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The Supplementary Materials include additional technical details and extra experimental results that
were not included in the main submission due to the lack of space. All results were obtained with
exactly the same methodology as the one described in the main manuscript. We first provide more
implementation details of our LART networks (Sec. 1).

Next, we provide more details of processing datasets (Sec. 2), followed by detailed training settings
in Sec. 3. Finally, we present more experimental results in Sec. 4.

1 LART Network Architecture

Our LART framework consists of two main parts: a 3D mesh feature extractor, and a LART Decoder
for 3D generation. We first introduce the network structures of each component and then give the
architectural parameters of the full model.

3D Mesh Feature Extractor. The architecture of the feature extractor is presented in Table 1. The
feature extractors are used to extract a latent embedding of motions from the given mesh sequences
for further mesh generation with the following decoders. Note that in order to fit our model to a
flexible vertex number of mesh models (not only 6,890 of SMPL [2] templates, but also MG-cloth [1]
of more than 27,000 vertices), we use the geometry-adaptive feature extractor. It can flexibly process
meshes with different sizes into the desired one. Basically, it works as a normal 3D feature extractor
that encodes the input meshes with vertex number N1 into a latent vector with C size. The difference
is that the latent vector will be expanded up based on the target meshes along the topology dimension
(vertex number N2), resulting in a latent vector with C ×N2. In this way, we align the sizes between
the source mesh and target mesh as the same and make the learning of the correspondence possible.
Note that, although our LART encoder can handle large-size meshes with different sizes than driving
motions, using a Geometry Adaptive 3D Feature Encoder might lead to degenerated results if the size
gap between target and source meshes is too big.

LART Decoder. The network architecture of a LART decoder is presented in Table 2. As many
previous works discussed [10, 5, 11], the MLP blocks in the Vanilla Transformer are not suitable for
preserving the detailed geometry of the meshes, thus we customize the MLP blocks into an instance
normalization (InsNorm) block inspired by [15] presented in Table 3. The LART decoder is used to
generate the animated sequence of the target mesh with given motions with full geometric details
preserved.

LART with VAE. To better gain the latent space learning ability of LART, we couple the LART with
VAE [7] for the task of temporal interpolation and unseen motion transfer. As VAE provides a partial
remedy by modeling a distributional prior on the data via a parametrized density on the latent space.
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This induces additional regularization to construct the linear latent space. Similar to LIMP [6], we
extend the LART to the VAE version by revising the output of the feature extractor. Specifically, we
split the latent code into half/half to predict both the mean and variance of the multivariate Gaussian
distribution from which the latent code is sampled. An extra Kullback Leibler Divergence loss is then
added to the training with its weight of 1.0. For the accurate motion transfer via the seen motions,
VAE is not applied.

Table 1: Detailed architectural parameters for the 3D mesh feature extractor. “B” stands for batch
size and “N” stands for vertex number. The first parameter of Conv1D is the kernel size, the second
is the stride size. “T” stands for the frame number. The same as below.

Index Inputs Operation Output Shape

(1) - Input mesh B×T×3×N
(2) (1) Conv1D (1 × 1, 1) B×T×64×N
(3) (2) Instance Norm, Relu B×T×64×N
(4) (3) Conv1D (1 × 1, 1) B×T×128×N
(5) (4) Instance Norm, Relu B×T×128×N
(6) (5) Conv1D (1 × 1, 1) B×T×1024×N
(7) (6) Instance Norm, Relu B×T×1024×N
(8) (7) Max pooling and tiling (for targets with different sizes) B×T×1024×N’
(9) (8) Positional Embedding B×T×1024×N

Finally, we present the full model architecture in Table 4. The embedded motion features will be fed
into LART decoders together with the target mesh and sequential meshes will be generated.

2 Dataset Settings

Training Sets. We use the DFAUST dataset [4] to prepare the training dataset for quantitative
evaluation. It has 129 motions from ten subjects, and each motion lasts for hundreds of frames. One
motion (driving sequence) and one appearance (target mesh) will be randomly combined as a pair for
training. When training, each time we sample 3 continuous frames (with a random interval between
1-20 frames) of a motion (60 frames) as a driving sequence inputs and feed them to the networks with
a randomly paired target mesh. The driving sequences are split into two settings, i.e., the seen driving
sequences (80 motions from the first 6 subjects of DFAUST) and the unseen driving sequences (20
motions from the rest 4 subjects of DFAUST). Those 20 motions are only available for evaluation.

Table 2: Detailed architectural parameters for LART decoder.
Index Inputs Operation Output Shape

(1) - Identity Embedding B×T×C×N
(2) - Pose Embedding B×T×C×N
(3) (1) conv1d (1 × 1, 1) B×T×C×N
(4) (2) conv1d (1 × 1, 1) B×T×C×N
(5) (3) Reshape B×T×N×C
(6) (5)(4) Batch Matrix Product B×T×N×N
(7) (6) Softmax B×T×N×N
(8) (7) Reshape B×T×N×N
(9) (2) conv1d (1 × 1, 1) B×T×C×N

(10) (2)(8) Batch Matrix Product B×T×C×N
(11) (10) Parameter gamma B×T×C×N
(12) (11)(2) Add B×T×C×N
(13) - Pose Mesh B×T×3×N
(14) (12)(13) SPAdaIN B×T×C×N
(15) (14) conv1d(1 × 1, 1), Relu B×T×C×N
(16) (14)(15) SPAdaIN B×T×C×N
(17) (16) conv1d(1 × 1, 1), Relu B×T×C×N
(18) (12)(13) SPAdaIN B×T×C×N
(19) (18) conv1d(1 × 1, 1), Relu B×T×C×N
(20) (17)(19) Add B×T×C×N
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Table 3: Detailed architectural parameters for SPAdaIN block.
Index Inputs Operation Output Shape

(1) - Driving Motion Embedding B×T×C×N
(2) (1) Instance Norm B×T×C×N
(3) - Target Mesh B×3×N
(4) (3) Conv1D (1 × 1, 1) B×T×C×N
(5) (3) Conv1D (1 × 1, 1) B×T×C×N
(6) (4)(2) Multiply B×T×C×N
(7) (6)(5) Add B×T×C×N

Table 4: Detailed architectural parameters for the full model.
Index Inputs Operation Output Shape

(1) - Target Mesh B×3×N
(2) - Driving Motion Mesh B×T×3×N
(3) (2) Feature Extractor B×T×1024×N
(4) (3) Conv1D (1 × 1, 1) B×T×1024×N
(5) (4)(1) LART decoder 1 B×T×1024×N
(6) (5) Conv1D (1 × 1, 1) B×T×512×N
(7) (6)(1) LART decoder 2 B×T×512×N
(8) (7) Conv1D (1 × 1, 1) B×T×512×N
(9) (8)(1) LART decoder 3 B×T×512×N

(10) (9) Conv1D (1 × 1, 1) B×T×256×N
(11) (10)(1) LART decoder 4 B×T×256×N
(13) (12) Conv1D (1 × 1, 1) B×T×3×N
(14) (13) Tanh B×T×3×N

For the DFAUST dataset, we use those 20 motions mentioned above for testing. Since there are more
than 3e11 potential training pairs (target meshes: 80× 60 × 16 with driving sequential meshes: 80×
60 × 16× 57), which is way larger than our computational capacity to cover the whole space, we
randomly select 8,000 training pairs at each epoch during the training.

We use the AMASS dataset [8] to prepare the training dataset for qualitative evaluation (to show more
diversity of the motions). AMASS contains 15 different sub-datasets (including SMPL-registered
DFAUST), spanning over 300 subjects with more than 1,1000 motions. Here we select some
representative motions from AMASS (in total, 188 motions) to train the model. The subsets include
ACCAD, DFAUST, MoSh, and PosePrior.

Target Meshes. We randomly generate 16 mesh shapes for training and another 8 meshes for testing.
We use the SMPL model to generate the shape by randomly sampling from the shape parameter
spaces. The ground truth is obtained by using the SMPL model [2] to synthesize the target animated
sequence with the shape and pose parameters provided by the dataset. The mesh vertices are shuffled
randomly and the generated faces are correspondingly shuffled to construct the meshes.

The Driving Sequences for Quantitative Evaluation. We split motions into two settings, i.e., the
seen driving sequences (80 motions selected from the first 6 subjects of DFAUST) and the unseen
driving sequences (20 motions selected from the rest 4 subjects of DFAUST). Those 20 motions are
only available for evaluation.

Inference. We employ the model trained from DFAUST and AMASS directly to drive the target
meshes from other datasets, e.g., FAUST [3] and MG-dataset [1]. As mentioned in the network
architecture section, to process the large vertex number (more than 27,000) from the MG-cloth dataset,
we use geometry-adaptive positional embeddings. For the model trained to evaluate on the DFAUST
dataset (with a typical SMPL template), similar to NPT and 3D-CoreNet, we use the original features
without adaptive embedding.

Other Domains. At last, we extend the LART to other domains with domain-specific learning. We
verify the animal domain on the Animal dataset [14] and the hand domain on the MANO dataset
[12]. The Animal dataset provides frame-level correspondences of the motions of two animals. Thus,
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Table 5: Licenses of the assets used in the paper.
Data License websites

SMPL [2] https://smpl.is.tue.mpg.de/modellicense.html
MANO [12] https://mano.is.tue.mpg.de/license.html

MG-Dataset [1] https://github.com/bharat-b7/MultiGarmentNetwork
AMASS [8] https://amass.is.tue.mpg.de/license.html
DFAUST [4] https://dfaust.is.tue.mpg.de/license.html
FAUST [3] http://faust.is.tue.mpg.de/data_license
Animal [14] https://people.csail.mit.edu/sumner/research/deftransfer/

we prepare the dataset by pairing the animal templates directly as ground truth. Since the camel
mesh has a different vertex number 21,887 than the elephant mesh 42,321, we use geometry-adaptive
embeddings. The inputs are meshes with 21,887 vertices, and the outputs are meshes with 42,321
vertices. For hand meshes from the MANO dataset, the input and output meshes are all with 778
vertices.

Driving Sequence Canonicalization. To unify the sequence length and world coordinates, we
canonicalize DFAUST and AMASS datasets, as follows: First, we downsample the long sequences of
original motions from 120fps to 12fps and then trim them into 60-frame (2.5-second) subsequences.
Second, we unify the world coordinates as in [15]. For each subsequence, we reset the world
coordinates by shifting all the input meshes to the center and conducting the motion transfer to the
target mesh, then compensate for the global translation to each frame after the motion transfer.

Licenses of the Assets. The licenses of the assets used in this paper are shown in Table 5. Their
licenses are given on the websites.

3 Experimental Implementation

Our algorithm is implemented in PyTorch [9]. All the experiments are carried out on a PC with a
single NVIDIA Tesla V100, 32GB. We train our networks for 200 epochs with a learning rate of
0.00005 and the Adam optimizer. The weight settings in the paper are λrec=1, λedge=0.0005. The
weight settings directly follow the previous work [15]. For the weight λmetric, we follow the setting
in LIMP [6] and set it as 1.0. The batch size is fixed as 2 for all the settings and the frame number is 3.
Training time is around 80-90 hours. Note that a batch size of 2 is only available with 32GB memory
GPUs to run the LART. For GPUs with 12 or 24GB memory, the batch size should be adjusted to 1.

Average Inference Times. In this section, we compare the average inference times for every pose
transfer of different methods in the same experimental settings. As shown in Table 6, for [15], they
do not learn the correspondence between meshes, so they have the shortest inference time, but the
generation performance is degraded. 3D-CoreNet [13] achieves notable improvements in generating
high-quality results. LART also learns the correspondence but in an implicit way, resulting in a faster
processing speed.

4 Experiments Results

In this section, we perform an extra experimental evaluation of the proposed LART, including extra
visualized results and an ablation study.

4.1 Visualized Results

We use LART to achieve motion transfer with driving motion sequences of different noisy levels, see
Figure 1. The noisy sequences are obtained by adding Gaussian noise to every vertex (scale as 0.1,
0.01 and 0.005, mean as 0.0). We can see that when it comes to a high noisy level (0.1), the pose is
not identical to the original one. But the output sequence still shows acceptable visual results.
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Figure 1: Qualitatively comparison of driving motions with different noises as inputs.

4.2 Ablation Study

We conducted the ablation study to verify the configuration of the designed architecture. The ablation
study is evaluated on the part of the DFAUST dataset.

Inference speed. We first compare the inference speed of LART with other methods in Table 6. The
time is obtained by taking the per-frame processing duration.

Cross-Attention Scheme. We then verify different attention scheme in Table 7, by setting different
latent codes into q,k,v.

Positional Embedding Scheme. Besides, we verify different positional embedding schemes as
below. As we see in Table 8, the embedding will steadily bring gains to the performance. With the
fixed embedding method, the result is the best (0.00067) but it cannot be adapted to a flexible target
mesh size. Meanwhile, adaptive embedding is a good trade-off between performance and adaption.

Correspondence learning. Lastly, we demonstrate the quantitative evaluation by comparing the
reconstruction error of our work LART with other methods to showcase correspondence learning
ability. To do so, we use one subject, 50027 from the DFAUST dataset, to conduct reconstruction
and evaluate the correspondence learning ability via point-wise comparison with PMD. Results are
shown in Table 9, demonstrating the correspondence learning ability of our LART.

Table 6: Average inference times of different methods.
Method NPT [15] 3D-CoreNet [13] LART (Ours)

Time 0.0068s 0.0131s 0.0118s

5



Table 7: Difference cross-attention scheme.
Method q k v Loss

w/o attention - - - 0.00224
self-attention Zpose Zpose Zpose 0.00185
cross-attention Zid Zpose Zpose 0.00145
cross-attention Zpose Zid Zid 0.00084

Table 8: Difference embedding scheme.
Method Target mesh size Loss

w/o embedding Flexible 0.00317
adaptive embedding Flexible 0.00102
fixed embedding Fixed 0.00067
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