the i-th iteration.

Table A1: The hyper-parameters used in the two-dimensional synthetic example in Section 5.1.

Dataset ML SML SSM DSM FDSSM

Sine
Optimizor Adam AdamW Adam Adam Adam

Learning Rate 5e-4 5e-4 1e-4 1e-4 1e-4
Gradient Clip 1.0 None 1.0 1.0 1.0

Swirl
Optimizor Adam Adam Adam Adam Adam

Learning Rate 5e-3 1e-4 1e-4 1e-4 1e-4
Gradient Clip None 10.0 10.0 10.0 2.5

Checkerboard
Optimizor AdamW AdamW AdamW AdamW Adam

Learning Rate 1e-4 1e-4 1e-4 1e-4 1e-4
Gradient Clip 10.0 10.0 10.0 10.0 10.0
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Table A2: The components of g(· ; ✓) used in this paper. In this table, z and y are the output and the
input of a layer, respectively. � and � represent the mean and variance of an actnorm layer. w is a
convolutional kernel, and w ? y , Ŵy, where ? is a convolutional operator, and Ŵ is a D ⇥D

matrix. W and b represent the weight and bias in a fully-connected layer. ↵ is a hyper-parameter
for adjusting the smoothness of smooth leaky ReLU. In the affine coupling layer, z and y are split
into two parts {za, zb} and {ya,yb}, respectively. s(·; ✓) and t(·; ✓) are the scaling and transition
networks parameterized with ✓. sig (y) = 1/(1 + exp (�y)) represents the sigmoid function. dim (·)
represents the dimension of the input vector. y[i] represents the i-th element of vector y.

Layer Function Log Jacobian Determinant Set

actnorm [4] z = (y � �)/�
P

D

i=1 log
��1/�[i]

�� Sl

convolutional z = w ? y + b log
���det

⇣
Ŵ
⌘��� Sl

fully-connected z = Wy + b log |det (W )| Sl

smooth leaky ReLU [7] z = ↵y + (1� ↵) log(1 + exp (y))
P

D

i=1 log
��↵+ (1� ↵)sig

�
y[i]

��� Sn

affine coupling [4] za = s(yb; ✓)ya + t(yb; ✓), zb = yb

Pdim(yb)
i=1 log

��s(yb; ✓)[i]
�� Sn

Table A3: The simulation results of Eq. (A6). The error rate is measured by |dtrue � dest|/|dtrue|,
where dtrue and dest represent the true and estimated Jacobian determinants, respectively.

D =50 D =100 D =200

Error Rate (M =50) 0.004211 0.099940 0.355314

Error Rate (M =100) 0.003503 0.034608 0.076239

Error Rate (M =200) 0.002332 0.015411 0.011175

Results of the Related Works. The results of the relative gradient [7], SSM [16], and FDSSM [17]
methods are directly obtained from their original paper. On the other hand, the results of the DSM
method is obtained from [17]. Please note that the reported results of [16] and [17] differ from
each other given that they both adopt the NICE [1] model. Specifically, the SSM method achieves
NLL= 3, 355 and NLL= 6, 234 in [16] and [17], respectively. Moreover, the DSM method achieves
NLL= 4, 363 and NLL= 3, 398 in [16] and [17], respectively. In Table 4, we report the results with
lower NLL.

A.3 Estimating the Jacobian Determinants using Importance Sampling

Importance sampling is a technique used to estimate integrals, which can be employed to approximate
the normalizing constant Z(✓) in an energy-based model. In this method, a pdf q with a simple closed
form that can be easily sampled from is selected. The normalizing constant can then be expressed as
the following formula:

Z(✓) =

Z

x2RD

exp (�E(x; ✓)) dx =

Z

x2RD

q(x)
exp (�E(x; ✓))

q(x)
dx

= Eq(x)


exp (�E(x; ✓))

q(x)

�
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1
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MX

j=1

exp
�
�E(x̂(j); ✓)

�

q(x̂(j))
,

(A5)
where {x̂(j)

}
M

j=1 represents M i.i.d. samples drawn from q. According to Lemma A.11, the Jacobian
determinants of the layers in Sl can be approximated using Eq. (A5) as follows:
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Table A4: An overall comparison between EBFlow, the baseline method, the Relative Gradient
method [7], and the methods that utilize specially designed linear layers [8–12, 29]. The notations
3/ 7 in row ‘Unbiased’ represent whether the models are optimized according to an unbiased target.
On the other hand, the notations 3/ 7 in row ‘Unconstrained’ represent whether the models can
be constructed with arbitrary linear transformations. (†) The approximation errors o(⇠) of FDSSM
is controlled by its hyper-parameter ⇠. (‡) The error o(W ) of the Relative Gradient method is
determined by the values of a model’s weights.

KL-Divergence-Based Fisher-Divergence-Based
Baseline (ML) EBFlow (SML) Relative Grad. Special Linear EBFlow (SSM) EBFlow (DSM) EBFlow (FDSSM)

Complexity O(D3L) O(D3L) O(D2L) O(D2L) O(D2L) O(D2L) O(D2L)

Unbiased 3 3 7(‡) 3 3 7 7(†)

Unconstrained 3 3 3 7 3 3 3

To validate this idea, we provide a simple simulation with pu = N (0, I), q = N (0, I), g(x;W ) =
Wx, M = {50, 100, 200}, and D = {50, 100, 200} in Table A3. The results show that larger values
of M lead to more accurate estimation of the Jacobian determinants. Typically, the choice of q is
crucial to the accuracy of importance sampling. To obtain an accurate approximation, one can adopt
the technique of annealed importance sampling (AIS) [33] or Reverse AIS Estimator (RAISE) [34],
which are commonly-adopted algorithms for effectively estimating Z(✓).

Eq. (A6) can be interpreted as a generalization of the stochastic estimator presented in [50], where
the distributions pu and q are modeled as isotropic Gaussian distributions, and g is restricted as
a linear transformation. For the further analysis of this concept, particularly in the context of
determinant estimation for matrices, we refer readers to Section I of [50], where a more sophisticated
approximation approach and the corresponding experimental findings are provided.

A.4 A Comparison among the Methods Discussed in this Paper

In Sections 2, 3, and 4, we discuss various methods for efficiently training flow-based models.
To provide a comprehensive comparison of these methods, we summarize their complexity and
characteristics in Table A4.

A.5 The Impacts of the Constraint of Linear Transformations on the Performance of a
Flow-based Model

In this section, we examine the impact of the constraints of linear transformations on the performance
of a flow-based model. A key distinction between constrained and unconstrained linear layers lies

Full Matrix (F) Lower Triangular
Matrix (L)

Upper Triangular
Matrix (U)

Lower & Upper Triangular
Matrices (LU)

Learnable Weight Masked Weight (Not Learnable)

Figure A2: An illustration of the weight matrices in the F, L, U, and LU layers described in
Section A.5.

-4 -2 0 2 4 -8 -6 -4 -2 0 8642 -15 -10 0-5 15105 -30 -20 0-10 302010

Figure A3: Visualized marginal distributions of px[i]
for i = 1, 2, 3, and 4.
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in how they model the correlation between each element in a data vector. Constrained linear trans-
formations, such as those used in the previous works [8–12, 29], impose predetermined correlations
that are not learnable during the optimization process. For instance, masked linear layers [8–10]
are constructed by masking either the upper or lower triangular weight matrix in a linear layer. In
contrast, unconstrained linear layers have weight matrices that are fully learnable, making them more
flexible than their constrained counterparts.

To demonstrate the influences of the constraint on the expressiveness of a model, we provide a
performance comparison between flow-based models constructed using different types of linear
layers. Specifically, we compare the performance of the models constructed using linear layers
with full matrices, lower triangular matrices, upper triangular matrices, and matrices that are the
multiplication of both lower and upper triangular matrices. These four types of linear layers are
hereafter denoted as F, L, U, and LU, respectively, and the differences between them are depicted in
Fig. A2. Furthermore, to highlight the performance discrepancy between these models, we construct
the target distribution px based on an autoregressive relationship of data vector x. Let x[i] denote the
i-th element of x, and px[i]

represent its associated pdf. x[i] is constructed based on the following
equation:

x[i] =

⇢
u[0] if i = 1,
tanh(u[i] ⇥ s)⇥ (x[i�1] + d⇥ 2i), if i 2 {2, . . . , D},

(A7)

where u is sampled from an isotropic Gaussian, and s and d are coefficients controlling the shape
and distance between each mode, respectively. In Eq. (A7), the function tanh(·) can be intuitively
viewed as a smoothed variant of the function 2H(·)� 1, where H(·) represents the Heaviside step
function. In this context, the values of (x[i�1] + d ⇥ 2i) are multiplied by a value close to either
�1 or 1, effectively transforming a positive number to a negative one. Fig. A3 depicts a number of
examples of px[i]

constructed using this method. By employing this approach to design px, where
capturing px[i]

is presumed to be more challenging than modeling px[j]
for any j < i, we can inspect

how the applied constraints impact performance. Inappropriately masking the linear layers, like
the U-type layer, is anticipated to result in degraded performance, similar to the anti-casual effect
explained in [51].

Step
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Figure A4: The evaluation curves in terms of NLL
of the flow-based models constructed with the F-
type, L-type, U-type, and LU-type layers. The
curves and shaded area depict the mean and 95%
confidence interval of three independent runs.

In this experiment, we constructed flow-based
models using the smoothed leakyReLU activa-
tion and different types of linear layers (i.e., F,
L, U, and LU) with a dimensionality of D = 10.
The models are optimized according to Eq. (2).
The performance of these models is evaluated
in terms of NLL, and its trends are depicted
in Fig. A4. It is observed that the flow-based
model built with the F-type layers achieved the
lowest NLL, indicating the advantage of using
unconstrained weight matrices in linear layers.
In addition, there is a noticeable performance
discrepancy between models with the L-type and
U-type layers, indicating that imposing inappro-
priate constraints on linear layers may negatively
affect the modeling abilities of flow-based mod-
els. Furthermore, even when both L-type and U-type layers were adopted, as shown in the red curve
in Fig. A4, the performance remains inferior to those using the F-type layers. This experimental
evidence suggests that linear layers constructed based on matrix decomposition (e.g., [4, 9]) may not
possess the same expressiveness as unconstrained linear layers.

A.6 Limitations and Discussions

We noticed that score-matching methods sometimes exhibit difficulty in differentiating the weights be-
tween individual modes within a multi-modal distribution. This deficiency is illustrated in Fig. A5 (a),
where EBFlow fails to accurately capture the density of the Checkerboard dataset. This phenomenon
bears resemblance to the blindness problem discussed in [52]. While the solution proposed in [52]
has the potential to address this issue, their approach is not directly applicable to the flow-based
architectures employed in this paper.
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FDSSMSSM DSM

(a) (b)

epoch: 40 epoch: 80

(c)

Figure A5: (a) Visualized examples of EBFlow trained with SSM, DSM, and FDSSM on the
Checkerboard dataset. (b) The samples generated by the Glow model at the 40-th training epoch. (c)
The samples generated by the Glow model at the 80-th training epoch.

In addition, we observed that the sampling quality of EBFlow occasionally experiences a significant
reduction during the training iterations. This phenomenon is illustrated in Fig. A5 (b) and (c), where
the Glow model trained using our approach demonstrates a decline in performance with extended
training periods. The underlying cause of this phenomenon remains unclear, and we consider it a
potential avenue for future investigation.
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