
A Broader impact

In this work, we propose an algorithm for estimating causal effects from observational studies without
relying on expert knowledge of the causal model. Our approach is particularly valuable in scenarios
where conducting randomized control trials (RCTs) is challenging or unethical, such as in healthcare
settings where consensus treatment protocols are often determined based on observational data. While
our algorithm shows promise in providing accurate causal effect estimates, it is crucial to address the
potential negative impact of incorrect results that may arise from our work.

One significant concern is the possibility of miscalculating the treatment effect due to limitations in
testing power at finite sample sizes or the misidentification of certain features as direct children of the
treatment variable. This introduces the risk of inaccurate estimations, which could have detrimental
consequences when making decisions or establishing treatment protocols based on the conclusions
derived from our algorithm. It is essential to approach the interpretation of our algorithm’s results with
caution and subject them to critical evaluation. It is worth noting that the potential for incorrect results
is not unique to our algorithm but is inherent in most observational studies and effect estimation
algorithms. Acknowledging these potential negative impacts emphasizes the need for further research
to improve the reliability and accuracy of causal effect estimation in observational studies.

B Preliminaries about ancestral graphs

In this section, we provide the definition of partial ancestral graphs (PAGs). PAGs are defined using
maximal ancestral graphs (MAGs). Below, we define MAGs and PAGs based on their construction
from directed acyclic graphs (DAGs).

A MAG can be obtained from a DAG as follows: if two observed nodes x1 and x2 cannot be
d-separated conditioned on any subset of observed variables, then (i) x1 −→ x2 is added in the MAG
if x1 is an ancestor of x2 in the DAG, (ii) x2 −→ x1 is added in the MAG if x2 is an ancestor of x1
in the DAG, and (iii) x1 L9999K x2 is added in the MAG if x1 and x2 are not ancestrally related in the
DAG. (iv) After the above three operations, if both x1 L9999K x2 and x1 −→ x2 are present, we retain
only the directed edge. In general, a MAG represents a collection of DAGs that share the same set of
observed variables and exhibit the same independence and ancestral relations among these observed
variables. It is possible for different MAGs to be Markov equivalent, meaning they represent the
exact same independence model.

A PAG shares the same adjacencies as any MAG in the observational equivalence class of MAGs. An
end of an edge in the PAG is marked with an arrow (> or <) if the edge appears with the same arrow
in all MAGs in the equivalence class. An end of an edge in the PAG is marked with a circle (o) if the
edge appears as an arrow (> or <) and a tail (−) in two different MAGs in the equivalence class.

C Rules of do-calculus

In this section, we provide the do-calculus rules of Pearl [1995] that are used to prove our main
results in the following sections. We build upon the definition of semi-Markovian causal model from
Section 2.

For any v ∈ W , let Gv be the graph obtained by removing the edges going into v in G, and let Gv be
the graph obtained by removing the edges going out of v in G.
Theorem C.1 (Rules of do-calculus, Pearl [1995]). For any disjoint subsets v1, v2, v3, v4 ⊆ W , we
have the following rules.

Rule 1: P(v1|do(v2), v3, v4) = P(v1|do(v2), v3) if v1 ⊥⊥d v4|v2, v3 in Gv2 .

Rule 2: P(v1|do(v2), v3, do(v4)) = P(v1|do(v2), v3, v4) if v1 ⊥⊥d v4|v2, v3 in Gv2,v4 .

Rule 3: P(v1|do(v2), v3, do(v4)) = P(v1|do(v2), v3) if v1 ⊥⊥d v4|v2, v3 in Gv2,v4(v3),

where v4(v3) is the set of nodes in v4 that are not ancestors of any node in v3 in Gv2 . Pearl [1995]
also gave an alternative criterion for Rule 3.

Rule 3a: P(v1|do(v2), v3, do(v4)) = P(v1|do(v2), v3) if v1 ⊥⊥d Fv4 |v2, v3 in Gv4v2 ,
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where Gv4 is the graph obtained from G after adding (a) a node Fv4 and (b) edges from Fv4 to every
node in v4.

Also, throughout our proofs, we use the following fact.

Fact 1. Consider any G′ obtained by removing any edge(s) from G. For any sets of variables
v1, v2, v3 ⊆ W , if v1 and v2 are d-separated by v3 in G than v1 and v2 are d-separated by v3 in G′.

D Causal Identifiability

In this section, we derive the causal effect for the SMCM in Figure 3(top), i.e., (6), as well as prove
Theorem 3.1 one by one.

D.1 Proof of (6)

First, using the law of total probability, we have

P(y |do(t = t)) =
∑
z1,z2

P(y |do(t = t), z1=z1, z2=z2)P(z1=z1, z2=z2|do(t = t)). (12)

Now, we show that the two terms in RHS of (12) can be simplified as follows

P(y |do(t = t), z1=z1, z2=z2) =
∑
t′

P(y |z1=z1, z2=z2, t = t′)P(t = t′|z1=z1). (13)

P(z1=z1, z2=z2|do(t = t)) =
∑
b

P(z2=z2|b = b)P(b = b|t = t, z1=z1)P(z1=z1), (14)

Combining (12) to (14) results in (6).

Proof of (13): We have

P(y |do(t = t), z1=z1, z2=z2) (15)
(a)
= P(y = y|do(t = t), z1=z1, z2=z2,b = b) (16)
(b)
= P(y = y|do(t = t), z1=z1, z2=z2, do(b = b)) (17)
(c)
= P(y = y|z1=z1, z2=z2, do(b = b)) (18)
(d)
=

∑
t′

P(y = y|z1=z1, z2=z2, do(b = b), t = t′)P(t = t′|z1=z1, z2=z2, do(b = b)) (19)

(e)
=

∑
t′

P(y = y|z1=z1, z2=z2, t = t′)P(t = t′|z1=z1, z2=z2, do(b = b)) (20)

(f)
=

∑
t′

P(y = y|z1=z1, z2=z2, t = t′)P(t = t′|z1=z1, do(b = b)) (21)

(g)
=

∑
t′

P(y = y|z1=z1, z2=z2, t = t′)P(t = t′|z1=z1), (22)

where (a) and (f) follow from Rule 1, (b) follows from Rule 2, (c), (e), and (g) follow from Rule
3a, and (d) follows from the law of total probability.

Proof of (14): From the law of total probability, we have

P(z1=z1, z2=z2|do(t = t)) (23)

=
∑
b

P(z1=z1, z2=z2|do(t = t),b = b)P(b = b|do(t = t)) (24)

(a)
=

∑
b

P(z2=z2|do(t = t),b = b)P(z1=z1|do(t = t),b = b, z2=z2)P(b = b|do(t = t)) (25)
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(b)
=

∑
b

P(z2=z2|b = b)P(z1=z1|do(t = t),b = b, z2=z2)P(b = b|do(t = t)) (26)

(c)
=

∑
b

P(z2=z2|b = b)P(z1=z1|do(t = t),b = b)P(b = b|do(t = t)) (27)

(d)
=

∑
b

P(z2=z2|b = b)P(z1=z1,b = b|do(t = t)) (28)

(e)
=

∑
b

P(z2=z2|b = b)P(z1=z1|do(t = t))P(b = b|do(t = t), z1=z1) (29)

(f)
=

∑
b

P(z2=z2|b = b)P(z1=z1)P(b = b|do(t = t), z1=z1) (30)

(g)
=

∑
b

P(z2=z2|b = b)P(z1=z1)P(b = b|t = t, z1=z1) (31)

where (a), (d), and (e) follow from the definition of conditional probability, (b) and (f) follows from
Rule 3a, (c) follows from Rule 1, and (g) follows from Rule 2.

D.2 Proof of Theorem 3.1

Let An(y) denote the union of y and the set of ancestors of y , and let GAn(y) denote the subgraph of
G composed only of nodes in An(y). First, we show that if b ⊥⊥d y |t, z holds for some z, then there
is no bi-directed path between t to b in GAn(y).
Lemma 1. Suppose Assumptions 1 to 3 hold. Suppose there exists a set z ⊆ V \ {t,b, y} such that
b ⊥⊥d y |t, z. Then, there is no bi-directed path between t and b in GAn(y).

Given this claim, Theorem 3.1 follows from Tian and Pearl [2002, Theorem 4]. It remains to prove
Lemma 1.

Proof of Lemma 1. We prove this result by contradiction. First, from Assumptions 1 and 3,
t ∈ An(y) and b0 ∈ An(y) for some b0 ⊂ b. Assume there exists a bi-directed path between t
and some b ∈ b0 in GAn(y). Let P(t, b) denote the shortest of these paths. This path is of the form
t L9999K v1 L9999K · · · L9999K vr L9999K b for some r ≥ 0 where vq ∈ GAn(y) for every q ∈ [r]. We have
the following two cases depending on the value of r.

(i) r = 0: In this case, consider the path P(y , b) ⊃ P(t, b) in G of the form: y L9999K t L9999K b
in G (such a path exists because of Assumption 2). The path P(y , b) is unblocked when t
and z are conditioned on contradicting b ⊥⊥d y |t, z.

(ii) r ≥ 1: In this case, consider the path P(y , b) ⊃ P(t, b) in G of the form:
y L9999K t L9999K v1 L9999K · · · L9999K vr L9999K b (such a path exists because of Assumption 2).
We have the following two scenarios depending on whether the path P(y , b) is unblocked
or blocked when t and z are conditioned on. Suppose we condition on t and z.
(a) The path P(y , b) is unblocked: In this case, by assumption, b ⊥⊥d y |t, z is contradicted.
(b) The path P(y , b) is blocked: We create a set w such that for any w ∈ w the following

are true: (a) w = vq for some q ∈ [r], (b) w /∈ z, (b) there is no descendant path
P(w , z) between w and some z ∈ z, and (c) there is no descendant path P(w , t)
between w and t.
In this scenario, w ̸= ∅ because P(y , b) is blocked. Let wc ∈ w be that node which is
closest to b in the path P(y , b). By the choice of wc, the path P(wc, b) ⊂ P(y , b) is
unblocked (when t and z are conditioned on). Furthermore, by the definition of w, (a)
wc ∈ GAn(y) (because wc = vq for some q ∈ [r]) and (b) there exists a descendant path
P(wc, y) between wc and y such that t /∈ P(wc, y) as well as z /∈ P(wc, y) for every
z ∈ z. Therefore, the path P(wc, y) is unblocked (when t and z are conditioned on).
Consider the path P ′(y , b) obtained after concatenating P(wc, y) and P(wc, b) at wc.
This path is unblocked (when t and z are conditioned on) because: (a) P(wc, b) is
unblocked, (b) P(wc, y) is unblocked, and (c) there is no collider at wc in this path
(because P(wc, y) is a descendant path to y ). However, this contradicts b ⊥⊥d y |t, z.
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E A generalized front-door condition

In this section, we prove Theorem 3.2. We begin by stating a few d-separation statements used in this
proof. See Appendix F for a proof.
Lemma 2. Suppose Assumptions 1 to 3 and d-separation criteria in Theorem 3.2, i.e., (7) and (8),
hold. Then,

(a) y ⊥⊥d Ft |z,b in Gt
b

and y ⊥⊥d Ft |z(i),b in Gt
b
,

(b) t ⊥⊥d b in Gt ,

(c) t ⊥⊥d z(i)|b in Gt ,

(d) t ⊥⊥d Fb|z(i) in Gb, and

(e) y ⊥⊥d b|t, z(i) in Gb.

Now, we proceed with the proof in two parts. In the first part, we prove (9), and in the second part,
we prove (10).

E.1 Proof of (9)

First, using the law of total probability, we have

P(y = y|do(t = t)) =
∑
z

P(y = y|do(t = t), z = z)P(z = z|do(t = t)). (32)

Now, we show that the two terms in RHS of (32) can be simplified as follows

P(y = y|do(t = t), z = z) =
∑
t′

P(y = y|z = z, t = t′)P(t = t′). (33)

P(z = z|do(t = t)) = P(z = z|t = t), (34)

Combining (33) and (34) completes the proof of (9).

Proof of (33): We have

P(y = y|do(t = t), z = z)
(a)
= P(y = y|do(t = t), z = z,b = b) (35)
(b)
= P(y = y|do(t = t), z = z, do(b = b)) (36)
(c)
= P(y = y|z = z, do(b = b)) (37)
(d)
=

∑
t′

P(y = y|z = z, do(b = b), t = t′)P(t = t′|z = z, do(b = b)),

(38)

where (a) follows from Rule 1, (7), and Fact 1, (b) follows from Rule 2, (7), and Fact 1, and (c)
follows from Rule 3a and Lemma 2(a), and (d) follows from the law of total probability.

Now, we simplify the first term in (38) as follows:

P(y = y|z = z, do(b = b), t = t′)
(a)
= P(y = y|z = z,b = b, t = t′) (39)
(7)
= P(y = y|z = z, t = t′), (40)

where (a) follows from Rule 2, (7), and Fact 1. Likewise, we simplify the second term in (38) as
follows:

P(t = t′|do(b = b), z = z)
(a)
= P(t = t′|do(b = b), z(i) = z(i))

(b)
= P(t = t′|z(i) = z(i)) (41)
(c)
= P(t = t′), (42)
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where (a) follows from Rule 1, (8), and Fact 1, (b) follows from Rule 3a and Lemma 2(d), and (c)
follows (8).

Putting together (38), (40), and (42) results in (33).

Proof of (34): From the law of total probability, we have

P(z = z|do(t = t)) =
∑
b

P(z = z|do(t = t),b = b)P(b = b|do(t = t)). (43)

Now, we simplify the first term in (43) as follows:

P(z = z|do(t = t),b = b) (44)
(a)
= P(z(i) = z(i)|do(t = t),b = b) · P(z(o) = z(o)|do(t = t),b = b, z(i) = z(i)) (45)
(b)
= P(z(i) = z(i)|do(t = t),b = b) · P(z(o) = z(o)|t = t,b = b, z(i) = z(i)) (46)
(c)
= P(z(i) = z(i)|t = t,b = b) · P(z(o) = z(o)|t = t,b = b, z(i) = z(i)) (47)
(d)
= P(z = z|t = t,b = b), (48)

where (a) and (d) follow from the definition of conditional probability, (b) follows from Rule 2, (8),
and Fact 1, and (c) follows from Rule 2 and Lemma 2(c). Likewise, we simplify the second term in
(43) as follows:

P(b = b|do(t = t))
(a)
= P(b = b|t = t), (49)

where (a) follows from Rule 2 and Lemma 2(b).

Putting together (43), (48), and (49), results in (34) as follows:

P(z = z|do(t = t)) =
∑
b

P(z = z|t = t,b = b)P(b = b|t = t)
(a)
= P(z = z|t = t), (50)

where (a) follows from the law of total probability.

E.2 Proof of (10)

First, using the law of total probability, we have

P(y = y|do(t = t)) =
∑
b

P(y = y|do(t = t),b = b)P(b = b|do(t = t)). (51)

Now, we show that the first term in RHS of (51) can be simplified as follows

P(y = y|do(t = t),b = b) (52)

=
∑
z(i)

(∑
t′

P(y = y|s = s, t = t′)P(t = t′)
)
P(z(i) = z(i)|b = b, t = t). (53)

where s ≜ (b, z(i)). Using (49) and (53) in (51), completes the proof of (10) as follows:

P(y = y|do(t = t)) (54)

=
∑
s

(∑
t′

P(y = y|s = s, t = t′)P(t = t′)
)
P(z(i) = z(i)|b = b, t = t)P(b = b|t = t) (55)

(a)
=

∑
s

(∑
t′

P(y = y|s = s, t = t′)P(t = t′)
)
P(s = s|t = t), (56)

where (a) follows from the definition of conditional probability.
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Proof of (53): From the law of total probability, we have

P(y = y|do(t = t),b = b) (57)

=
∑
z(i)

P(y = y|b = b, z(i)=z(i), do(t = t))P(z(i)=z(i)|b = b, do(t = t)). (58)

Now, we simplify the first term in (58) as follows:

P(y = y|b = b, z(i) = z(i), do(t = t)) (59)
(a)
= P(y = y|do(b = b), z(i) = z(i), do(t = t)) (60)
(b)
= P(y = y|do(b = b), z(i) = z(i)) (61)
(c)
=

∑
t′

P(y = y|do(b = b), z(i) = z(i), t = t′)P(t = t′|do(b = b), z(i) = z(i)), (62)

where (a) follows from Rule 2, Lemma 2(e), and Fact 1, (b) follows from Rule 3a and Lemma 2(a),
and (c) follows from the law of total probability. We further simplify the first term in (62) as follows:

P(y = y|do(b = b), z(i) = z(i), t = t′)
(a)
= P(y = y|b = b, z(i) = z(i), t = t′), (63)

where (a) follows from Rule 2 and Lemma 2(e). Using (63) and (42) in (62), we have

P(y = y|b = b, z(i) = z(i), do(t = t)) =
∑
t′

P(y = y|b = b, z(i) = z(i), t = t′)P(t = t′). (64)

Now, we simplify the second term in (58) as follows:

P(z(i) = z(i)|b = b, do(t = t))
(a)
= P(z(i) = z(i)|b = b, t = t), (65)

where (a) follows from Rule 2 and Lemma 2(c).

Putting together (58), (64), and (65) results in (53).

E.3 Necessity of Assumption 2

In this section, we provide an example to signify the importance of Assumption 2 to Theorem
3.2. Consider the semi-Markovian causal model in Figure 7 where Assumptions 1 and 3 hold but
Assumption 2 does not hold.

yz(o)

a

bt

Figure 7: An SMCM signifying the importance of Assumption 2

While z = (z(i), z(o)) satisfies (7) and (8) where z(i) = ∅, the causal effect is not equal to the
formulae in (9) or (10). To see this, we note that the set {a} is a back-door set in Figure 7 implying

P(y |do(t = t)) =
∑
a

P(y |a, t)P(a). (66)

Now, we simplify the right hand side of (66) to show explicitly that it is not equivalent to (9). From
the law of total probability, we have

P(y |a, t) =
∑
z

P(y |z, a, t)P(z|a, t) (67)
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(a)
=

∑
z

(∑
t′

P(y |z, a, t)P(t′)
)
P(z|a, t) (b)

=
∑
z

(∑
t′

P(y |z, t ′)P(t′)
)
P(z|a, t), (68)

where (a) follows because
∑

t′ P(t′) = 1 and (b) follows y is independent of every other variable
conditioned on z. Plugging (68) in (66), we have

P(y |do(t = t)) =
∑
z

(∑
t′

P(y |z, t ′)P(t′)
)(∑

a

P(z|a, t)P(a)
)
. (69)

Lastly, using the law of total probability, (9) can be rewritten as

P(y |do(t = t)) =
∑
z

(∑
t′

P(y |z, t ′)P(t′)
)(∑

a

P(z|a, t)P(a|t)
)
. (70)

Therefore, the variables a and t could be such that (69) is different from (70). We note that similar
steps can be used to show that (66) is not equivalent to (10). In conclusion, Assumption 2 is crucial
for the formulae in (9) and (10) to hold.

F Proof of Lemma 2

First, we state the following d-separation criterion used to prove Lemma 2(b) and Lemma 2(d). See
Appendix F.1 for a proof.

Lemma 3. Suppose Assumptions 1 to 3 hold. Then, t ⊥⊥d b|z(i) in Gt .

Now, we prove each part of Lemma 2 one-by-one.

Proof of Lemma 2(a) In Gt
b
, all edges going into b are removed. Under Assumption 3, this implies

that all edges going out of t are removed. Now, consider any path P(Ft , y) between Ft and y in Gt
b
.

This path takes one of the following two forms: (a) Ft −→ t ←− · · · y or (b) Ft −→ t L9999K · · · y . In
either case, there is a collider at t in P(Ft , y). This collider is blocked when z and b are conditioned
on because t /∈ z, t /∈ b, and t does not have any descendants in Gt

b
. Therefore, y ⊥⊥d Ft |z,b in Gt

b
.

Similarly, the collider is blocked when z(i) and b are conditioned on because t /∈ z(i), t /∈ b, and t
does not have any descendants in Gt

b
. Therefore, y ⊥⊥d Ft |z(i),b in Gt

b
.

Proof of Lemma 2(b) We prove this by contradiction. Assume there exists at least one unblocked
path between t and some b ∈ b in Gt . Let P(t, b) denote any such unblocked path.

Suppose we condition on z(i). From Lemma 3, P(t, b) is blocked in Gt when z(i) is conditioned on.
Let v be any node at which P(t, b) is blocked in Gt when z(i) is conditioned on. We must have that
v ∈ P(t, b) \ {t, b} and v ∈ z(i). Then, the path P(t, v) ⊂ P(t, b) is unblocked in Gt when z(i) is
unconditioned on. However, this contradicts t ⊥⊥d z(i) in Gt (which follows from (8)(i) and Fact 1).

Proof of Lemma 2(c) We prove this by contradiction. Assume there exists at least one unblocked
path between t and some z(i) ∈ z(i) in Gt when b is conditioned on. Let P(t, z(i)) denote any such
unblocked path.

Suppose, we uncondition on b. From (8)(i) and Fact 1, we have t ⊥⊥d z(i) in Gt . Therefore, P(t, z(i))
is blocked in Gt when b is unconditioned on. Now, we create a set v consisting of all the nodes at
which P(t, z(i)) is blocked in Gt when b is unconditioned on. Define the set v such that for any
v ∈ v, the following are true: (a) v ∈ P(t, z(i)) \ {t, z(i)}, (b) P(t, z(i)) contains a collider at v in
Gt , and (c) there exists an unblocked descendant path from v to some b ∈ b in Gt .
Now, we must have v ̸= ∅, since P(t, z(i)) is blocked in Gt when b is unconditioned on. Let vc ∈ v

be that node which is closest to t in the path P(t, z(i)), and let P(vc, b) be an unblocked descendant
path from v to some b ∈ b in Gt (there must be one from the definition of the set v). Consider the
path P(t, b) obtained after concatenating P(t, vc) ⊂ P(t, z(i)) and P(vc, b). By the definition of v
and the choice of vc, P(t, b) is unblocked in Gt since (a) P(t, vc) is unblocked in Gt , (b) P(vc, b) is
unblocked in Gt , and (c) there is no collider at vc in P(t, b). However, this contradicts t ⊥⊥d b in Gt
(which follows from Lemma 2(b)).
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Proof of Lemma 2(d) We prove this by contradiction. Assume there exists at least one unblocked
path between t and Fb in Gb when z(i) is conditioned on. Let P(t, Fb) denote the shortest of these
unblocked path. By definition of Gb, this path has to be of the form: t · · · , b ←− Fb for some b ∈ b.
Now, we have the following three cases:

(i) P(t, Fb) contains t −→ b: In this case, because a path is a sequence of distinct nodes,
P(t, Fb) has to be t −→ b ←− Fb. By assumption, P(t, Fb) is unblocked when z(i) is
conditioned on. Since there is a collider at b in P(t, Fb), there exists at least one unblocked
descendant path from b to z(i) when z(i) is conditioned on. LetP(b, z(i)) denote the shortest
of these paths from b to some z(i) ∈ z(i) in Gb. We note that this path also exists in G and is
of the form b −→ · · · −→ z(i)

Suppose we uncondition on z(i). Consider the path P(t, z(i)) ⊃ P(b, z(i)) between t and
z(i) of the form t −→ b −→ · · · −→ z(i) in G. This path remains unblocked even when z(i)

is unconditioned on as it does not have any colliders. This contradicts z(i) ⊥⊥d t (which
follows from (8)).

(ii) P(t, Fb) contains t −→ b1 for some b1 ∈ b such that b1 ̸= b: In this case, the path P(t, Fb)
has to be of the form t −→ b1 · · · b ←− Fb. Therefore, there exists at least one collider on
the path P(t, Fb). Let v ∈ P(t, Fb) \ {t, Fb} be the collider on the path P(t, Fb) that is
closest to b1. Consider the path P(t, v) ⊂ P(t, Fb). We note that this path also exists in G
and is of the form t −→ b1 −→ · · · −→ v .
By assumption, P(t, Fb) is unblocked when z(i) is conditioned on. Since there is a collider
at v in P(t, Fb), there exists at least one unblocked descendant path from v to z(i) when
z(i) is conditioned on. Let P(v , z(i)) denote the shortest of these paths from v to some
z(i) ∈ z(i) in Gb. We note that this path also exists in G and is of the form v −→ · · · −→ z(i).
Suppose we uncondition on z(i). Consider the path P(t, z(i)) between t and z(i) in G
obtained after concatenating P(t, v) ⊂ P(t, Fb) and P(v , z(i)). This path, of the form
t −→ b1 −→ · · · −→ v −→ · · · −→ z(i), remains unblocked even when z(i) is unconditioned
on as it does not have any colliders. This contradicts z(i) ⊥⊥d t (which follows from (8)).

(ii) P(t, Fb) does not contain t −→ b1 for every b1 ∈ b: By assumption, P(t, Fb) is unblocked
in Gb when z(i) is conditioned on. Therefore, if P(t, Fb) does not contain the edge t −→ b1
for any b1 ∈ b, there exists a path P(t, b) between t to b in G that is unblocked when
z(i) is conditioned on, and takes one of the following two forms: (a) t ←− · · · b or (b)
t L9999K · · · b. Then, it is easy to see that the path P(t, b) also remains unblocked in Gt while
z(i) is conditioned on. However, this contradicts t ⊥⊥d b|z(i) in Gt (which follows from
Lemma 3).

Proof of Lemma 2(e) We prove this by contradiction. Assume there exists at least one unblocked
path between y and some b ∈ b in Gb when t and z(i) are conditioned on. Let P(b, y) denote the
shortest of these unblocked path. Therefore, no b1 ∈ b, such that b1 ̸= b, is on the path P(b, y), i.e.,
b1 /∈ P(b, y). Further, P(b, y) takes one of the following two forms because all the edges going out
of b are removed in Gb: (a) b ←− · · · y or (b) b L9999K · · · y .

Suppose we condition on z(o) (while t and z(i) are still conditioned on). From (7) and Fact 1, we have
y ⊥⊥d b|t, z in Gb. Therefore, the path P(b, y) is blocked in Gb when z(o) is conditioned on (while t
and z(i) are still conditioned on). Let v be any node at which P(b, y) is blocked in Gb when z(o) is
conditioned on (while t and z(i) are still conditioned on). We must have that v ∈ P(b, y) \ {y , b}
and v ∈ z(o). Suppose we uncondition on z(o) (while t and z(i) are still conditioned on). Then, the
path P(b, v) ⊂ P(b, y) is unblocked in Gb.

We consider the following two scenarios depending on whether or not P(b, v) contains t. In both
scenarios, we show that there is an unblocked path between t and v in Gb when we condition on b

(while t and z(i) are still conditioned on).

(i) P(b, v) contains t: Consider the path P(t, v) ⊂ P(b, v) which is unblocked in Gb when
t and z(i) are conditioned on. Further, by the choice of P(b, y), no b1 ∈ b is on the path
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P(t, v). Therefore, the path P(t, v) in Gb remains unblocked when we condition on b

(while t and z(i) are still conditioned on).
(ii) P(b, v) does not contain t: Consider the path P(t, v) ⊃ P(b, v) (by including the extra

edge t → b) which takes one of the following two forms: (a) t −→ b ←− · · · v or (b)
t −→ b L9999K · · · v . Further, by the choice of P(b, y), no b1 ∈ b (b1 ̸= b) is on the path
P(t, v). Suppose we condition on b (while t and z(i) are still conditioned on). Then,
the path P(t, v) in Gb is unblocked because (a) the collider at b is unblocked when b is
conditioned on and (b) the path P(b, v) in Gb remains unblocked when b is conditioned on
(while t and z(i) are still conditioned on).

Now, suppose we uncondition on t (while b and z(i) are still conditioned on). We have the following
two scenarios depending on whether or not P(t, v) in Gb remains unblocked. In both scenarios, we
show that there is an unblocked path between t and v in Gb when we uncondition on t (while b and
z(i) are still conditioned on).

1. If P(t, v) remains unblocked: In this case, P(t, v) in Gb is an unblocked path between t

and v when z(i) and b are conditioned on, as desired.
2. If P(t, v) does not remain unblocked: In this case, it is the unconditioning on t (while b

and z(i) are still conditioned on) that blocks P(t, v). Now, we create a set w consisting of
all the nodes at which P(t, v) is blocked in Gb when t is unconditioned on (while b and z(i)

are still conditioned on). Define the set w such that for any w ∈ w, the following are true:
(a) w ∈ P(t, v) \ {t, v}, (b) P(t, v) contains a collider at w in Gb, and (c) there exists an
unblocked descendant path from w to t in Gb.
Now, we must have w ̸= ∅, since P(t, v) is blocked in Gb when t is unconditioned on
(while b and z(i) are still conditioned on). Let wc ∈ w be that node which is closest to v
in the path P(t, v), and let P(wc, t) be an unblocked descendant path from wc to t in Gb
(there must be one from the definition of the set w). Consider the path P ′(v , t) obtained
after concatenating P(v ,wc) ⊂ P(t, v) and P(wc, t). By the definition of w and the choice
of wc, P ′(v , t) is unblocked in Gb when t is unconditioned on (while b and z(i) are still
conditioned on) since (a) P(v ,wc) is unblocked, (b) P(wc, t) is unblocked, and (c) there
is no collider at wc in P ′(v , t). Therefore, we have an unblocked path between t and v in
Gb when z(i) and b are conditioned on, as desired.

To conclude the proof, we note that the existence of an unblocked path between t and v ∈ z(o) in Gb
when z(i) and b are conditioned on contradicts z(o) ⊥⊥d t|b, z(i) in Gb (which follows from (8) and
Fact 1).

F.1 Proof of Lemma 3

First, we claim t ⊥⊥d b|z in Gt . We assume this claim and proceed to prove the statement in the
Lemma by contradiction. Assume there exists at least one unblocked path between t and some b ∈ b
in Gt when z(i) is conditioned on. Let P(t, b) denote the shortest of these unblocked path. Therefore,
no b1 ∈ b such that b1 ̸= b is not on the path P(t, b), i.e., b1 /∈ P(t, b).
Suppose we condition on z(o) (while z(i) is still conditioned on). From the claim, P(t, b) is blocked
in Gt when z(o) is conditioned on (while z(i) is still conditioned on). Let v be any node at which
P(t, b) is blocked in Gt when z(o) is conditioned on (while z(i) is still conditioned on). We must
have that v ∈ P(t, b) \ {t, b} and v ∈ z(o). Then, the path P(t, v) ⊂ P(t, b) is unblocked in Gt
when z(o) is unconditioned on (while z(i) is still conditioned on). Further, no b ∈ b is on the path
P(t, v). As a result, the path P(t, v) remains unblocked when b is conditioned on (while z(i) is still
conditioned on). However, this contradicts t ⊥⊥d z(o)|b, z(i) in Gt (which follows from (8)(ii) and
Fact 1).

Proof of Claim - t ⊥⊥d b|z in Gt: It remains to prove the claim t ⊥⊥d b|z in Gt . We prove this by
contradiction. Assume there exists at least one unblocked path between t and some b ∈ b in Gt when
z is conditioned on. Let P(t, b) denote any such unblocked path. This path takes one of the following
two forms: (a) t ←− · · · b or (b) t L9999K · · · b because all edges going out of t are removed in Gt .
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Suppose we condition on t (while z is still conditioned on). The path P(t, b) remains unblocked
because t /∈ P(t, b) (a path is a sequence of distinct nodes). Then, the path P(y , b) ⊃ P(t, b)
of the form (a) y L9999K t ←− · · · b or (b) y L9999K t L9999K · · · b is unblocked because the additional
conditioning on t (while z is still conditioned on) unblocks the collider at t. However, this contradicts
b ⊥⊥d y |t, z in Gt (which follows from (7) and Fact 1).

G Experimental Results

In this section, we provide additional experimental results. First, we provide more details regarding
the numerical example in Section 3.1. Next, we demonstrate the applicability of our method on a
class of graphs slightly different from the one in Section 4.1. Then, we provide the 6 random graphs
from Section 4.2 as well as ATE estimation results on specific choices of SMCMs including the one
in Figure 2. Finally, we provide histograms analogous to Figure 6 for the second choice of b on
German credit dataset as well as details about our analysis with Adult dataset.

G.1 Numerical example in Section 3.1

The observed variables for this example also follow the structural equation model in (11). Also, to
generate the true ATE, we intervene on the generation model in (11) by setting t = 0 and t = 1.

G.2 Applicability to a class of random graphs

As in Section 4.1, we create a class of random SMCMs, sample 100 SMCMs from this class, and
check if (7) and (8) hold by checking for corresponding d-separations in the SMCMs. The class of
random graphs considered here is analogous to the class of random graphs considered in Section 4.1
expect for the choice of t. Here, we choose any variable that is ancestor of y but not its parent as
t. This is in contrast to Section 4.1 where we choose any variable that is ancestor of y but not its
parent or grandparent as t. We compare the success rate of the same two approaches: (i) exhaustive
search for z satisfying (7) and (8) and (ii) search for a z of size at-most 5 satisfying (7) and (8). We
provide the number of successes of these approaches as a tuple in Table 2 for various p, d, and q. As
before, we see that the two approaches have comparable performances and the IDP algorithm gives 0
successes across various p, d, and q even though it is supplied with the true PAG. Also, as expected
the number of successes for this class of graphs is much lower than the class considered in Section
4.1.

Table 2: Number of successes out of 100 random graphs for our methods shown as a tuple. The first
method searches a z exhaustively and the second method searches a z with size at-most 5.

p = 10 p = 15
d = 2 d = 3 d = 4 d = 2 d = 3 d = 4

q = 0.0 (6, 6) (3, 3) (1, 1) (11, 11) (2, 2) (1, 1)
q = 0.5 (3, 3) (0, 0) (0, 0) (5, 5) (2, 2) (1, 1)
q = 1.0 (1, 1) (0, 0) (0, 0) (1, 1) (0, 0) (0, 0)

G.3 ATE estimation

We also conduct ATE estimation experiments on four specific SMCMs. The first SMCM is the graph
Gtoy in Figure 2. The remaining graphs, named Gtoyi , i ∈ {1, 2, 3}, are shown in Figure 8, and are
obtained by adding additional edges and modifying Gtoy . These SMCMs are designed in a way such
that there exists z = (z(i), z(o)) satisfying the conditional independence statements in Theorem 3.2.

We follow a data generation procedure similar to the one in Section 4.2. In contrast, we show the
performance of our approach for a fixed n but different thresholds of p-value pv. We average the
ATE error over 50 runs where in each run we set n = 50000. As we see in Figure 9, both the ATE
estimates returned by Algorithm 1 are far superior compared to the naive front-door adjustment using
b.
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Figure 8: The causal graphs used to further validate our theoretical results. These are obtained by
adding additional edges (shown in red) to Gtoy in Figure 2. We denote these graphs (from left to
right) by Gtoy1 , Gtoy2 , and Gtoy3 , respectively.
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Figure 9: Performance of Algorithm 1 for different p-value thresholds pv on Gtoy in Figure 2 on
top left, on Gtoy1 from Figure 8 on top right, on Gtoy2 in Figure 8 on bottom left, and on Gtoy3 from
Figure 8 on bottom right

In Figure 11, we provide the 6 random SMCMs used in Section 4.2. As mentioned in Section 4.1,
we choose the last variable in the causal ordering as y and a variable that is ancestor of y but not its
parent or grandparent as t. We also show the corresponding z = (z(i), z(o)) satisfying (7) and (8).

G.4 German Credit dataset

As in Section 4.3, we assess the conditional independence associated with the selected z for the
choice of b={# of people financially dependent on the applicant, applicant’s savings}, Algorithm 1
results in z(i)={purpose for which the credit was needed, applicant’s checking account status with
the bank} via 100 random bootstraps. We show the corresponding p-values for these bootstraps in a
histogram in Figure 10 below. As expected, we observe the p-values to be spread out.
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Figure 10: Histograms of p-values of the conditional independencies in (9) and (10) over 100
bootstrap runs for b= {# of people financially dependent on the applicant, applicant’s savings},
Algorithm 1 results in z(i)={purpose for which the credit was needed, applicant’s checking account
status with the bank}.

G.5 Adult dataset

The Adult dataset [Kohavi and Becker, 1996] is used for income analysis where the goal is to predict
whether an individual’s income is more than $50,000 using 14 demographic and socio-economic
features. The sensitive attribute t is the individual’s sex, either male or female. Further, the categorical
attributes are one-hot encoded. As with German Credit dataset, we apply Algorithm 1 with nr = 100
and pv = 0.1 where we search for a set z = (z(o), z(i)) of size at most 3 under the following
two assumptions on the set of all children b of t: (1) b = {# individual’s relationship status
(which includes wife/husband)} and (2) b = {# individual’s relationship status (which includes
wife/husband), individual’s occupation}. In either case, Algorithm 1 was unable to find a suitable z
satisfying b ⊥p y |z, t. This suggests that in this dataset, there may not be any non-child descendants
of the sensitive attribute, which is required for our criterion to hold.

G.6 Licenses

In this work, we used a workstation with an AMD Ryzen Threadripper 3990X 64-Core Processor
(128 threads in total) with 256 GB RAM and 2x Nvidia RTX 3090 GPUs. However, our simulations
only used the CPU resources of the workstation.

We mainly relied on the following Python repositories — (a) networkx (https://networkx.org),
(b) causal-learn (https://causal-learn.readthedocs.io/en/latest/), (c) RCoT [Strobl
et al., 2019b] and (d) ridgeCV, (https://github.com/scikit-learn/scikit-learn/tree/
15a949460/sklearn/linear_model/_ridge.py). We did not modify any of the code under
licenses; we only installed these repositories as packages.

In addition to these, we used two public datasets (a) German Credit dataset (https://archive.
ics.uci.edu/ml/datasets/statlog+(german+credit+data)) and (b) Adult dataset (https:
//archive.ics.uci.edu/ml/datasets/adult). These datasets are commonly used benchmark
datasets for causal fairness, which is why we chose them for our comparisons.
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Figure 11: The SMCMs used in Section 4.2 to compare Algorithm 1 with the Baseline that uses b
for front-door adjustment. These are the 6 out of the 100 random graphs in Section 4.1 for p = 10,
d = 2, and q = 1.0 where our approach was successful indicating existence of z = (z(i), z(o)) such
that the conditional independence statements in Theorem 3.2 hold.
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