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Abstract

Causal effect estimation from data typically requires assumptions about the
cause-effect relations either explicitly in the form of a causal graph structure
within the Pearlian framework, or implicitly in terms of (conditional) independence
statements between counterfactual variables within the potential outcomes
framework. When the treatment variable and the outcome variable are confounded,
front-door adjustment is an important special case where, given the graph, causal
effect of the treatment on the target can be estimated using post-treatment variables.
However, the exact formula for front-door adjustment depends on the structure
of the graph, which is difficult to learn in practice. In this work, we provide
testable conditional independence statements to compute the causal effect using
front-door-like adjustment without knowing the graph under limited structural side
information. We show that our method is applicable in scenarios where knowing
the Markov equivalence class is not sufficient for causal effect estimation. We
demonstrate the effectiveness of our method on a class of random graphs as well as
real causal fairness benchmarks.

1 Introduction

Causal effect estimation is at the center of numerous scientific, societal, and medical questions [Nabi
et al., 2019, Castro et al., 2020]. The do(·) operator of Pearl represents the effect of an experiment
on a causal system. For example, the probability distribution of a target variable y after setting a
treatment t to t is represented by P(y |do(t = t)) and is known as an interventional distribution.
Learning this distribution for any realization t = t1 is what causal effect estimation entails. This
distribution is different from the conditional distribution P(y |t = t) as there may be unobserved
confounders between treatment and outcome that cannot be controlled for.

A causal graph, often depicted as a directed acyclic graph, captures the cause-and-effect relationships
between variables and explains the causal system under consideration. A semi-Markovian causal
model represents a causal model that includes unobserved variables influencing multiple observed
variables [Verma and Pearl, 1990, Acharya et al., 2018]. In a semi-Markovian graph, directed edges
between observed variables represent causal relationships, while bi-directed edges between observed
variables represent unobserved common confounding (see Figure 1). Given any semi-Markovian

1Depending on the context, causal effect estimation sometimes refers to the estimating the difference of
assigning t = 1 vs. t = 0 on the target variable y , e.g., E[y |do(t = 1)] − E[y |do(t = 0)]. This quantity is
computable if we can identify P(y |do(t = t)) for t = {0, 1}.
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Figure 1: Representative graphs for back-door adjustment (left) and front-door adjustment (right).

graph, complete identification algorithms for causal effect estimation are known. For example, if
P(y |do(t = t)) is uniquely determined by the observational distribution and the causal graph, the
algorithm by Shpitser and Pearl [2006] utilizes the graph to derive an estimand, i.e., the functional
form mapping the observational distribution to the interventional distribution.

Certain special cases of estimands have found widespread use across several domains. One such
special case is the back-door adjustment [Pearl, 1993] shown in Figure 1(left). The back-door
adjustment utilizes the pre-treatment variable z (that blocks back-door paths) to control for unobserved
confounder as follows:

P(y |do(t = t)) =
∑
z

P(y |t = t, z = z)P(z = z), (1)

where the do-calculus rules of Pearl [1995] are used to convert interventional distributions into
observational distributions by leveraging the graph structure. However, the back-door adjustment is
often inapplicable, e.g., in the presence of an unobserved confounder between t and y . Surprisingly,
in such scenarios, it is sometimes possible to find the causal effect using the front-door adjustment
[Pearl, 1995] shown in Figure 1(right). Utilizing the front-door variable z, the front-door adjustment
estimates the causal effect from observational distributions using the following formula (which is
also obtained through the do-calculus rules and the graph structure):

P(y |do(t = t))=
∑
z

(∑
t′

P(y |t = t′, z = z)P(t = t′)
)
P(z = z|t = t) (2)

Recently, front-door adjustment has gained popularity in analyzing real-world data [Glynn and
Kashin, 2017, Bellemare et al., 2019, Hünermund and Bareinboim, 2019] due to its ability to utilize
post-treatment variables to estimate effects even in the presence of confounding between t and y .
However, in general, front-door adjustment also relies on knowing the causal graph, which may not
always be feasible, especially in domains with many variables.

An alternative approach uses observational data to infer a Markov equivalence class, which is a
collection of causal graphs that encode the same conditional independence relations [Spirtes et al.,
2000]. A line of work [Perkovic et al., 2018, Jaber et al., 2019] provide identification algorithms
for causal effect estimation from partial ancestral graphs (PAGs) [Zhang, 2008], a prominent
representation of the Markov equivalence class, whenever every causal graph in the collection
shares the same causal effect estimand. However, learning PAGs from data is challenging in practice
due to the sequential nature of their learning algorithms, which can propagate errors between tests
[Strobl et al., 2019a]. Further, to the best of our knowledge, there is no existing algorithm that can
incorporate side information, such as known post-treatment variables, into PAG structure learning.

In this work, we ask the following question: Can the causal effect be estimated with a testable criteria
on observational data by utilizing some structural side information without knowing the graph?

Recent research has developed such testable criteria to enable back-door adjustment without knowing
the full causal graph [Entner et al., 2013, Cheng et al., 2020, Gultchin et al., 2020, Shah et al.,
2022]. These approaches leverage structural side information, such as a known and observed
parent of the treatment variable t. However, no such results have been established for enabling
front-door adjustment. We address this gap by focusing on the case of unobserved confounding
between t and y , where back-door adjustment is inapplicable. Traditionally, this scenario has been
addressed by leveraging the presence of an instrumental variable [Mogstad and Torgovitsky, 2018] or
performing sensitivity analysis [Veitch and Zaveri, 2020], both of which provide only bounds in the
non-parametric case. In contrast, we achieve identifiability by utilizing structural side information.

Contributions. We propose a method for estimating causal effects without requiring the knowledge
of causal graph in the presence of unobserved confounding between treatment and outcome.
Our approach utilizes front-door-like adjustments based on post-treatment variables and relies
on conditional independence statements that can be directly tested from observational data. We
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require one structural side information which can be obtained from an expert and is less demanding
than specifying the entire causal graph. We illustrate that our framework provides identifiability
in random ensembles where existing PAG-based methods are not applicable. Further, we illustrate
the practical application of our approach to causal fairness analysis by estimating the total effect of
a sensitive attribute on an outcome variable using the German credit data with fewer structural
assumptions. The source code of our implementation is available at https://github.com/
abhin-shah/FD-adjustment-with-limited-graph.

1.1 Related Work

Effect estimation from causal graphs/Markov equivalence Class: The problem of estimating
interventional distributions with the knowledge of the semi-Markovian model has been studied
extensively in the literature, with important contributions such as Tian and Pearl [2002] and Shpitser
and Pearl [2006]. Perkovic et al. [2018] presented a complete and sound algorithm for identifying
valid adjustments from PAGs. Going beyond valid adjustments, Jaber et al. [2019] proposed a
complete and sound algorithm for identifying causal effect from PAGs. However, our method can
recover the causal effect in scenarios where these algorithms are inapplicable.

Effect estimation via front-door adjustment with causal graph: Several recent works have
contributed to a better understanding of the statistical properties of front-door estimation [Kuroki,
2000, Kuroki and Cai, 2012, Glynn and Kashin, 2018, Gupta et al., 2021], proposed robust
generalizations [Hünermund and Bareinboim, 2019, Fulcher et al., 2020], and developed procedures
to enumerate all possible front-door adjustment sets [Jeong et al., 2022, Wienöbst et al., 2022].
However, all of these require knowing the underlying causal graph. By contrast, Bhattacharya
and Nabi [2022] verified the front-door criterion without knowing the causal graph using Verma
constraint-based methodology. While their method was limited to a small set of graphs, ours leverages
conditional independence, making it applicable to a much broader class of graphs. We note that
they’re applicable in different settings, depending on what the analyst knows about the problem.

2 Preliminaries and Problem Formulation

Notations. For a sequence of realizations r1, · · · , rn, we define r ≜ {r1, · · · , rn}. For a sequence
of random variables r1, · · · , rn, we define r ≜ {r1, · · · , rn}. Let 1 denote the indicator function.

Semi-Markovian Model and Effect Estimation. We consider a causal effect estimation task where x
represents the set of observed features, t represents the observed treatment variable, and y represents
the observed outcome variable. We denote the set of all observed variables jointly by V ≜ {x, t, y}.
Let U denote the set of unobserved features that could be correlated with the observed variables.

We assumeW ≜ V ∪ U follows a semi-Markovian causal model [Tian and Pearl, 2002] as below.
Definition 1. A semi-Markovian causal model (SMCM)M is specified as follows:
1. G is a directed acyclic graph (DAG) over the set of verticesW such that each element of the set U

has no parents.
2. ∀v ∈ V , let π(o)(v) ⊆ V and π(u)(v) ⊆ U denote the set of parent of v in V and U , respectively.
3. P(u) is the unobserved joint distribution over the unobserved features.

4. The observational distribution is given by P(v) = Eu

[ ∏
v∈V

P(v |π(o)(v), π(u)(v))
]
.

5. The interventional distribution when the variables r ⊂ V are set to a fixed value r is given by

P(v|do(r = r)) = 1r=r · Eu

[ ∏
v∈V\r

P(v |π(o)(v), π(u)(v))
]
. (3)

6. For any v1, v2 ∈ V , if π(u)(v1) ∩ π(u)(v2) ̸= ∅, then v1 and v2 have a bi-directed edge in G.

In this work, we are interested in the causal effect of t on y , i.e., P(y |do(t = t)). We define this
formally by marginalizing all variables except y in the interventional distribution in (3).
Definition 2. The causal effect of t (when forced to a value t) on y is given by:

P(y |do(t = t))=
∑
v\{y}

P
(
v \ {y}, y |do(t = t)

)
. (4)
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Next, we define the notion of average treatment effect for a binary treatment t.
Definition 3. The average treatment effect (ATE) of a binary treatment t on outcome y is given by
ATE = E[y |do(t = 1)]− E[y |do(t = 0)].

Next, we define when the causal effect (Definition 2) is said to be identifiable from the observational
distribution and the causal graph.
Definition 4. (Causal effect identifiability) Given an observational distribution P(v) and a causal
graph G, the causal effect P(y |do(t = t)) is identifiable if it is identical for every semi-Markovian
Causal model with (a) same graph G and (b) same observational distribution P(v).

In a causal graph G, a path is an ordered sequence of distinct nodes where each node is connected
to the next in the sequence by an edge. A path starting at node w1 and ending at node w2 in G is
blocked by a set w ⊂ W \ {w1,w2} if there exists w ∈ w such that (a) w is not a collider or (b)
w is a collider and neither w nor any of it’s descendant is in w. Further, w1 and w2 are said to be
d-separated by w in G if w blocks every path between w1 and w2 in G. Let w1 ⊥⊥d w2|w denote
that w1 and w2 are d-separated by w in G. Similarly, let w1 ⊥p w2|w denote that w1 and w2 are
conditionally independent given w. We assume causal faithfulness, i.e., any conditional independence
w1 ⊥p w2|w implies a d-separation relation w1 ⊥⊥d w2|w in the causal graph G.

2.1 Adjustment using pre-treatment variables

It is common in causal effect estimation to consider pre-treatment variables, i.e., variables that
occur before the treatment in the causal ordering, and identify sets of variables that are valid
adjustments. Specifically, a set z ⊂ V forms a valid adjustment if the causal effect can be written as
P(y |do(t = t)) =

∑
z P(y |t = t, z = z)P(z = z). In other words, a valid adjustment z averages an

estimate of y regressed on t and z with respect to the marginal distribution of z, A popular criterion
to find valid adjustments is to find a set z ⊂ V that satisfies the back-door criterion [Pearl, 2009].
Formally, a set z satisfies the back-door criterion if (a) it blocks all back-door paths, i.e., paths
between t and y that have an arrow pointing at t and (b) no element of z is a descendant of t. While,
in general, back-door sets can be found with the knowledge of the causal graph, recent works (see the
survey Cheng et al. [2022]) have proposed testable criteria for identifying back-door sets with some
causal side information, without requiring the entire graph.

2.2 Adjustment using post-treatment variables

While back-door adjustment is widely used, there are scenarios where no back-door set exists, e.g.,
when there is an unobserved confounder between t and y . If no back-door set can be found from
the pre-treatment variables, Pearlian theory can be used to identify post-treatment variables, i.e., the
variables that occur after the treatment in the causal ordering, to obtain a front-door adjustment.
Definition 5 (Front-door criterion). A set z ⊂ V satisfies the front-door criterion with respect to t
and y if (a) z intercepts all directed paths from t to y (b) all back-door paths between t and z are
blocked, and (c) all back-door paths between z and y are blocked by t.

If a set z satisfies the front-door criterion, then the causal effect can be written as

P(y |do(t = t))=
∑
z

(∑
t′

P(y |t = t′, z = z)P(t = t′)
)
P(z = z|t = t). (5)

Intuitively, front-door adjustment estimates the causal effect of t on y as a composition of two effects:
(a) the effect of t on z and (b) the effect of z on y . However, one still needs the knowledge of the
causal graph G to find a set satisfying the front-door criterion.

Inspired by the progress in finding back-door sets without knowing the entire causal graph, we
ask: Can testable conditions be derived to identify front-door-like sets using only partial structural
information about post-treatment variables? To that end, we consider the following side information.

Assumption 1. The outcome y is a descendant of the treatment t.
Assumption 2. There is an unobserved confounder between the outcome y and the treatment t.
Assumption 3. b, the set of all children of the treatment t, is observed and known.
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Assumption 1 is a fundamental assumption in most causal inference works, as it forms the basis
for estimating non-trivial causal effects. Without it, the causal effect would be zero. Assumption
2 rules out the existence of sets that satisfy the back-door criteria, necessitating a different way of
estimating the causal effect. Assumption 3 captures our side information by requiring every children
of the treatment to be known and observed. To contrast, the side information in data-driven works on
back-door adjustment requires a parent of the treatment to be known and observed [Shah et al., 2022].

u1

u2 u3

u4

u5

x1 x2

yz(o)

z(i)

bt

Figure 2: The graph Gtoy satisfying
Assumptions 1 to 3 where ui are unobserved.

Our assumptions imply that b intercepts all the
directed paths from t to y . Given this, it is natural
to ask whether b satisfies the front-door criterion
(Definition 5). We note that, in general, this is not
true. We illustrate this via Figure 2 where we provide
a causal graph Gtoy satisfying our assumptions.
However, b is not a valid front-door set in Gtoy
as the back-door path between b and y via z(i) is
not blocked by t. Therefore, estimating the causal
effect by assuming b is a front-door set might not
always give an unbiased estimate. In the next section,
we leverage the given side information and provide
testable conditions to identify front-door-like sets.

3 Front-door Adjustment Beyond Markov Equivalence

In this section, we provide our main results, an algorithm for ATE estimation, and discuss the
relationship to PAG-based methods. Our main results use observational criteria for causal effect
estimation under Assumptions 1 to 3 using post treatment variables.

3.1 Causal effect estimation using post-treatment variables

First, we state a conditional independence statement implying causal identifiability. Then, we provide
additional conditional independence statements resulting in a unique formula for effect estimation.

Causal identifiability (Definition 4) implies that the causal effect is uniquely determined given an
observational distribution P(V) and the corresponding causal graph G. We now show that satisfying
a conditional independence statement (which can be tested solely from observational data, without
requiring the graph G) guarantees identifiability. We provide a proof in Appendix D.
Theorem 3.1 (Causal Identifiability). Suppose Assumptions 1 to 3 hold. If there exists a set
z ⊆ V \ {t,b, y} such that b ⊥⊥d y |t, z, then the causal effect of t on y is identifiable from
observational data without the knowledge of the underlying causal graph G.

While the above result leads to identifiability, it does not provide a formula to compute the causal
effect. In fact, the conditional independence b ⊥⊥d y |t, z alone is insufficient to establish a unique
formula, and different causal graphs lead to different formula. To illustrate this, we provide two
SMCMs where Assumptions 1 to 3 and b ⊥⊥d y |t, z hold, i.e., causal effect is identifiable from
observational data via Theorem 3.1, but the formula is different. First, consider the SMCM in Figure
3(top) with z = (z1, z2) where causal effect is given by following formula (derived in Appendix D):

P(y |do(t = t)) =
∑

z1,z2,b

(∑
t′

P(y |z1, z2, t′)P(t′|z1)
)
× P(z2|b)P(b|t, z1)P(z1). (6)

yz2

z1

bt

yz2bt

Figure 3: SMCMs on (top) & (bottom)
satisfy b ⊥⊥d y |t, z but have different
causal effect estimation formulae.

Next, consider the SMCM in Figure 3(bottom) with z = z2
where the causal effect is given by the front-door adjustment
formula in (5) as z satisfies the front-door criterion. It
remains to explicitly show that the formula in (6) is different
from (5). To this end, we create a synthetic structural
equation model (SEM) respecting the graph in Figure 3(top)
and show that the formula in (5) gives a non-zero ATE
error. In our SEM, the unobserved variable has a uniform
distribution over [1, 2]. Each observed variable except t
is a sum of (i) a linear combination of its parents with
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coefficients drawn from uniform distribution over [1, 2] and (ii) a zero-mean Gaussian noise. The
treatment variable is binarized by applying a standard logistic model to a linear combination of its
parents with coefficients drawn as before. The ATE error averaged over 50 runs with 50000 samples
in each run is 0.3842± 0.0207. See more experimental details in Appendix G.

Next, we provide two additional conditional independence statements that imply a unique formula for
causal effect estimation. Our result is a generalized front-door with a formula identical to (5) as if z
were a traditional front-door set. We also offer an alternative formula by utilizing a specific partition
of z obtained from the conditional independence statements. We provide a proof in Appendix E.
Theorem 3.2 (A generalized front-door condition). Suppose Assumptions 1 to 3 hold. Let z ⊆
V \ {t,b, y} be a set satisfying

b ⊥⊥d y |t, z, (7)

such that z can be decomposed into z(o) ⊆ z and z(i) = z \ z(o) with

(i) z(i) ⊥⊥d t and (ii) z(o) ⊥⊥d t|b, z(i). (8)

Then, z and s ≜ (b, z(i)) are generalized front-doors, and the causal effect of t on y can be obtained
using any of the following equivalent formulae:

P(y |do(t = t)) =
∑
z

(∑
t′

P(y |z, t′)P(t′)
)
P(z|t). (9)

P(y |do(t = t)) =
∑
s

(∑
t′

P(y |s, t′)P(t′)
)
P(s|t). (10)

Remark 1. Consider the case where y is a child of t. Then, the sufficient conditions in Theorems 3.1
and 3.2 do not hold because the conditional independence in (7) will not pass as y ∈ b (which follows
from Assumption 3). However, in this case, the causal query itself is not identifiable as there exists a
bi-directed edge between y and t (from Assumption 2) (see Tian and Pearl [2002, Theorem 4]).

Algorithm 1: ATE estimation using subset search.
Input: nr, t, y ,b,Z, pv
Output: ATEz,ATEs

Initialization: ATEz = 0,ATEs = 0, c1 = 0
for r = 1, · · · , nr do // Use a different train-test split in each run

ATEr
z = 0, ATEr

s = 0, c2 = 0; // These are used to average over different subsets
that satisfy our conditions for a specific train-test split

for z ∈ Z do // Perform an exhaustive search over Z
if CI(b ⊥p y |z, t) > pv then // Check for (7) where CI stands for conditional
independence

for z(o) ⊆ z do // Perform an exhaustive search over z to find z(o) and z(i)

z(i) = z \ z(o);
if min{CI(z(i)⊥p t), CI(z(o)⊥p t|b, z(i))} > pv) then // Check for (8)

c2 = c2 + 1, s = (b, z(i));

ATEr
z = ATEr

z +

∑
j:tj=1

∑
t′ E[y |zj ,t

′]P(t′)
|{j:tj=1}| −

∑
j:tj=0

∑
t′ E[y |zj ,t

′]P(t′)
|{j:tj=0}| ;

ATEr
s = ATEr

s +

∑
j:tj=1

∑
t′ E[y |sj ,t

′]P(t′)
|{j:tj=1}| −

∑
j:tj=0

∑
t′ E[y |sj ,t

′]P(t′)
|{j:tj=0}| ;

if c2 > 0 then
ATEz = ATEz + ATEr

z/c2, ATEs = ATEs + ATEr
s/c2, c1 = c1 + 1;

if c1 > 0 then
ATEz = ATEz/c1,ATEs = ATEs/c1; // c1 is used to average over different
train-test splits.

else
Failed to find z = (z(i), z(o)) satisfying (7) and (8);
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3.2 Algorithm for ATE estimation

The ATE can be computed by taking the first moment version of (9) or (10). In Algorithm 1, we
provide a systematic way to estimate the ATE using Theorem 3.2 by searching for a set z ∈ Z ≜
V \ {t,b, y} such that (a) p-value of conditional independence in (7) passes a threshold pv and (b)
there exists a decomposition z = (z(i), z(o)) such that p-values of conditional independencies in (8)
pass the threshold pv . Then, for every such z, the algorithm computes the ATE using the first moment
version of (9), and averages. The algorithm produces another estimate by using (10) instead of (9).

3.3 Relation to PAG-based algorithms

Now, we exhibit how our approach can recover the causal effect in certain scenarios where PAG-based
methods are not suitable. PAGs depict ancestral relationships (not necessarily direct) with directed
edges and ambiguity in orientations (if they exist across members of the equivalence class) by circle
marks. Figure 4(c) shows the PAG consistent with SMCM in Figure 4(a). While we formally define
PAGs in Appendix B, we refer interested readers to Triantafillou and Tsamardinos [2015]. The IDP
algorithm of Jaber et al. [2019] is sound and complete for identifying causal effect from PAGs.

Consider SMCM in Figure 4(a) where our approach recovers the causal effect as (i) Assumptions 1 to
(3), (ii) (7), and (iii) (8) hold (where (ii) and (iii) can be tested from observational data). However,
the IDP algorithm fails to recover the effect from the PAG. To see this, consider SMCM in Figure 4(b)
which is Markov equivalent to SMCM in Figure 4(a), i.e., the PAG in Figure 4(c) is also consistent
with SMCM in Figure 4(b). Intuitively, when the strength of the edge between t and b is very small
but the strength of the edge between t and y is very high for both Figure 4(a) and Figure 4(b), causal
effect in Figure 4(b) remains high while the causal effect in Figure 4(a) goes to zero.

We note that Assumptions 1 and 3, and (7) do not hold for the SMCM in Figure 4(b).

yz(o)

z(i)

bt yz(o)

z(i)

bt yz(o)

z(i)

bt

Figure 4: (a) An SMCM satisfying (7) and (8). (b) An SMCM obtained from (a) by modifying the
edges between t and b and between t and y . (c) The PAG corresponding to SMCM in (a) and (b).

Remark 2. Obtaining a PAG requires a large number of sequential conditional independence tests
where the choice of the next test depends on the previous ones [Claassen et al., 2013]. The erroneous
tests and orientation steps can potentially alter the structure of the PAG non-locally (see Strobl et al.
[2016] for an example). This makes it difficult to control the false discovery rate for PAG based
methods. Moreover, incorporating arbitrary side information into a PAG in a systematic way is still
an open problem. In contrast, our approach does not rely on constructing a graphical object such as
a PAG and the conditional independence tests could be carried out in parallel. Thus, our method can
be viewed as a way to mitigate the issues associated with sequential testing by using structural side
information. However, in scenarios where the structural side information is not available, we may
have to resort to PAG-based methods.

4 Empirical Evaluation

We evaluate our approach empirically in 3 ways: (i) we demonstrate the applicability of our method
on a class of random graphs, (ii) we assess the effectiveness of our method in estimating the ATE
using finite samples, and (iii) we showcase the potential of our method for causal fairness analysis.

4.1 Applicability to a class of random graphs

In this experiment, we create a class of random SMCMs, sample 100 SMCMs from this class, and
check if (7) and (8) hold by checking for corresponding d-separations in the SMCMs.
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Creation of random SMCMs. Let p ≜ |V| denote the dimension of observed variables including x,
t, and y . Let v1, · · · , vp denote a causal ordering of these variables. Our random ensemble depends
on two parameters: (i) d ≤ p/2 which is the expected in-degree of variables v2d, · · · , vp and (ii)
q ≤ p which controls the number of unobserved features. For 1 ≤ i < j ≤ p, we add vi −→ vj with
probability 0.5 if j ≤ 2d and with probability d/(j − 1) if j > 2d. We note that this procedure is
such that the expected in-degree of variables v2d, · · · , vp is same (and equal to d) which is consistent
with other recent work (e.g., Addanki et al. [2020]). Next, for 1 ≤ i < j ≤ p, we add vi L9999K vj with
probability q/p such that the expected number of unobserved features is q(p−1)/2. Then, we choose
vp as y , any variable that is ancestor of y but not its parent or grandparent as t, and all children of t
as b. Finally, we add t L9999K y if missing.

Results. We compare the success rate of two approaches: (i) exhaustive search for z satisfying (7)
and (8) which is exponential in p and (ii) search for a z of size at-most 5 satisfying (7) and (8) which
is polynomial in p. We provide the number of successes of these approaches as a tuple in Table 1 for
various p, d, and q. We see that the two approaches have comparable performances. We also compare
with the IDP algorithm by providing it the true PAG. However, it gives 0 successes across various p,
d, and q. We provide results for another random ensemble in Appendix G.

Table 1: Number of successes out of 100 random graphs for our methods shown as a tuple. The first
method searches a z exhaustively and the second method searches a z with size at-most 5.

p = 10 p = 15
d = 2 d = 3 d = 4 d = 2 d = 3 d = 4

q = 0.0 (43, 43) (20, 20) (21, 21) (27, 26) (9, 9) (4, 2)
q = 0.5 (23, 23) (16, 16) (7, 7) (18, 17) (4, 3) (0, 0)
q = 1.0 (6, 6) (4, 4) (5, 5) (9, 9) (10, 9) (0, 0)

4.2 Estimating the ATE

In this experiment, we generate synthetic data using the 6 random SMCMs in Section 4.1 for p = 10,
d = 2, and q = 1.0 where our approach was successful indicating existence of z = (z(i), z(o)) such
that the conditional independence statements in Theorem 3.2 hold. Then, we use Algorithm 1 to
compute the error in estimating ATE and compare against a Baseline which uses the front-door
adjustment in (5) with z = b given the side information in Assumption 3. We provide the results for
the same experiment for specific choices of SMCMs including the one in Figure 2 in Appendix G.
We also provide the 6 random SMCMs in Appendix G. We use RCoT hypothesis test [Strobl et al.,
2019b] for conditional independence testing from finite data.

Data generation. We use the following procedure to generate data from every SMCM. We generate
unobserved variables independently from Unif[1, 2] which denotes the uniform distribution over
[1, 2]. For every observed variable v ∈ V , let π(v) ≜ (π(o)(v), π(u)(v)) ∈ Rdv×1 denote the set of
observed and unobserved parents of v stacked as a column vector. Then, we generate v ∈ V as

v = a⊤v π(v) + 0.1 N (0, 1) for v ∈ V \ {t} and t = Bernoulli(Sigmoid(a⊤t π(t))) (11)
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Figure 5: Average ATE for Algorithm 1 and
Baseline vs. number of samples.

where the coefficients av ∈ Rdv×1 with every entry
sampled independently from Unif[1, 2]. Also, to
generate the true ATE, we intervene on the generation
model in (11) by setting t = 0 and t = 1.

Results. For every SMCM, we generate n samples of
every observed variable in every run of the experiment.
We average the ATE error over 10 such runs where
the coefficients in (11) vary across runs. We report the
average of these averages over the 6 SMCMs in Figure
5 for various n. While the error rates of Baseline
and Algorithm 1 are of the similar order for n = 100,
Algorithm 1 gives much lower errors for n = 1000
and n = 10000 showing the efficacy of our method.
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4.3 Experiments with real-world fairness benchmarks

Next, we describe how our results enable finding front-door-like adjustment sets in fairness problems.
In a typical fairness problem, the goal is to ensure that the outcome variable y does not unfairly
depend on the sensitive/protected attribute, e.g., race or gender (which we define to be treatment
variable t), which would reflect undesirable biases. Often, the outcome is a descendant of the
sensitive attribute (as per Assumption 1), and both outcome and sensitive attribute are confounded
by unobserved variables (as per Assumption 2). Furthermore, there are be a multitude of measured
post-sensitive-attribute variables that can affect the outcome. This stands in contrast to the usual
settings for causal effect estimation, where pre-treatment variables are primarily utilized.

Fairness problems are typically evaluated using various fairness metrics, such as causal fairness
metrics or observational metrics. Causal metrics require knowing the underlying causal graph, which
can be a challenge in practice. Observational criteria can be decomposed into three types of effects
[Zhang and Bareinboim, 2018, Plecko and Bareinboim, 2022]: spurious effects, direct effects, and
indirect effects (through descendants of sensitive attribute). In some scenarios, capturing the sum of
direct and indirect effects is of interest, but even this requires knowing the causal graph.

Now, we demonstrate the application of our adjustment formulae in Theorem 3.2 to compute the
sum of direct and indirect effects of the sensitive attribute on the outcome, while separating it from
spurious effects. The sum of these effects is indeed the causal effect of sensitive attribute on the
outcome. In other words, we consider the following fairness metric: E[y |do(t = 1)]−E[y |do(t = 0)].
We assume that all the children of the sensitive attribute are known, which may be easier to justify
compared to the typical assumption in causal fairness literature of knowing the entire causal graph.

German Credit Dataset. The German Credit dataset [Hofmann, 1994] is used for credit risk
analysis where the goal is to predict whether a loan applicant is a good or bad credit risk based on
applicant’s 20 demographic and socio-economic attributes. The binary credit risk is the outcome y
and the applicant’s age (binarized by thresholding at 25 [Kamiran and Calders, 2009]) is the sensitive
attribute t. Further, the categorical attributes are one-hot encoded.

We apply Algorithm 1 with nr = 100 and pv = 0.1 where we search for a set z = (z(o), z(i)) of size
at most 3 under the following two distinct assumptions on the set of all children b of t:
1. When considering b={# of people financially dependent on the applicant, applicant’s savings,

applicant’s job}, Algorithm 1 results in z(i)={purpose for which the credit was needed, indicator
of whether the applicant was a foreign worker}, z(o)={installment plans from providers other
than the credit-giving bank}, ATEz = 0.0125± 0.0011, and ATEs = 0.0105± 0.0018.

2. When considering b={# of people financially dependent on the applicant, applicant’s savings},
Algorithm 1 results in z(i) = {purpose for which the credit was needed, applicant’s checking
account status with the bank}, z(o)={installment plans from providers other than the credit-giving
bank}, ATEz = 0.0084± 0.0008, and ATEs = −0.0046± 0.0021.

Under the first assumption above, the causal effect using the adjustment formulae in (9) and (10) have
same sign and are close in magnitude. However, under the second assumption, the effect flips sign.
The results suggest that the second hypothesis regarding b is incorrect, implying that applicant’s job
may indeed be a direct child of applicant’s age, which aligns with intuition.

The dataset has only 1000 samples, which increases the possibility of detecting independencies
in our criterion by chance, even with the size of z constrained. To address this issue, we use 100
random bootstraps with a sample size equal to half of the training data and evaluate the p-value of
our conditional independence criteria for all subsets returned by our algorithm. We select the subset z
with the highest median p-value (computed over the bootstraps) and use it in our adjustment formulae
on a held out test set. To assess the conditional independencies associated with the selected z, we plot
a histogram of the corresponding p-values for all these bootstraps. If the conditional independencies
hold, we expect the p-values to be spread out, which we observe in the histograms in Figure 6 for the
first choice of b. We report similar results for the second choice of b in Appendix G.

Adult Dataset: We perform a similar analysis on the Adult dataset [Kohavi and Becker, 1996].
With suitable choices of b, Algorithm 1 was unable to find a suitable z satisfying b ⊥p y |z, t. This
suggests that in this dataset, there may not be any non-child descendants of the sensitive attribute,
which is required for our criterion to hold. More details can be found in Appendix G.
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Figure 6: Histograms of p-values of the conditional independencies in (9) and (10) over 100 bootstrap
runs for b={# of people financially dependent on the applicant, applicant’s savings, applicant’s job}.

5 Conclusion, Limitations, and Future Work

In this work, we proposed sufficient conditions for causal effect estimation through a generalized
front-door adjustment given structural side information irrespective of the number or complexity
of the latent confounders. Our approach can identify causal effect in graphs where known Markov
equivalence classes do not allow identification. However, our approach relies primarily on two
assumptions: Assumption 2 and Assumption 3.

Assumption 2 plays a crucial role in Theorem 3.2 (see the discussion in Section E.3) as it requires
the presence of an unobserved confounder between the treatment variable and the outcome variable.
This assumption is necessary for the applicability of our approach. If Assumption 2 does not
hold, it implies that there is a set that satisfies the back-door criterion, and existing methods for
finding back-door adjustment sets [Entner et al., 2013, Cheng et al., 2020, Shah et al., 2022] can be
utilized. This suggests that our results could be derived under the weaker condition that there is an
unblockable back-door path between t and y . However, in many real-world scenarios, the presence
of unobserved variables that potentially confound the treatment and the outcome is common, and we
expect Assumption 2 to be true.

Assumption 3 is the requirement of knowing the entire set of children of the treatment variable
within the causal graph. While this is strictly less demanding than specifying the entire causal
graph, it may still present practical challenges in real-world scenarios. For instance, in large-scale
observational studies or domains with numerous variables, exhaustively identifying all the children
may be computationally demanding. It remains unclear whether one can estimate the causal effect
using front-door-like adjustment with even less side information, e.g., knowing only one child of
the treatment variable or knowing any subset of children of the treatment variable. An important
future direction could be to approximate the causal effect when only the children corresponding to
weak edges are unknown. Such variations around our condition are promising directions for future
work. However, until then, one could seek input from domain experts. These experts possess valuable
knowledge and insights about the specific domain under study, which can aid in identifying all the
relevant variables that serve as children of the treatment.

The time complexity of Algorithm 1 is exponential due to its search over all possible subsets of
observed variables (except t,b, y ). While this is inherent in the general case, recent work by Shah
et al. [2022] proposed a scalable approximation for conditional independence testing using continuous
optimization by exploiting the principle of invariant risk minimization, specifically for back-door
adjustment without the need for the causal graph. However, extending this approach to multiple
conditional independence tests, as required in (7) and (8), remains an open challenge. Therefore,
exploring the development of continuous optimization-based methods for scalability of front-door
adjustment in the absence of the causal graph is crucial. Further, Algorithm 1 could potentially be
augmented with ideas from double machine learning and inverse variance weighting for bias and
variance reduction.

Lastly, it is important to note that Theorem 3.2 provides only sufficient conditions for causal effect
estimation. This means that there may be cases where front-door-like adjustment is possible, but the
conditions stated in Theorem 3.2 do not hold. Specifically, there could be scenarios, such as when
the outcome variable is a child of the children of the treatment variable, i.e., y is a child of b, where
conditions (7) and (8) are not satisfied.
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A Broader impact

In this work, we propose an algorithm for estimating causal effects from observational studies without
relying on expert knowledge of the causal model. Our approach is particularly valuable in scenarios
where conducting randomized control trials (RCTs) is challenging or unethical, such as in healthcare
settings where consensus treatment protocols are often determined based on observational data. While
our algorithm shows promise in providing accurate causal effect estimates, it is crucial to address the
potential negative impact of incorrect results that may arise from our work.

One significant concern is the possibility of miscalculating the treatment effect due to limitations in
testing power at finite sample sizes or the misidentification of certain features as direct children of the
treatment variable. This introduces the risk of inaccurate estimations, which could have detrimental
consequences when making decisions or establishing treatment protocols based on the conclusions
derived from our algorithm. It is essential to approach the interpretation of our algorithm’s results with
caution and subject them to critical evaluation. It is worth noting that the potential for incorrect results
is not unique to our algorithm but is inherent in most observational studies and effect estimation
algorithms. Acknowledging these potential negative impacts emphasizes the need for further research
to improve the reliability and accuracy of causal effect estimation in observational studies.

B Preliminaries about ancestral graphs

In this section, we provide the definition of partial ancestral graphs (PAGs). PAGs are defined using
maximal ancestral graphs (MAGs). Below, we define MAGs and PAGs based on their construction
from directed acyclic graphs (DAGs).

A MAG can be obtained from a DAG as follows: if two observed nodes x1 and x2 cannot be
d-separated conditioned on any subset of observed variables, then (i) x1 −→ x2 is added in the MAG
if x1 is an ancestor of x2 in the DAG, (ii) x2 −→ x1 is added in the MAG if x2 is an ancestor of x1
in the DAG, and (iii) x1 L9999K x2 is added in the MAG if x1 and x2 are not ancestrally related in the
DAG. (iv) After the above three operations, if both x1 L9999K x2 and x1 −→ x2 are present, we retain
only the directed edge. In general, a MAG represents a collection of DAGs that share the same set of
observed variables and exhibit the same independence and ancestral relations among these observed
variables. It is possible for different MAGs to be Markov equivalent, meaning they represent the
exact same independence model.

A PAG shares the same adjacencies as any MAG in the observational equivalence class of MAGs. An
end of an edge in the PAG is marked with an arrow (> or <) if the edge appears with the same arrow
in all MAGs in the equivalence class. An end of an edge in the PAG is marked with a circle (o) if the
edge appears as an arrow (> or <) and a tail (−) in two different MAGs in the equivalence class.

C Rules of do-calculus

In this section, we provide the do-calculus rules of Pearl [1995] that are used to prove our main
results in the following sections. We build upon the definition of semi-Markovian causal model from
Section 2.

For any v ∈ W , let Gv be the graph obtained by removing the edges going into v in G, and let Gv be
the graph obtained by removing the edges going out of v in G.
Theorem C.1 (Rules of do-calculus, Pearl [1995]). For any disjoint subsets v1, v2, v3, v4 ⊆ W , we
have the following rules.

Rule 1: P(v1|do(v2), v3, v4) = P(v1|do(v2), v3) if v1 ⊥⊥d v4|v2, v3 in Gv2 .

Rule 2: P(v1|do(v2), v3, do(v4)) = P(v1|do(v2), v3, v4) if v1 ⊥⊥d v4|v2, v3 in Gv2,v4 .

Rule 3: P(v1|do(v2), v3, do(v4)) = P(v1|do(v2), v3) if v1 ⊥⊥d v4|v2, v3 in Gv2,v4(v3),

where v4(v3) is the set of nodes in v4 that are not ancestors of any node in v3 in Gv2 . Pearl [1995]
also gave an alternative criterion for Rule 3.

Rule 3a: P(v1|do(v2), v3, do(v4)) = P(v1|do(v2), v3) if v1 ⊥⊥d Fv4 |v2, v3 in Gv4v2 ,
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where Gv4 is the graph obtained from G after adding (a) a node Fv4 and (b) edges from Fv4 to every
node in v4.

Also, throughout our proofs, we use the following fact.

Fact 1. Consider any G′ obtained by removing any edge(s) from G. For any sets of variables
v1, v2, v3 ⊆ W , if v1 and v2 are d-separated by v3 in G than v1 and v2 are d-separated by v3 in G′.

D Causal Identifiability

In this section, we derive the causal effect for the SMCM in Figure 3(top), i.e., (6), as well as prove
Theorem 3.1 one by one.

D.1 Proof of (6)

First, using the law of total probability, we have

P(y |do(t = t)) =
∑
z1,z2

P(y |do(t = t), z1=z1, z2=z2)P(z1=z1, z2=z2|do(t = t)). (12)

Now, we show that the two terms in RHS of (12) can be simplified as follows

P(y |do(t = t), z1=z1, z2=z2) =
∑
t′

P(y |z1=z1, z2=z2, t = t′)P(t = t′|z1=z1). (13)

P(z1=z1, z2=z2|do(t = t)) =
∑
b

P(z2=z2|b = b)P(b = b|t = t, z1=z1)P(z1=z1), (14)

Combining (12) to (14) results in (6).

Proof of (13): We have

P(y |do(t = t), z1=z1, z2=z2) (15)
(a)
= P(y = y|do(t = t), z1=z1, z2=z2,b = b) (16)
(b)
= P(y = y|do(t = t), z1=z1, z2=z2, do(b = b)) (17)
(c)
= P(y = y|z1=z1, z2=z2, do(b = b)) (18)
(d)
=

∑
t′

P(y = y|z1=z1, z2=z2, do(b = b), t = t′)P(t = t′|z1=z1, z2=z2, do(b = b)) (19)

(e)
=

∑
t′

P(y = y|z1=z1, z2=z2, t = t′)P(t = t′|z1=z1, z2=z2, do(b = b)) (20)

(f)
=

∑
t′

P(y = y|z1=z1, z2=z2, t = t′)P(t = t′|z1=z1, do(b = b)) (21)

(g)
=

∑
t′

P(y = y|z1=z1, z2=z2, t = t′)P(t = t′|z1=z1), (22)

where (a) and (f) follow from Rule 1, (b) follows from Rule 2, (c), (e), and (g) follow from Rule
3a, and (d) follows from the law of total probability.

Proof of (14): From the law of total probability, we have

P(z1=z1, z2=z2|do(t = t)) (23)

=
∑
b

P(z1=z1, z2=z2|do(t = t),b = b)P(b = b|do(t = t)) (24)

(a)
=

∑
b

P(z2=z2|do(t = t),b = b)P(z1=z1|do(t = t),b = b, z2=z2)P(b = b|do(t = t)) (25)
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(b)
=

∑
b

P(z2=z2|b = b)P(z1=z1|do(t = t),b = b, z2=z2)P(b = b|do(t = t)) (26)

(c)
=

∑
b

P(z2=z2|b = b)P(z1=z1|do(t = t),b = b)P(b = b|do(t = t)) (27)

(d)
=

∑
b

P(z2=z2|b = b)P(z1=z1,b = b|do(t = t)) (28)

(e)
=

∑
b

P(z2=z2|b = b)P(z1=z1|do(t = t))P(b = b|do(t = t), z1=z1) (29)

(f)
=

∑
b

P(z2=z2|b = b)P(z1=z1)P(b = b|do(t = t), z1=z1) (30)

(g)
=

∑
b

P(z2=z2|b = b)P(z1=z1)P(b = b|t = t, z1=z1) (31)

where (a), (d), and (e) follow from the definition of conditional probability, (b) and (f) follows from
Rule 3a, (c) follows from Rule 1, and (g) follows from Rule 2.

D.2 Proof of Theorem 3.1

Let An(y) denote the union of y and the set of ancestors of y , and let GAn(y) denote the subgraph of
G composed only of nodes in An(y). First, we show that if b ⊥⊥d y |t, z holds for some z, then there
is no bi-directed path between t to b in GAn(y).
Lemma 1. Suppose Assumptions 1 to 3 hold. Suppose there exists a set z ⊆ V \ {t,b, y} such that
b ⊥⊥d y |t, z. Then, there is no bi-directed path between t and b in GAn(y).

Given this claim, Theorem 3.1 follows from Tian and Pearl [2002, Theorem 4]. It remains to prove
Lemma 1.

Proof of Lemma 1. We prove this result by contradiction. First, from Assumptions 1 and 3,
t ∈ An(y) and b0 ∈ An(y) for some b0 ⊂ b. Assume there exists a bi-directed path between t
and some b ∈ b0 in GAn(y). Let P(t, b) denote the shortest of these paths. This path is of the form
t L9999K v1 L9999K · · · L9999K vr L9999K b for some r ≥ 0 where vq ∈ GAn(y) for every q ∈ [r]. We have
the following two cases depending on the value of r.

(i) r = 0: In this case, consider the path P(y , b) ⊃ P(t, b) in G of the form: y L9999K t L9999K b
in G (such a path exists because of Assumption 2). The path P(y , b) is unblocked when t
and z are conditioned on contradicting b ⊥⊥d y |t, z.

(ii) r ≥ 1: In this case, consider the path P(y , b) ⊃ P(t, b) in G of the form:
y L9999K t L9999K v1 L9999K · · · L9999K vr L9999K b (such a path exists because of Assumption 2).
We have the following two scenarios depending on whether the path P(y , b) is unblocked
or blocked when t and z are conditioned on. Suppose we condition on t and z.
(a) The path P(y , b) is unblocked: In this case, by assumption, b ⊥⊥d y |t, z is contradicted.
(b) The path P(y , b) is blocked: We create a set w such that for any w ∈ w the following

are true: (a) w = vq for some q ∈ [r], (b) w /∈ z, (b) there is no descendant path
P(w , z) between w and some z ∈ z, and (c) there is no descendant path P(w , t)
between w and t.
In this scenario, w ̸= ∅ because P(y , b) is blocked. Let wc ∈ w be that node which is
closest to b in the path P(y , b). By the choice of wc, the path P(wc, b) ⊂ P(y , b) is
unblocked (when t and z are conditioned on). Furthermore, by the definition of w, (a)
wc ∈ GAn(y) (because wc = vq for some q ∈ [r]) and (b) there exists a descendant path
P(wc, y) between wc and y such that t /∈ P(wc, y) as well as z /∈ P(wc, y) for every
z ∈ z. Therefore, the path P(wc, y) is unblocked (when t and z are conditioned on).
Consider the path P ′(y , b) obtained after concatenating P(wc, y) and P(wc, b) at wc.
This path is unblocked (when t and z are conditioned on) because: (a) P(wc, b) is
unblocked, (b) P(wc, y) is unblocked, and (c) there is no collider at wc in this path
(because P(wc, y) is a descendant path to y ). However, this contradicts b ⊥⊥d y |t, z.
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E A generalized front-door condition

In this section, we prove Theorem 3.2. We begin by stating a few d-separation statements used in this
proof. See Appendix F for a proof.
Lemma 2. Suppose Assumptions 1 to 3 and d-separation criteria in Theorem 3.2, i.e., (7) and (8),
hold. Then,

(a) y ⊥⊥d Ft |z,b in Gt
b

and y ⊥⊥d Ft |z(i),b in Gt
b
,

(b) t ⊥⊥d b in Gt ,

(c) t ⊥⊥d z(i)|b in Gt ,

(d) t ⊥⊥d Fb|z(i) in Gb, and

(e) y ⊥⊥d b|t, z(i) in Gb.

Now, we proceed with the proof in two parts. In the first part, we prove (9), and in the second part,
we prove (10).

E.1 Proof of (9)

First, using the law of total probability, we have

P(y = y|do(t = t)) =
∑
z

P(y = y|do(t = t), z = z)P(z = z|do(t = t)). (32)

Now, we show that the two terms in RHS of (32) can be simplified as follows

P(y = y|do(t = t), z = z) =
∑
t′

P(y = y|z = z, t = t′)P(t = t′). (33)

P(z = z|do(t = t)) = P(z = z|t = t), (34)

Combining (33) and (34) completes the proof of (9).

Proof of (33): We have

P(y = y|do(t = t), z = z)
(a)
= P(y = y|do(t = t), z = z,b = b) (35)
(b)
= P(y = y|do(t = t), z = z, do(b = b)) (36)
(c)
= P(y = y|z = z, do(b = b)) (37)
(d)
=

∑
t′

P(y = y|z = z, do(b = b), t = t′)P(t = t′|z = z, do(b = b)),

(38)

where (a) follows from Rule 1, (7), and Fact 1, (b) follows from Rule 2, (7), and Fact 1, and (c)
follows from Rule 3a and Lemma 2(a), and (d) follows from the law of total probability.

Now, we simplify the first term in (38) as follows:

P(y = y|z = z, do(b = b), t = t′)
(a)
= P(y = y|z = z,b = b, t = t′) (39)
(7)
= P(y = y|z = z, t = t′), (40)

where (a) follows from Rule 2, (7), and Fact 1. Likewise, we simplify the second term in (38) as
follows:

P(t = t′|do(b = b), z = z)
(a)
= P(t = t′|do(b = b), z(i) = z(i))

(b)
= P(t = t′|z(i) = z(i)) (41)
(c)
= P(t = t′), (42)
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where (a) follows from Rule 1, (8), and Fact 1, (b) follows from Rule 3a and Lemma 2(d), and (c)
follows (8).

Putting together (38), (40), and (42) results in (33).

Proof of (34): From the law of total probability, we have

P(z = z|do(t = t)) =
∑
b

P(z = z|do(t = t),b = b)P(b = b|do(t = t)). (43)

Now, we simplify the first term in (43) as follows:

P(z = z|do(t = t),b = b) (44)
(a)
= P(z(i) = z(i)|do(t = t),b = b) · P(z(o) = z(o)|do(t = t),b = b, z(i) = z(i)) (45)
(b)
= P(z(i) = z(i)|do(t = t),b = b) · P(z(o) = z(o)|t = t,b = b, z(i) = z(i)) (46)
(c)
= P(z(i) = z(i)|t = t,b = b) · P(z(o) = z(o)|t = t,b = b, z(i) = z(i)) (47)
(d)
= P(z = z|t = t,b = b), (48)

where (a) and (d) follow from the definition of conditional probability, (b) follows from Rule 2, (8),
and Fact 1, and (c) follows from Rule 2 and Lemma 2(c). Likewise, we simplify the second term in
(43) as follows:

P(b = b|do(t = t))
(a)
= P(b = b|t = t), (49)

where (a) follows from Rule 2 and Lemma 2(b).

Putting together (43), (48), and (49), results in (34) as follows:

P(z = z|do(t = t)) =
∑
b

P(z = z|t = t,b = b)P(b = b|t = t)
(a)
= P(z = z|t = t), (50)

where (a) follows from the law of total probability.

E.2 Proof of (10)

First, using the law of total probability, we have

P(y = y|do(t = t)) =
∑
b

P(y = y|do(t = t),b = b)P(b = b|do(t = t)). (51)

Now, we show that the first term in RHS of (51) can be simplified as follows

P(y = y|do(t = t),b = b) (52)

=
∑
z(i)

(∑
t′

P(y = y|s = s, t = t′)P(t = t′)
)
P(z(i) = z(i)|b = b, t = t). (53)

where s ≜ (b, z(i)). Using (49) and (53) in (51), completes the proof of (10) as follows:

P(y = y|do(t = t)) (54)

=
∑
s

(∑
t′

P(y = y|s = s, t = t′)P(t = t′)
)
P(z(i) = z(i)|b = b, t = t)P(b = b|t = t) (55)

(a)
=

∑
s

(∑
t′

P(y = y|s = s, t = t′)P(t = t′)
)
P(s = s|t = t), (56)

where (a) follows from the definition of conditional probability.
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Proof of (53): From the law of total probability, we have

P(y = y|do(t = t),b = b) (57)

=
∑
z(i)

P(y = y|b = b, z(i)=z(i), do(t = t))P(z(i)=z(i)|b = b, do(t = t)). (58)

Now, we simplify the first term in (58) as follows:

P(y = y|b = b, z(i) = z(i), do(t = t)) (59)
(a)
= P(y = y|do(b = b), z(i) = z(i), do(t = t)) (60)
(b)
= P(y = y|do(b = b), z(i) = z(i)) (61)
(c)
=

∑
t′

P(y = y|do(b = b), z(i) = z(i), t = t′)P(t = t′|do(b = b), z(i) = z(i)), (62)

where (a) follows from Rule 2, Lemma 2(e), and Fact 1, (b) follows from Rule 3a and Lemma 2(a),
and (c) follows from the law of total probability. We further simplify the first term in (62) as follows:

P(y = y|do(b = b), z(i) = z(i), t = t′)
(a)
= P(y = y|b = b, z(i) = z(i), t = t′), (63)

where (a) follows from Rule 2 and Lemma 2(e). Using (63) and (42) in (62), we have

P(y = y|b = b, z(i) = z(i), do(t = t)) =
∑
t′

P(y = y|b = b, z(i) = z(i), t = t′)P(t = t′). (64)

Now, we simplify the second term in (58) as follows:

P(z(i) = z(i)|b = b, do(t = t))
(a)
= P(z(i) = z(i)|b = b, t = t), (65)

where (a) follows from Rule 2 and Lemma 2(c).

Putting together (58), (64), and (65) results in (53).

E.3 Necessity of Assumption 2

In this section, we provide an example to signify the importance of Assumption 2 to Theorem
3.2. Consider the semi-Markovian causal model in Figure 7 where Assumptions 1 and 3 hold but
Assumption 2 does not hold.

yz(o)

a

bt

Figure 7: An SMCM signifying the importance of Assumption 2

While z = (z(i), z(o)) satisfies (7) and (8) where z(i) = ∅, the causal effect is not equal to the
formulae in (9) or (10). To see this, we note that the set {a} is a back-door set in Figure 7 implying

P(y |do(t = t)) =
∑
a

P(y |a, t)P(a). (66)

Now, we simplify the right hand side of (66) to show explicitly that it is not equivalent to (9). From
the law of total probability, we have

P(y |a, t) =
∑
z

P(y |z, a, t)P(z|a, t) (67)
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(a)
=

∑
z

(∑
t′

P(y |z, a, t)P(t′)
)
P(z|a, t) (b)

=
∑
z

(∑
t′

P(y |z, t ′)P(t′)
)
P(z|a, t), (68)

where (a) follows because
∑

t′ P(t′) = 1 and (b) follows y is independent of every other variable
conditioned on z. Plugging (68) in (66), we have

P(y |do(t = t)) =
∑
z

(∑
t′

P(y |z, t ′)P(t′)
)(∑

a

P(z|a, t)P(a)
)
. (69)

Lastly, using the law of total probability, (9) can be rewritten as

P(y |do(t = t)) =
∑
z

(∑
t′

P(y |z, t ′)P(t′)
)(∑

a

P(z|a, t)P(a|t)
)
. (70)

Therefore, the variables a and t could be such that (69) is different from (70). We note that similar
steps can be used to show that (66) is not equivalent to (10). In conclusion, Assumption 2 is crucial
for the formulae in (9) and (10) to hold.

F Proof of Lemma 2

First, we state the following d-separation criterion used to prove Lemma 2(b) and Lemma 2(d). See
Appendix F.1 for a proof.

Lemma 3. Suppose Assumptions 1 to 3 hold. Then, t ⊥⊥d b|z(i) in Gt .

Now, we prove each part of Lemma 2 one-by-one.

Proof of Lemma 2(a) In Gt
b
, all edges going into b are removed. Under Assumption 3, this implies

that all edges going out of t are removed. Now, consider any path P(Ft , y) between Ft and y in Gt
b
.

This path takes one of the following two forms: (a) Ft −→ t ←− · · · y or (b) Ft −→ t L9999K · · · y . In
either case, there is a collider at t in P(Ft , y). This collider is blocked when z and b are conditioned
on because t /∈ z, t /∈ b, and t does not have any descendants in Gt

b
. Therefore, y ⊥⊥d Ft |z,b in Gt

b
.

Similarly, the collider is blocked when z(i) and b are conditioned on because t /∈ z(i), t /∈ b, and t
does not have any descendants in Gt

b
. Therefore, y ⊥⊥d Ft |z(i),b in Gt

b
.

Proof of Lemma 2(b) We prove this by contradiction. Assume there exists at least one unblocked
path between t and some b ∈ b in Gt . Let P(t, b) denote any such unblocked path.

Suppose we condition on z(i). From Lemma 3, P(t, b) is blocked in Gt when z(i) is conditioned on.
Let v be any node at which P(t, b) is blocked in Gt when z(i) is conditioned on. We must have that
v ∈ P(t, b) \ {t, b} and v ∈ z(i). Then, the path P(t, v) ⊂ P(t, b) is unblocked in Gt when z(i) is
unconditioned on. However, this contradicts t ⊥⊥d z(i) in Gt (which follows from (8)(i) and Fact 1).

Proof of Lemma 2(c) We prove this by contradiction. Assume there exists at least one unblocked
path between t and some z(i) ∈ z(i) in Gt when b is conditioned on. Let P(t, z(i)) denote any such
unblocked path.

Suppose, we uncondition on b. From (8)(i) and Fact 1, we have t ⊥⊥d z(i) in Gt . Therefore, P(t, z(i))
is blocked in Gt when b is unconditioned on. Now, we create a set v consisting of all the nodes at
which P(t, z(i)) is blocked in Gt when b is unconditioned on. Define the set v such that for any
v ∈ v, the following are true: (a) v ∈ P(t, z(i)) \ {t, z(i)}, (b) P(t, z(i)) contains a collider at v in
Gt , and (c) there exists an unblocked descendant path from v to some b ∈ b in Gt .
Now, we must have v ̸= ∅, since P(t, z(i)) is blocked in Gt when b is unconditioned on. Let vc ∈ v

be that node which is closest to t in the path P(t, z(i)), and let P(vc, b) be an unblocked descendant
path from v to some b ∈ b in Gt (there must be one from the definition of the set v). Consider the
path P(t, b) obtained after concatenating P(t, vc) ⊂ P(t, z(i)) and P(vc, b). By the definition of v
and the choice of vc, P(t, b) is unblocked in Gt since (a) P(t, vc) is unblocked in Gt , (b) P(vc, b) is
unblocked in Gt , and (c) there is no collider at vc in P(t, b). However, this contradicts t ⊥⊥d b in Gt
(which follows from Lemma 2(b)).
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Proof of Lemma 2(d) We prove this by contradiction. Assume there exists at least one unblocked
path between t and Fb in Gb when z(i) is conditioned on. Let P(t, Fb) denote the shortest of these
unblocked path. By definition of Gb, this path has to be of the form: t · · · , b ←− Fb for some b ∈ b.
Now, we have the following three cases:

(i) P(t, Fb) contains t −→ b: In this case, because a path is a sequence of distinct nodes,
P(t, Fb) has to be t −→ b ←− Fb. By assumption, P(t, Fb) is unblocked when z(i) is
conditioned on. Since there is a collider at b in P(t, Fb), there exists at least one unblocked
descendant path from b to z(i) when z(i) is conditioned on. LetP(b, z(i)) denote the shortest
of these paths from b to some z(i) ∈ z(i) in Gb. We note that this path also exists in G and is
of the form b −→ · · · −→ z(i)

Suppose we uncondition on z(i). Consider the path P(t, z(i)) ⊃ P(b, z(i)) between t and
z(i) of the form t −→ b −→ · · · −→ z(i) in G. This path remains unblocked even when z(i)

is unconditioned on as it does not have any colliders. This contradicts z(i) ⊥⊥d t (which
follows from (8)).

(ii) P(t, Fb) contains t −→ b1 for some b1 ∈ b such that b1 ̸= b: In this case, the path P(t, Fb)
has to be of the form t −→ b1 · · · b ←− Fb. Therefore, there exists at least one collider on
the path P(t, Fb). Let v ∈ P(t, Fb) \ {t, Fb} be the collider on the path P(t, Fb) that is
closest to b1. Consider the path P(t, v) ⊂ P(t, Fb). We note that this path also exists in G
and is of the form t −→ b1 −→ · · · −→ v .
By assumption, P(t, Fb) is unblocked when z(i) is conditioned on. Since there is a collider
at v in P(t, Fb), there exists at least one unblocked descendant path from v to z(i) when
z(i) is conditioned on. Let P(v , z(i)) denote the shortest of these paths from v to some
z(i) ∈ z(i) in Gb. We note that this path also exists in G and is of the form v −→ · · · −→ z(i).
Suppose we uncondition on z(i). Consider the path P(t, z(i)) between t and z(i) in G
obtained after concatenating P(t, v) ⊂ P(t, Fb) and P(v , z(i)). This path, of the form
t −→ b1 −→ · · · −→ v −→ · · · −→ z(i), remains unblocked even when z(i) is unconditioned
on as it does not have any colliders. This contradicts z(i) ⊥⊥d t (which follows from (8)).

(ii) P(t, Fb) does not contain t −→ b1 for every b1 ∈ b: By assumption, P(t, Fb) is unblocked
in Gb when z(i) is conditioned on. Therefore, if P(t, Fb) does not contain the edge t −→ b1
for any b1 ∈ b, there exists a path P(t, b) between t to b in G that is unblocked when
z(i) is conditioned on, and takes one of the following two forms: (a) t ←− · · · b or (b)
t L9999K · · · b. Then, it is easy to see that the path P(t, b) also remains unblocked in Gt while
z(i) is conditioned on. However, this contradicts t ⊥⊥d b|z(i) in Gt (which follows from
Lemma 3).

Proof of Lemma 2(e) We prove this by contradiction. Assume there exists at least one unblocked
path between y and some b ∈ b in Gb when t and z(i) are conditioned on. Let P(b, y) denote the
shortest of these unblocked path. Therefore, no b1 ∈ b, such that b1 ̸= b, is on the path P(b, y), i.e.,
b1 /∈ P(b, y). Further, P(b, y) takes one of the following two forms because all the edges going out
of b are removed in Gb: (a) b ←− · · · y or (b) b L9999K · · · y .

Suppose we condition on z(o) (while t and z(i) are still conditioned on). From (7) and Fact 1, we have
y ⊥⊥d b|t, z in Gb. Therefore, the path P(b, y) is blocked in Gb when z(o) is conditioned on (while t
and z(i) are still conditioned on). Let v be any node at which P(b, y) is blocked in Gb when z(o) is
conditioned on (while t and z(i) are still conditioned on). We must have that v ∈ P(b, y) \ {y , b}
and v ∈ z(o). Suppose we uncondition on z(o) (while t and z(i) are still conditioned on). Then, the
path P(b, v) ⊂ P(b, y) is unblocked in Gb.

We consider the following two scenarios depending on whether or not P(b, v) contains t. In both
scenarios, we show that there is an unblocked path between t and v in Gb when we condition on b

(while t and z(i) are still conditioned on).

(i) P(b, v) contains t: Consider the path P(t, v) ⊂ P(b, v) which is unblocked in Gb when
t and z(i) are conditioned on. Further, by the choice of P(b, y), no b1 ∈ b is on the path
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P(t, v). Therefore, the path P(t, v) in Gb remains unblocked when we condition on b

(while t and z(i) are still conditioned on).
(ii) P(b, v) does not contain t: Consider the path P(t, v) ⊃ P(b, v) (by including the extra

edge t → b) which takes one of the following two forms: (a) t −→ b ←− · · · v or (b)
t −→ b L9999K · · · v . Further, by the choice of P(b, y), no b1 ∈ b (b1 ̸= b) is on the path
P(t, v). Suppose we condition on b (while t and z(i) are still conditioned on). Then,
the path P(t, v) in Gb is unblocked because (a) the collider at b is unblocked when b is
conditioned on and (b) the path P(b, v) in Gb remains unblocked when b is conditioned on
(while t and z(i) are still conditioned on).

Now, suppose we uncondition on t (while b and z(i) are still conditioned on). We have the following
two scenarios depending on whether or not P(t, v) in Gb remains unblocked. In both scenarios, we
show that there is an unblocked path between t and v in Gb when we uncondition on t (while b and
z(i) are still conditioned on).

1. If P(t, v) remains unblocked: In this case, P(t, v) in Gb is an unblocked path between t

and v when z(i) and b are conditioned on, as desired.
2. If P(t, v) does not remain unblocked: In this case, it is the unconditioning on t (while b

and z(i) are still conditioned on) that blocks P(t, v). Now, we create a set w consisting of
all the nodes at which P(t, v) is blocked in Gb when t is unconditioned on (while b and z(i)

are still conditioned on). Define the set w such that for any w ∈ w, the following are true:
(a) w ∈ P(t, v) \ {t, v}, (b) P(t, v) contains a collider at w in Gb, and (c) there exists an
unblocked descendant path from w to t in Gb.
Now, we must have w ̸= ∅, since P(t, v) is blocked in Gb when t is unconditioned on
(while b and z(i) are still conditioned on). Let wc ∈ w be that node which is closest to v
in the path P(t, v), and let P(wc, t) be an unblocked descendant path from wc to t in Gb
(there must be one from the definition of the set w). Consider the path P ′(v , t) obtained
after concatenating P(v ,wc) ⊂ P(t, v) and P(wc, t). By the definition of w and the choice
of wc, P ′(v , t) is unblocked in Gb when t is unconditioned on (while b and z(i) are still
conditioned on) since (a) P(v ,wc) is unblocked, (b) P(wc, t) is unblocked, and (c) there
is no collider at wc in P ′(v , t). Therefore, we have an unblocked path between t and v in
Gb when z(i) and b are conditioned on, as desired.

To conclude the proof, we note that the existence of an unblocked path between t and v ∈ z(o) in Gb
when z(i) and b are conditioned on contradicts z(o) ⊥⊥d t|b, z(i) in Gb (which follows from (8) and
Fact 1).

F.1 Proof of Lemma 3

First, we claim t ⊥⊥d b|z in Gt . We assume this claim and proceed to prove the statement in the
Lemma by contradiction. Assume there exists at least one unblocked path between t and some b ∈ b
in Gt when z(i) is conditioned on. Let P(t, b) denote the shortest of these unblocked path. Therefore,
no b1 ∈ b such that b1 ̸= b is not on the path P(t, b), i.e., b1 /∈ P(t, b).
Suppose we condition on z(o) (while z(i) is still conditioned on). From the claim, P(t, b) is blocked
in Gt when z(o) is conditioned on (while z(i) is still conditioned on). Let v be any node at which
P(t, b) is blocked in Gt when z(o) is conditioned on (while z(i) is still conditioned on). We must
have that v ∈ P(t, b) \ {t, b} and v ∈ z(o). Then, the path P(t, v) ⊂ P(t, b) is unblocked in Gt
when z(o) is unconditioned on (while z(i) is still conditioned on). Further, no b ∈ b is on the path
P(t, v). As a result, the path P(t, v) remains unblocked when b is conditioned on (while z(i) is still
conditioned on). However, this contradicts t ⊥⊥d z(o)|b, z(i) in Gt (which follows from (8)(ii) and
Fact 1).

Proof of Claim - t ⊥⊥d b|z in Gt: It remains to prove the claim t ⊥⊥d b|z in Gt . We prove this by
contradiction. Assume there exists at least one unblocked path between t and some b ∈ b in Gt when
z is conditioned on. Let P(t, b) denote any such unblocked path. This path takes one of the following
two forms: (a) t ←− · · · b or (b) t L9999K · · · b because all edges going out of t are removed in Gt .
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Suppose we condition on t (while z is still conditioned on). The path P(t, b) remains unblocked
because t /∈ P(t, b) (a path is a sequence of distinct nodes). Then, the path P(y , b) ⊃ P(t, b)
of the form (a) y L9999K t ←− · · · b or (b) y L9999K t L9999K · · · b is unblocked because the additional
conditioning on t (while z is still conditioned on) unblocks the collider at t. However, this contradicts
b ⊥⊥d y |t, z in Gt (which follows from (7) and Fact 1).

G Experimental Results

In this section, we provide additional experimental results. First, we provide more details regarding
the numerical example in Section 3.1. Next, we demonstrate the applicability of our method on a
class of graphs slightly different from the one in Section 4.1. Then, we provide the 6 random graphs
from Section 4.2 as well as ATE estimation results on specific choices of SMCMs including the one
in Figure 2. Finally, we provide histograms analogous to Figure 6 for the second choice of b on
German credit dataset as well as details about our analysis with Adult dataset.

G.1 Numerical example in Section 3.1

The observed variables for this example also follow the structural equation model in (11). Also, to
generate the true ATE, we intervene on the generation model in (11) by setting t = 0 and t = 1.

G.2 Applicability to a class of random graphs

As in Section 4.1, we create a class of random SMCMs, sample 100 SMCMs from this class, and
check if (7) and (8) hold by checking for corresponding d-separations in the SMCMs. The class of
random graphs considered here is analogous to the class of random graphs considered in Section 4.1
expect for the choice of t. Here, we choose any variable that is ancestor of y but not its parent as
t. This is in contrast to Section 4.1 where we choose any variable that is ancestor of y but not its
parent or grandparent as t. We compare the success rate of the same two approaches: (i) exhaustive
search for z satisfying (7) and (8) and (ii) search for a z of size at-most 5 satisfying (7) and (8). We
provide the number of successes of these approaches as a tuple in Table 2 for various p, d, and q. As
before, we see that the two approaches have comparable performances and the IDP algorithm gives 0
successes across various p, d, and q even though it is supplied with the true PAG. Also, as expected
the number of successes for this class of graphs is much lower than the class considered in Section
4.1.

Table 2: Number of successes out of 100 random graphs for our methods shown as a tuple. The first
method searches a z exhaustively and the second method searches a z with size at-most 5.

p = 10 p = 15
d = 2 d = 3 d = 4 d = 2 d = 3 d = 4

q = 0.0 (6, 6) (3, 3) (1, 1) (11, 11) (2, 2) (1, 1)
q = 0.5 (3, 3) (0, 0) (0, 0) (5, 5) (2, 2) (1, 1)
q = 1.0 (1, 1) (0, 0) (0, 0) (1, 1) (0, 0) (0, 0)

G.3 ATE estimation

We also conduct ATE estimation experiments on four specific SMCMs. The first SMCM is the graph
Gtoy in Figure 2. The remaining graphs, named Gtoyi , i ∈ {1, 2, 3}, are shown in Figure 8, and are
obtained by adding additional edges and modifying Gtoy . These SMCMs are designed in a way such
that there exists z = (z(i), z(o)) satisfying the conditional independence statements in Theorem 3.2.

We follow a data generation procedure similar to the one in Section 4.2. In contrast, we show the
performance of our approach for a fixed n but different thresholds of p-value pv. We average the
ATE error over 50 runs where in each run we set n = 50000. As we see in Figure 9, both the ATE
estimates returned by Algorithm 1 are far superior compared to the naive front-door adjustment using
b.
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Figure 8: The causal graphs used to further validate our theoretical results. These are obtained by
adding additional edges (shown in red) to Gtoy in Figure 2. We denote these graphs (from left to
right) by Gtoy1 , Gtoy2 , and Gtoy3 , respectively.
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Figure 9: Performance of Algorithm 1 for different p-value thresholds pv on Gtoy in Figure 2 on
top left, on Gtoy1 from Figure 8 on top right, on Gtoy2 in Figure 8 on bottom left, and on Gtoy3 from
Figure 8 on bottom right

In Figure 11, we provide the 6 random SMCMs used in Section 4.2. As mentioned in Section 4.1,
we choose the last variable in the causal ordering as y and a variable that is ancestor of y but not its
parent or grandparent as t. We also show the corresponding z = (z(i), z(o)) satisfying (7) and (8).

G.4 German Credit dataset

As in Section 4.3, we assess the conditional independence associated with the selected z for the
choice of b={# of people financially dependent on the applicant, applicant’s savings}, Algorithm 1
results in z(i)={purpose for which the credit was needed, applicant’s checking account status with
the bank} via 100 random bootstraps. We show the corresponding p-values for these bootstraps in a
histogram in Figure 10 below. As expected, we observe the p-values to be spread out.
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Figure 10: Histograms of p-values of the conditional independencies in (9) and (10) over 100
bootstrap runs for b= {# of people financially dependent on the applicant, applicant’s savings},
Algorithm 1 results in z(i)={purpose for which the credit was needed, applicant’s checking account
status with the bank}.

G.5 Adult dataset

The Adult dataset [Kohavi and Becker, 1996] is used for income analysis where the goal is to predict
whether an individual’s income is more than $50,000 using 14 demographic and socio-economic
features. The sensitive attribute t is the individual’s sex, either male or female. Further, the categorical
attributes are one-hot encoded. As with German Credit dataset, we apply Algorithm 1 with nr = 100
and pv = 0.1 where we search for a set z = (z(o), z(i)) of size at most 3 under the following
two assumptions on the set of all children b of t: (1) b = {# individual’s relationship status
(which includes wife/husband)} and (2) b = {# individual’s relationship status (which includes
wife/husband), individual’s occupation}. In either case, Algorithm 1 was unable to find a suitable z
satisfying b ⊥p y |z, t. This suggests that in this dataset, there may not be any non-child descendants
of the sensitive attribute, which is required for our criterion to hold.

G.6 Licenses

In this work, we used a workstation with an AMD Ryzen Threadripper 3990X 64-Core Processor
(128 threads in total) with 256 GB RAM and 2x Nvidia RTX 3090 GPUs. However, our simulations
only used the CPU resources of the workstation.

We mainly relied on the following Python repositories — (a) networkx (https://networkx.org),
(b) causal-learn (https://causal-learn.readthedocs.io/en/latest/), (c) RCoT [Strobl
et al., 2019b] and (d) ridgeCV, (https://github.com/scikit-learn/scikit-learn/tree/
15a949460/sklearn/linear_model/_ridge.py). We did not modify any of the code under
licenses; we only installed these repositories as packages.

In addition to these, we used two public datasets (a) German Credit dataset (https://archive.
ics.uci.edu/ml/datasets/statlog+(german+credit+data)) and (b) Adult dataset (https:
//archive.ics.uci.edu/ml/datasets/adult). These datasets are commonly used benchmark
datasets for causal fairness, which is why we chose them for our comparisons.
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Figure 11: The SMCMs used in Section 4.2 to compare Algorithm 1 with the Baseline that uses b
for front-door adjustment. These are the 6 out of the 100 random graphs in Section 4.1 for p = 10,
d = 2, and q = 1.0 where our approach was successful indicating existence of z = (z(i), z(o)) such
that the conditional independence statements in Theorem 3.2 hold.
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