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Abstract

One of the goals of causal inference is to generalize from past experiments and
observational data to novel conditions. While it is in principle possible to eventually
learn a mapping from a novel experimental condition to an outcome of interest,
provided a sufficient variety of experiments is available in the training data, coping
with a large combinatorial space of possible interventions is hard. Under a typical
sparse experimental design, this mapping is ill-posed without relying on heavy
regularization or prior distributions. Such assumptions may or may not be reliable,
and can be hard to defend or test. In this paper, we take a close look at how
to warrant a leap from past experiments to novel conditions based on minimal
assumptions about the factorization of the distribution of the manipulated system,
communicated in the well-understood language of factor graph models. A pos-
tulated interventional factor model (IFM) may not always be informative, but it
conveniently abstracts away a need for explicitly modeling unmeasured confound-
ing and feedback mechanisms, leading to directly testable claims. Given an IFM
and datasets from a collection of experimental regimes, we derive conditions for
identifiability of the expected outcomes of new regimes never observed in these
training data. We implement our framework using several efficient algorithms, and
apply them on a range of semi-synthetic experiments.

1 Introduction

Causal inference is a fundamental problem in many sciences, such as clinical medicine [8, 73, 69]
and molecular biology [66, 41, 29]. For example, causal inference can be used to identify the effects
of chemical compounds on cell types [73] or determine the underlying mechanisms of disease [52].

One particular challenge in causal inference is generalization — the ability to extrapolate knowledge
gained from past experiments and observational data to previously unseen scenarios. Consider a
laboratory that has performed several gene knockouts and recorded subsequent outcomes. Do they
have sufficient information to predict how the system will behave under some new combination(s) of
knockouts? Conducting all possible experiments in this setting would be prohibitively expensive and
time consuming. A supervised learning method could, in principle, map a vector representation of the
design to outcome variables of interest. However, past experimental conditions may be too sparsely
distributed in the set of all possible assignments, and such a direct supervised mapping would require
leaps of faith about how assignment decisions interact with the outcome, even if under the guise of
formal assumptions such as linearity.

In this paper, we propose a novel approach to the task of intervention generalization, i.e., predicting
the effect of unseen treatment regimes. We rely on little more than a postulated factorization of the
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Figure 1: (a) A dynamic process where only the final step is (simultaneously) observed. Intervention
variables are represented as white squares, random variables as circles, and dashed lines indicate
hidden variables. (b) A bird’s eye unstructured view of the sampling process, where an intervention
vector dictates � the distribution obtained at an agreed-upon time frame T .

distribution describing how intervention variables � interact with a random process X , and a possible
target outcome Y .

Related setups appear in the causal modeling literature on soft interventions [18], including its
use in methods such as causal bandits [45] and causal Bayesian optimization [4] (see Section 6).
However, these methods rely on directed acyclic graphs (DAGs), which may be hard to justify in many
applications. Moreover, in the realistic situation where the target of a real-world intervention is a set

of variables [26] and not only the “child” variable within a DAG factor, the parent-child distinction
is blurred and previous identification results do not apply. Without claiming that our proposal is
appropriate for every application, we suggest the following take on intervention generalization:
model a causal structure as a set of soft constraints, together with their putative (arbitrary but

local) modifications by external actions. Our interventional factor model (IFM) leads to provable
intervention generalization via a factor graph decomposition which, when informative, can be tested
without further assumptions beyond basic relations of conditional independence. IFMs are fully
agnostic with regards to cycles or hidden variables, in the spirit of Dawid [23]’s decision-theoretic
approach to causal inference, where the key ingredient boils down to statements of conditional
independence among random and intervention variables.

Our primary contributions are as follows. (1) We introduce the interventional factor model (IFM),
which aims to solve intervention generalization problems using only claims about which interventions
interact with which observable random variables. (2) We establish necessary and sufficient conditions
for the identifiability of treatment effects within the IFM framework. (3) We adapt existing results
from conformal inference to our setting, providing distribution-free predictive intervals for identifiable
causal effects with guaranteed finite sample coverage. (4) We implement our model using efficient
algorithms, and apply them to a range of semi-synthetic experiments.

2 Problem Statement

Data assumptions. Fig. 1(a) illustrates a generative process common to many applications and
particularly suitable to our framework: a perturbation, here represented by a set of interventional
variables �, is applied and a dynamic feedback loop takes place. Often in these applications (e.g,
experiments in cell biology [66] and social science [59]), the sampling of this process is highly
restrictive, and the time-resolution may boil down to a single snapshot, as illustrated by Fig. 1(b).
We assume that data is given as samples of a random vector X collected cross-sectionally at a
well-defined time-point (not necessarily at equilibrium) under a well-defined intervention vector �.
The importance of establishing a clear sampling time in the context of graphical causal models is
discussed by [21]. The process illustrated in Fig. 1(a) may suggest no particular Markovian structure
at the time the snapshot is taken. However, in practice, it is possible to model the black-box sampling
process represented in Fig. 1(b) in terms of an energy function representing soft constraints [48].
These could be the result of particular equilibrium processes [47], including deterministic differential
equations [40], or empirically-verifiable approximations [59].

The role of a causal model is to describe how intervention � locally changes the energy function. In
the context of causal DAG models, sometimes this takes the guise of “soft interventions” and other
variations that can be called “interventions on structure” [43, 55] or edge interventions [70]. Changes
of structural coefficients in possibly cyclic models have also been considered [37]. The model family
we propose takes this to the most abstract level, modeling energy functions via recombinations of

2



a.

X1 X2 X3

�1 �2 �3

b.

X1 X2 X3

f1 f2 f3

�1 �2 �3
c.

X1 X2 X3

�1 �2 �3

Figure 2: Examples of distinct causal graphical models, expressing different factorization assump-
tions. Random variables are represented as circles, intervention variables as white squares, and factors
as black squares. (a) A directed acyclic graph (DAG) with explicit intervention variables. (b) The
corresponding interventional factor model (IFM) for (a). (c) A Markov random field (MRF) with
interventional variables, thus, forming a chain graph.

local interventional effects without acyclicity constraints, as such constraints should not be taken for
granted [22] and are at best a crude approximation for some problems at hand (e.g., [66]).

Background and notation. The notion of an intervention variable in causal inference encodes
an action that modifies the distribution of a system of random variables. This notion is sometimes
brought up explicitly in graphical formulations of causal models [60, 72, 23]. To formalize it,
let � denote a vector of intervention variables (also known as regime indicators), with each �i

taking values in a finite set {0, 1, 2, . . . ,@i � 1}. A fully specified vector of intervention variables
characterizes a regime or an environment (we use these terms interchangeably). Graphically, we
represent intervention variables using white squares and random variables using circles (Fig. 2). We
use subscripts to index individual (random or interventional) variables and superscripts to index
regimes. For instance, Xj

i denotes the random variable Xi under regime �j , while �j
i denotes the ith

intervention variable of the jth environment. (Note that the order of the variables is arbitrary.) We
occasionally require parenthetical superscripts to index samples, so x

j(k)
i denotes the kth sample of

Xi under regime �
j .

For causal DAGs, Pearl’s do operator [60] denotes whether a particular random variable Xi is
manipulated to have a given value (regardless of the values of its parents). As an example, consider
a binary variable Xi 2 {True, False}. We can use a (categorical) intervention variable �i to
index the two “do-interventional” regimes: �i = 1 denotes “do(Xi = True)”, and �i = 2 denotes
“do(Xi = False).” We reserve �i = 0 to denote the choice of “no manipulation”, also known as
the “observational” regime. However, one need not think of this �i = 0 setting as fundamentally
different than the others; indeed, it is convenient to treat all regimes as choices of data generating
process.4 Moreover, there is no need for intervention variables to correspond to deterministic settings
of random variables; they may in principle describe any well-defined change in distribution, such as
stochastic or conditional interventions [23, 17]. As a stochastic example, �i = 3 could correspond to
randomly choosing do(Xi = True) 30% of the time and do(Xi = False) 70% of the time. As a
conditional example, �i = 4 could mean “if parents of Xi satisfy a given condition, do(Xi = True),
otherwise do nothing”. When Xi can take more values, the options for interventional regimes become
even more varied. The main point to remember is that �i = 1,�i = 2, . . . should be treated as distinct
categorical options, and we reserve �i = 0 to denote the “observational” case of “no manipulation”.

As discussed in the previous section, the probability density/mass function p(x;�) can be the result
of a feedback process that does not naturally fit a DAG representation. Indeed, a growing literature
in causal inference carefully considers how DAGs may give rise to equilibrium distributions (e.g.,
[47, 12, 11]), or marginals of continuous-time processes (e.g., [57]). However, they come with
considerable added complexity of assumptions to ensure identifiability. In this work, we abstract
away all low-level details about how an equilibrium distribution comes to be, and instead require
solely a model for how a distribution p(x) factorizes as a function of �. These assumptions are
naturally formulated as a factor graph model [44] augmented with intervention variables, which we
call an interventional factor model (IFM).

4In general, there can be infinitely many choices for interventional settings. However, for the identifiability
results in the next section, we cover the finite case only, as it removes the need for smoothness assumptions on
the effect of intervention levels.
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Problem statement. We are given a space ⌃ of possible values for an intervention vector � of
dimension d, making |⌃| 

Qd
i=1 @i. For a range of training regimes ⌃train ⇢ ⌃, we are given col-

lection of datasets D1
,D2

, . . . ,Dt, with dataset Dj collected under environment/regime �j 2 ⌃train.
The goal is to learn p(x;�?), and µ(�?) := E[Y ;�?], for all test regimes �? 2 ⌃test = ⌃\⌃train.

In each training dataset, we measure a sample of post-treatment i.i.d. draws of some m-dimensional
random vector X (possibly with m 6= d, as there is no reason to always assume a one-to-one mapping
between intervention and random variables), and optionally an extra outcome variable Y . The
data generating process p(x;�j) is unknown. We assume Y ??� | X for simplicity5, which holds
automatically in cases where Y is a known deterministic summary of X . We are also given a
factorization of p(x;�),

p(x;�) /
lY

k=1

fk(xSk ;�Fk), 8� 2 ⌃, (1)

where Sk ✓ [m] and Fk ✓ [d] define the causal structure. The (positive) functions fk(·; ·) are
unknown. The model p(y | x) can also be unknown, depending on the problem.

As illustrated in Figs. 2(a-b), such an intervention factor model (IFM) can also encode (a re-
laxation of) the structural constraints implied by DAG assumptions. In particular, note the
one-to-one correspondence between the DAG factorization in Fig. 2(a) and the factors in the IFM
in Fig. 2(b): f1(x1;�1) := p(x1;�1), f2(x1, x2;�2) := p(x2 | x1;�2), and f3(x1, x2, x3;�3) :=
p(x3 | x1, x2;�3). This explicitly represents that the conditional distribution of x1 given all other
variables fully factorizes in �: i.e., p(x1 | x2, x3;�) / f1(x1;�1)f2(x1, x2;�2)f3(x1, x2, x3;�3).
Such factorization is not enforced by usual parameterizations of Markov random fields (i.e., graphical
models with only undirected edges) or chain graphs (graphical models with acyclic directed edges
and undirected edges) [25] such as the example shown in Fig. 2(c).

Scope and limitations. The factorization in Eq. (1) may come from different sources, e.g., from
knowledge about physical connections (it is typically the case that one is able to postulate which
variables are directly or only indirectly affected by an intervention), or as the result of structure
learning methods (e.g., [1]). For structure learning, faithfulness-like assumptions [72] are required, as
conditional independencies discovered under configurations ⌃train can only be extrapolated to ⌃test

by assuming that independencies observed over particular values of � can be generalized across all
regimes. We do not commit to any particular structure learning technique, and refer to the literature
on eliciting and learning graphical structure for a variety of methods [42]. In Appendix A, we provide
a general guide on structure elicitation and learning, and a primer on causal modeling and reasoning
based solely on abstract conditional independence statements, without a priori commitment to a
particular family of graphical models [23].

Even then, the structural knowledge expressed by the factorization in Eq. (1) may be uninformative.
Depending on the nature of ⌃train and ⌃test, it may be the case that we cannot generalize from training
to test environments, and p(x;�?) is unidentifiable for all �? 2 ⌃test. However, all methods for causal
inference rely on a trade-off between assumptions and informativeness. For example, unmeasured
confounding may imply no independence constraints, but modeling unmeasured confounding is
challenging, even more so for equilibrium data without observable dynamics. If we can get away with
pure factorization constraints implied by an array of experimental conditions and domain knowledge,
we should embrace this opportunity. This is what is done, for instance, in the literature on causal
bandits and causal Bayesian optimization [45, 49, 4, 75], which leverage similar assumptions to
decide what to do next. However, we are not proposing a method for bandits, Bayesian optimization,
or active learning. The task of estimating p(x;�?) and µ(�?) for a novel regime is relevant in itself.

3 Interventional Factor Model: Identification

We define our identification problem as follows: given the population distributions P(⌃train) :=
{p(x;�1), p(x;�2), . . . , p(x;�t)} for the training regimes �j 2 ⌃train, and knowledge of the fac-
torization assumptions as given by Eq. (1), can we identify a given p(x;�?) corresponding to some
unobserved test regime �

? 2 ⌃test?

5Otherwise, we can just define Y := Xm, and use the identification results in Section 3 to check whether Y
can be predicted from �.
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Figure 3: (a) An interventional factor model (IFM) with three (binary) intervention variables. (b) The
junction tree of the �-graph associated with the IFM in (a): intervention variables are arranged as a
hypergraph, where the hypervertices represent the sets of intervention variables that share a factor and
the edge represents the overlap between the two sets of intervention variables. (c) A table displaying
the assignments for regimes in ⌃train. From this ⌃train and the assumptions in (a), it is possible to
generalize to the two missing regimes, i.e., �1 = �2 = �3 = 1, and �1 = �3 = 1, �2 = 0.

This identification problem is not analyzed in setups such as causal Bayesian optimization [4, 75],
which build on DAGs with interventions targeting single variables. Without this analysis, it is unclear
to what extent the learning might be attributed to artifacts due to the choice of prior distribution or
regularization, particularly for a sparsely populated ⌃train. As an extreme case that is not uncommon
in practice, if we have binary intervention variables and never observe more than one �i set to
1 within the same experiment, it is unclear why we should expect a non-linear model to provide
information about pairs of assignments �i = �j = 1 using an off-the-shelf prior or regularizer.
Although eventually a dense enough process of exploration will enrich the database of experiments,
this process may be slow and less suitable to situations where the goal is not just to maximize some
expected reward but to provide a more extensive picture of the dose-response relationships in a
system. While the smoothness of p(x;�) as a function of � is a relevant domain-specific information,
it complicates identifiability criteria without further assumptions. In what follows, we assume no
smoothness conditions, meaning that for some pair p(x;�a), p(x;�b), with a 6= b, these probability
density/mass functions are allowed to be arbitrarily different. Such setting is particularly suitable for
situations where interventions do take categorical levels, with limited to no magnitude information.

Identification: preliminaries. Before introducing the main result of this section, let us start by
considering the toy example displayed in Fig. 3: Fig. 3(a) shows the graphical model (how X could
be factorized is not relevant here), and Fig. 3(c) shows the assignments for the training regimes
⌃train (all intervention variables are binary). This training set lacks the experimental assignment
�1 = �2 = �3 = 1.6 However, this regime is implied by the model and ⌃train. To see this, consider
the factorization p(x;�) / f1(x;�1,�2)f2(x;�2,�3), it implies:

p
�
x; (1, 1, 0)

�

p
�
x; (0, 1, 0)

� /
f1

�
x; (1, 1)

�

f1

�
x; (0, 1)

� ,

where we used (1, 1, 0) etc. to represent the � assignments. Because both (1, 1, 0) and (0, 1, 0) are in
⌃train, the ratio is identifiable up to a multiplicative constant. Moreover, multiplying and dividing the
result by f2

�
x; (1, 1)

�
, we get:

p
�
x; (1, 1, 0)

�

p
�
x; (0, 1, 0)

� /
f1

�
x; (1, 1)

�

f1

�
x; (0, 1)

� f2
�
x; (1, 1)

�

f2

�
x; (1, 1)

� /
p
�
x; (1, 1, 1)

�

p
�
x; (0, 1, 1)

� ,

from which, given that (0, 1, 1) is also in ⌃train, we can derive p
�
x; (1, 1, 1)

�
.

3.1 Message Passing Formulation

The steps in this reasoning can be visualized in Fig. 3(b). The leftmost hypervertex represents (�1,�2)
and suggests �1 can be isolated from �3. The first ratio p

�
x; (1, 1, 0)

�
/p
�
x; (0, 1, 0)

�
considers three

roles: �1 can be isolated (it is set to a “baseline” of 0 in the denominator) and �3 is yet to be
considered (it is set to the baseline value of 0 in the numerator). This ratio sets the stage for the next
step where (�2,�3) is “absorbed” in the construction of the model evaluated at (1, 1, 1). The entries
in ⌃train were chosen so that we see all four combinations of (�1,�2) and all four combinations of

6As well as the assignment �1 = �3 = 1,�2 = 0, which can be recovered by an analogous argument.
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(�2,�3), while avoiding the requirement of seeing all eight combinations of (�1,�2,�3). How to
generalize this idea is the challenge. Next, we present our first proposed solution.

Definitions. Before we proceed, we need a few definitions. First, recall that we represent the
baseline (or “observational”) regime as �1 = �2 = · · · = �d = 0. This describes data captured under
a default protocol, e.g., a transcriptomic study in which no genes are knocked down. Let ⌃0

[Z] denote
the set of all environments �j 2 ⌃ such that �j

i = 0 if i 62 Z. For instance, for the example in Fig. 3, a
set Z := {2} implies that ⌃0

[Z] =
�
(0, 0, 0), (0, 1, 0)

 
. Finally, let �[Z(?)] be the intervention vector

given by �i = �
?
i , if i 2 Z, and 0 otherwise. In what follows, we also use of the concepts of graph

decompositions, decomposable graphs and junction trees, as commonly applied to graphical models
[46, 20]. In Appendix B, we review these concepts.7 An IFM I with intervention vertices �1, . . . ,�d

has an associated �-graph denoted by G�(I), defined as an undirected graph with vertices �1, . . . ,�d,
and where edge �i � �j is present if and only if �i and �j are simultaneously present in at least one
common factor fk in I . For example, the �-graph of the IFM represented in Fig. 3(a) is �1 � �2 � �3.
This is a decomposable graph with vertex partition A = {�1}, B = {�2} and C = {�3}. As this
�-graph is an undirected decomposable graph, it has a junction tree, which we depict in Fig. 3(b).

Identification: message passing formulation. Let I be an IFM representing a model for the
m-dimensional random vector X under the d-dimensional intervention vector � 2 ⌃. Model I has
unknown factor parameters but a known factorization p(x;�) /

Q
k fk(xSk ;�Fk).

Theorem 3.1 Assume that the �-graph G�(I) is decomposable. Given a set ⌃train = {�1
, . . . ,�

t} ✓
⌃ and known distributions p(x;�1), . . . , p(x;�t), the following conditions are sufficient to identify

any p(x;�?), �? 2 ⌃:

i) all distributions indexed by �
1
, . . . ,�

t
,�

?
have the same support; and

ii) ⌃0
[Fk]

2 ⌃train for all Fk in the factorization of I.

The algorithm for computing p(x;�?) works as follows. Construct a junction tree T for I , choose an

arbitrary vertex in T to be the root, and direct T accordingly. If Vk is a hypervertex in T , let Dk

be the union of all intervention variables contained in the descendants of Vk in T . Let Bk be the

intersection of the invervention variables contained in Vk with the intervention variables contained

in the parent V⇡(k) of Vk in T .

We define a message from a non-root vertex Vk to its parent V⇡(k) as

m
x
k :=

p(x;�[Dk(?)])

p(x;�[Bk(?)])
, (2)

with the update equation

p(x;�[Dk(?)]) / p(x;�[Fk(?)])
Y

Vk02ch(k)

m
x
k0 , (3)

where the product over ch(k), the children of Vk in T , is defined to be 1 if ch(k) = ;.

(All proofs in Appendix B.) In particular, if no factor contains more than one intervention variable,
the corresponding �-graph will be fully disconnected. This happens, for example, for an IFM derived
from a DAG without hidden variables and where each intervention has one child, as in Fig. 2.

3.2 Algebraic Formulation

If a �-graph is not decomposable, the usual trick of triangulation prior to clique extraction can be
used [46, 20], at the cost of creating cliques which are larger than the original factors. Alternatively,
and a generalization of Eqs. (2) and (3), we consider transformations of the distributions in P(⌃train)

7Quick summary: a junction tree is formed by turning the cliques of an undirected graph into the (hy-
per)vertices of the tree. Essential to the definition, a junction tree T must have a running intersection property:
given an intersection S := Hi \Hj of any two hypervertices Hi, Hj , all hypervertices in the unique path in
T between Hi and Hj must contain S. This property captures the notion that satisfying local agreements
(“equality of properties” of subsets of elements between two adjacent hypervertices in the tree) should imply
global agreements. A decomposable graph is simply a graph whose cliques can be arranged as a junction tree.

6



�1 �2 �3 f
00
1 f

01
1 f

10
1 f

11
1 f

00
2 f

01
2 f

10
2 f

11
2 f

00
3 f

01
3 f

10
3 f

11
3

q1 0 0 0 X X X
q2 0 1 0 X X X
q3 1 0 0 X X X
q4 1 1 0 X X X
q5 0 0 1 X X X
q6 0 1 1 X X X
q7 1 0 1 X X X
p
? 1 1 1 0 0 0 1 0 0 0 1 0 0 0 1

Figure 4: Example of how to infer the target distribution p
�
x; (1, 1, 1)

�
from the other seven possible

regimes given the postulated factorization p(x;�) / f1(x;�1,�2)f2(x;�2,�3)f3(x;�1,�3). We
use fab

k as a shorthand notation for fk(x;�k1 = a,�k2 = b), e.g, p
�
x; (1, 1, 1)

�
/ f

11
1 f

11
2 f

11
3 . For a

PR-transformation (f00
1 f

00
2 f

00
3 )q1 ⇥ (f01

1 f
10
2 f

00
3 )q2 ⇥ · · ·⇥ (f10

1 f
01
2 f

11
3 )q7 f

11
1 f

11
2 f

11
3 up to a mul-

tiplicative constant independent of x, we need to find a solution satisfying: q1 + q5 = 0, q2 + q6 = 0,
. . . , q7 = 1. (In the table, this can be seen by going through each f

ab
k column and adding up the

corresponding exponents qj when there is a tick in row j; the sum must agree with the corresponding
entry in the final row). A solution is q1 = q4 = q6 = q7 = 1, q2 = q3 = q5 = �1, corresponding to
p(x;�?) /

�
p(x;�1)p(x;�4)p(x;�6)p(x;�7)

�
/
�
p(x;�2)p(x;�3)p(x;�5)

�
.

by products and ratios. We define a PR-transformation of a density set {p(x;�1), . . . , p(x;�t)} as
any formula

Qt
i=1 p(x;�

i)qi , for a collection q1, . . . , qt of real numbers.

Theorem 3.2 Let �
v
Fk

denote a particular value of �Fk , and let Dk be the domain of �Fk . Given

a collection P(⌃train) := {p(x;�1), . . . , p(x;�t)} and a postulated model factorization p(x;�) /Ql
k=1 fk(xSk ;�Fk), a sufficient and almost-everywhere necessary condition for a given p(x;�?) to

be identifiable by PR-transformations of P(⌃train) is that there exists some solution to the system

8k 2 {1, 2, . . . , l}, 8�v
Fk

2 Dk,

0

B@
tX

i=1:�i
Fk

=�v
Fk

qi

1

CA = (�?
Fk

= �
v
Fk
), (4)

where (·) is the indicator function returning 1 or 0 if its argument is true or false, respectively.

The solution to the system gives the PR-transformation. An example is shown in Fig. 4. The main idea
is that, for a fixed x, any factor fk(xSk ;�Fk) can algebraically be interpreted as an arbitrary symbol
indexed by �Fk , say “f�Fk

k ”. This means that any density p(x;�i) is (proportional to) a “squarefree”
monomial mi in those symbols (i.e, products with exponents 0 or 1). We need to manipulate a set of
monomials (the unnormalized densities in P(⌃train)) into another monomial m? (the unnormalized
p(x;�?)). More generally, the possible set functions g(·), h(·) such that g(m?

, {m1
, . . . ,m

t}) =
h({m1

, . . . ,m
t}), with g(·) invertible in m

?, suggest that g(·) and h(·) must be the product function
(monomials are closed under products, but not other analytical manipulations), although we stop short
of stating formally the conditions required for PR-transformations to be complete in the space of all
possible functions of P(⌃train). This would be a stronger claim than Theorem 3.2, which shows that
Eq. (4) is almost-everywhere complete in the space of PR transformations.

The message passing scheme and the algebraic method provide complementary views, with the former
giving a divide-and-conquer perspective that identifies subsystems that can be estimated without
requiring changes from the baseline treatment everywhere else. The algebraic method is more general,
but suggests no hierarchy of simpler problems. These results show that the factorization over X is
unimportant for identifiability, which may be surprising. Appendix C discusses the consequences of
this finding, along with a discussion about requirements on the size of ⌃train.

4 Learning Algorithms

The identification results give a license to choose any estimation method we want if identification is
established — while we must make the assumption of the model factorizing according to a postulated
IFM, we are not required to explicitly use a likelihood function. Theorems 3.1 and 3.2 provide ways
of constructing a target distribution p(x;�?) from products of ratios of densities from P(⌃train). This
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suggests a plug-in approach for estimation: estimate products of ratios using density ratio estimation
methods and multiply results. However, in practice, we found that fitting a likelihood function directly
often works better than estimating the product of density ratios, even for intractable likelihoods. We
now discuss three strategies for estimating some E[Y ;�?] of interest.

Deep energy-based models and direct regression. The most direct learning algorithm is to first
maximize the sum of log-likelihoods L(✓;D1

, . . . ,Dt) :=
Pt

i=1

Pni

j=1 log p✓(x
i(j);�i), where ni

is the number of samples in the ith regime. The parameterization of the model is indexed by a
vector ✓, which defines p(·) as log p✓(x;�) :=

Pl
k=1 �✓k,�Fk

(xSk) + constant. Here, �✓(·) is a
differentiable black-box function, which in our experiments is a MLP (aka a multilayer perceptron,
or feedforward neural network). Parameter vector ✓k,�Fk

is the collection of weights and biases
of the MLP, a different instance for each factor k and combination of values in �Fk . In principle,
making the parameters smooth functions of �Fk is possible, but in the interest of simplifying the
presentation, we instead use a look-up table for completely independent parameters as indexed by the
possible values of �Fk . Parameter set ✓ is the union of all

Pl
k=1

Q
j2Fk

|@j | MLP parameter sets. As
maximizing log-likelihood is generally intractable, in our implementation we apply pseudo-likelihood
with discretization of each variable X in a grid. The level of discretization does not affect the
number of parameters, as we take their numerical value as is, renormalizing over the pre-defined
grid. Score matching [38], noise contrastive estimation [32] or other variants (e.g., [71]) could be
used; our pipeline is agnostic to this choice, with further details in Appendix G. We then estimate
fy(x) := E[Y | x] using an off-the-shelf method, which in our case is another MLP. For a given
�
?, we sample from the corresponding p(x;�?) with Gibbs sampling and average the results of the

regression estimate bfy(x) to obtain an estimate bµ(�?).

Inverse probability weighting (IPW). A more direct method is to reweight each training sample
by the target distribution p(x;�?) to generate bµ(�i?) :=

Pni

j=1 y
i(j)

w
i(j)? , where w

i(j)? is the
density ratio p(xi(j);�?)/p(xi(j);�i), rescaled such that

Pni

j=1 w
i(j)? = 1. There are several direct

methods for density ratio estimation [53] that could be combined using the messages/product-ratios
of the previous section, but we found that it was stabler to just take the density ratio of the fitted
models using deep energy-based learning, just like in the previous algorithm. Once estimators
bµ(�?(1)), . . . , bµ(�?(t)) are obtained, we combine them by the usual inverse variance weighting
rule, bµ(�i?) :=

Pt
i=1 r

i
µ�?(i)/

Pt
i=1 r

i, where ri := 1/bvi, and bvi :=
Pni

j=1(y
i(j))2(wi(j)?)2. This

method requires neither a model for fy(x) nor Markov chain Monte Carlo. However, it may behave
more erratically than the direct method described above, particularly under strong shifts in distribution.

Covariate shift regression. Finally, a third approach for estimating µ(�?) is to combine models
for fy(x) with density ratios, learning a customized bfy(x) for each test regime separately. A s this is
very slow and did not appear to be advantageous compared to the direct method, we defer a more
complete description to Appendix D.

Predictive Coverage. Even when treatment effects are identifiable within the IFM framework,
the uncertainty of resulting estimates can vary widely depending on the training data and learning
algorithm. Building on recent work in conformal inference [78, 51, 76], we derive the following
finite sample coverage guarantee for potential outcomes, which requires no extra assumptions beyond
those stated above.

Theorem 4.1 (Predictive Coverage.) Assume the identifiability conditions of Theorems 3.1 or 3.2

hold. Fix a target level ↵ 2 (0, 1), and let I1, I2 be a random partition of observed regimes intro

training and test sets of size n/2. Fit a model bµ using data from I1 and compute conformity

scores s
(i) = |yk(i) � bµ(�k)| using data from I2. For some new test environment �

?
, compute the

normalized likelihood ratio w
(i)(�?) / p(xk(i);�?)/p(xk(i);�k), rescaled to sum to n/2. Let b⌧(�?)

be the q
th

smallest value in the reweighted empirical distribution
P

i w
(i)(�?) · �(s(i)), where �

denotes the Dirac delta function and q = d(n/2 + 1)(1� ↵)e. Then for any new sample n+ 1, we

have:

P
�
Y

?(n+1) 2 bµ(�?)± b⌧(�⇤)
�
� 1� ↵.

Moreover, if weighted conformity scores have a continuous joint distribution, then the upper bound

on this probability is 1� ↵+ 1/(n/2 + 1).

8



5 Experiments

We run a number of semi-synthetic experiments to evaluate the performance of the IFM approach on
a range of intervention generalization tasks. In this section, we summarize our experimental set-up
and main results. The code for reproducing all results and figures is available online8; in Appendix E,
we provide a detailed description of the datasets and models; and in Appendix F we present further
analysis and results.

Datasets. Our experiments are based on the following two biomolecular datasets: i) Sachs [66]:
a cellular signaling network with 11 nodes representing phosphorylated proteins and phospho-
lipids, several of which were perturbed with targeted reagents to stimulate or inhibit expression.
There are 4 binary intervention variables. ⌃train has 5 regimes: a baseline, with all �i = 0, and 4
“single-intervention” regimes, each with a different single �i = 1. ⌃test consist of the remaining 11
(= 24 � 5) unseen regimes. ii) DREAM [30]: Simulated data based on a known E. coli regulatory
sub-network with 10 nodes. There are 10 binary intervention variables, and (similarly) ⌃train has a
baseline regime, with all �i = 0, and 10 single-intervention regimes, with single choices of �i = 1.
⌃test consists of 45 (10⇥ 9/2 = 45) unseen regimes defined by all pairs �i = �j = 1.

Oracular simulators. The first step to test intervention generalization is to build a set of proper
test beds (i.e., simulators that serve as causal effect oracles for any � 2 ⌃), motivated by expert
knowledge about the underlying system dynamics. Neither the original Sachs data nor the DREAM
simulator we used provide joint intervention data required in our evaluation. Thus, for each domain,
we trained two ground truth simulators: i) Causal-DAG: a DAG model following the DAG structure
and data provided by the original Sachs et al. and DREAM sources (DAGs shown in Fig. 10(a)) and
Fig. 11(a), respectively). Given the DAG, we fit a model where each conditional distribution is a
heteroskedastic Gaussian with mean and variance parameterized by MLPs (with 10 hidden units)
of the respective parents. ii) Causal-IFMs: the corresponding IFM is obtain by a direct projection
of the postulated DAG factors (as done in, e.g., Fig. 2(b)). The likelihood is a neural energy model
(Section 4) with MLPs with 15 hidden units defining potential functions. After fitting these models,
we compute by Monte Carlo simulation their implied ground truths for every choice of �⇤. The
outcomes Y are then generated under 100 different structural equations of the form tanh(�>

X) + ✏,
with random independent normal weights � and ✏ ⇠ N (0, vy). � and vy are scaled such that the
ground truth variance of �T

X , Var(�T
X), is sampled uniformly at random from the interval [0.6, 0.8],

and set vy := 1� Var(�T
X).

Compared models. We implement three variants of our proposed IFM model, corresponding to
the three learning algorithms described in Section 4: i) IFM1 uses deep energy-based models and
direct regression; ii) IFM2 uses an IPW estimator; and iii) IFM3 relies on covariate shift regression.
We compare these models to the following benchmarks: i) Black-box: We apply an off-the-shelf
algorithm (XGBoost [14]) to learn a direct mapping from � to Y without using X . This model does
not exploit any structural assumptions. ii) DAG: We estimate the structural equations in an acyclic
topological ordering that is consistent with the data generating process. This represents a strong
baseline that exploits ground truth knowledge of the underlying causal graph. The likelihood is
defined by conditional Gaussian models with mean and variances parameterized as MLPs, matching
exactly one of the simulators described below.

Results. We evaluate model performance based on the proportional root mean squared error
(pRMSE), defined as the average of the squared difference between the ground truth Y and estimated
bY , with each entry further divided by the ground truth variance of the corresponding Y . Results are
visualized in Fig. 5. We additionally run a series of one-sided binomial tests to determine whether
models significantly outperform the black box baseline, and compare the Spearman’s rank correlation
[80] between expected and observed outcomes for all test regimes. Unsurprisingly, DAGs do best
when the ground truth is a Causal-DAG, while IFM methods do better when the data generator is a
Causal-IFM. Still, some IFMs are robust to both ground truth models, with IFM1 (the deep energy
model) doing especially well on the DREAM dataset, and IFM2 (the IPW estimator) excelling on the
Sachs data.

8https://github.com/rbas-ucl/intgen
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Figure 5: Experimental results on a range of intervention generalization tasks, see text for details.

In particular, for the DREAM datasets, IFM1 (scaled) errors remain stable, while the DAG has a major
loss of performance when a non-DAG ground truth is presented. However, IFM2 underperform on
DREAM datasets, which might be because the knockdowns regimes in those datasets induce dramatic
shifts in distribution overlap among regimes. (We omit results for IFM3 (covariate shift regression) on
these datasets, as the method does not converge in a reasonable time.) Though the black-box method
(XGBoost algorithm and no structural assumption) sometimes struggles to extrapolate, displaying a
long-tailed distribution of errors, it actually does surprisingly well in some experiments, especially
on the DREAM dataset. In fact, the black-box method is essentially indistinguishable from linear
regression in this benchmark (results not shown), which is not surprising given the sparsity of the
training data. However, the non-additivity of the � effect on Y is more prominent in the Sachs
datasets, making it difficult to generalize without structural assumptions.

6 Related Work

A factor graph interpretation of Pearl’s do-calculus framework is described in [79], but without
addressing the problem of identifiability. More generally, several authors have exploit structural
assumptions to predict the effects of unseen treatments. Much of this research falls under the frame-
work of transportability [61, 7], where the goal is to identify causal estimands from a combination of
observational and experimental data collected under different regimes. If only atomic interventions
are considered, the do-calculus is sound and complete for this task [50]. The �-calculus introduced by
[28, 17] extends these transportability results to soft interventions [18, 19]. However, these methods
are less clearly defined when an intervention affects several variables simultaneously, and while
DAGs with additive errors have some identifiability [67] and estimation [75] advantages, acyclic
error additivity may not be an appropriate assumption in some domains. Under further parametric
assumptions, causal effects can be imputed with matrix completion techniques [73, 3] or more generic
supervised learning approaches [31], but these methods often require some data to be collected for all
regimes in ⌃test. Finally, [2] is the closest related work in terms of goals, factorizing the function
space of each E[Xi;�] directly as a function of �.

Another strand of related research pertains to online learning settings. For instance, several works
have shown that causal information can boost convergence rates in multi-armed bandit problems when
dependencies are present between arms [45, 49, 24], even when these structures must themselves
be adaptively learned [9]. This suggests a promising direction for future work, where identification
strategies based on the IFM framework are used to prioritize the search for optimal treatments. Indeed,
combining samples across multiple regimes can be an effective strategy for causal discovery, as
illustrated by recent advances in invariant causal prediction [63, 33, 64, 81], and it can also help with
domain adaptation and covariate shift [54, 6, 13, 15].

7 Conclusion

We introduced the IFM framework for solving intervention generalization tasks. Results from
simulations calibrated by real-world data show that our method successfully predicts outcomes for
novel treatments, providing practitioners with new methods for conducting synthetic experiments.
Future work includes: i) integrating the approach with experimental design, Bayesian optimization
and bandit learning; ii) variations that include pre-treatment variables and generalizations across
heterogeneous subpopulations, inspired by complementary matrix factorization methods such as [2];
iii) tackling sequential treatments; and iv) diagnostics of cross-regime overlap issues [36, 58].
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