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Abstract

Due to the limited availability of data, existing few-shot learning methods trained
from scratch fail to achieve satisfactory performance. In contrast, large-scale
pre-trained models such as CLIP demonstrate remarkable few-shot and zero-shot
capabilities. To enhance the performance of pre-trained models for downstream
tasks, fine-tuning the model on downstream data is frequently necessary. However,
fine-tuning the pre-trained model leads to a decrease in its generalizability in
the presence of distribution shift, while the limited number of samples in few-
shot learning makes the model highly susceptible to overfitting. Consequently,
existing methods for fine-tuning few-shot learning primarily focus on fine-tuning
the model’s classification head or introducing additional structure. In this paper,
we introduce a fine-tuning approach termed Feature Discrimination Alignment
(FD-Align). Our method aims to bolster the model’s generalizability by preserving
the consistency of spurious features across the fine-tuning process. Extensive
experimental results validate the efficacy of our approach for both ID and OOD
tasks. Once fine-tuned, the model can seamlessly integrate with existing methods,
leading to performance improvements. Our code could be found in https://
github.com/skingorz/FD-Align.

1 Introduction

The Contrastive Language-Image Pre-training model (CLIP) [1] represents a groundbreaking develop-
ment in multi-modal deep learning. By utilizing contrastive learning, CLIP aligns visual and textual
representations within a unified embedding space, and exhibits superior performance in a variety of
downstream tasks, including image classification [2, 3], detection [4], and segmentation [5, 6], which
is typically done by fully fine-tuning CLIP using downstream data. However, in many real-world
scenarios, there is often an insufficient amount of labeled data available. Thus, fully fine-tuning will
lead to overfitting and significantly diminishing the model performance.

To mitigate this few-shot challenge, we consider using a proxy dataset correlated to the downstream
target dataset for fine-tuning CLIP, aiming to obtain a model that can efficiently generalize to the
few-shot target task. Directly fully fine-tuning CLIP on the proxy dataset is not feasible, as the fine-
tuned model may overfit to the proxy data or have worse out-of-distribution (OOD) generalization [7],
limiting its performance on the target task. As an example illustrated in Figure 1, the fully fine-tuned
CLIP tends to focus more on local regions and less on the foreground compared to the original CLIP.
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(a) Original Image (b) CLIP (c) Fully Fine-Tuned CLIP (d) FD-Align

Figure 1: (a) An image of a dog. (b) CLIP attention map, which pays more attention to the background
in comparison with that to the dog. (c) The CLIP attention map after fully fine-tuning, which focuses
more on locations with non-salient features. (d) The attention map after FD-Align fune-tuning, which
tends to prioritize the dog’s causal information while also paying attention to a minor portion of
spurious information.
Such localized attention will weaken the model’s robustness to spurious correlations [8], resulting in
poor OOD generalization of the fully fine-tuned CLIP.

In this paper, our objective is to preserve the robustness of CLIP to spurious correlations during
fine-tuning, i.e., its ability to distinguish between spurious and causal features. In particular, causal
features represent the features related to the classes, while spurious features could be the features
related to the context of the class. We want the fine-tuned CLIP can learn the causal features of
the new classes while keeping the recognition ability for the spurious features. To achieve this, we
propose a method of Feature Discrimination Alignment (FD-Align). Specifically, we introduce a
spurious feature classifier, ensuring that the classification probability distribution of spurious features
remains consistent throughout the fine-tuning. Taking advantage of the potent alignment capabilities
of CLIP’s text and visual features, we utilize text features of category-agnostic descriptions (i.e.,
contexts) as spurious feature prototypes. The image features and spurious feature prototypes are
subjected to similarity measurement to ascertain the current image’s probability distribution over
spurious features. By constraining the probability distribution of the image features extracted by the
model before and after fine-tuning, we ensure consistency in the spurious features extracted by the
model. Concurrently, while learning classification capabilities on the proxy dataset, the robustness of
the model to spurious associations after fine-tuning is also ensured.

Our method maintains the model’s robustness to spurious correlations while fine-tuning model on
proxy dataset. As illustrated in Figure 1d, on the one hand, compared to CLIP, the fine-tuned model
with FD-Align better focuses on the dog. On the other hand, compared to the localized attention of
fully fine-tuning CLIP, FD-Align pays slight attention to some spurious information. This balance
between attending to causal information and spurious information ensures the model’s robustness
to spurious correlations, thereby ensuring the model’s OOD generalization. Extensive experiments
validate the robust OOD performance of our approach, alongside the improvement of in-distribution
(ID) performance. Furthermore, as shown in Figure 2, the model fine-tuned by FD-Align directly
enhances the accuracy of existing methodologies without introducing additional inference cost.
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Figure 2: Performance improvement for
different datasets.

Our paper makes the following contributions:

(1) We propose to use textual features to obtain spurious
features of images;

(2) We propose a feature discrimination alignment fine-
tuning architecture that ensures the OOD performance
of the fine-tuned model by aligning spurious features ex-
tracted model before and after fine-tuning;

(3) Sufficient experiments demonstrate that our approach
can significantly improve the performance of ID and OOD
for few-shot learning, and it can improve the performance of existing methods without introducing
additional training and inference costs.

2 Related Work

Few-Shot Learning. The primary objective of few-shot learning is to train models of superior
performance with a small number of samples. Prior methods primarily train models on base data and
assess their performance on novel class data devoid of any shared categories. Approaches such as
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MAML [9] adopt meta-learning to train a base learner on base data, followed by fine-tuning it on a
limited amount of novel data to derive a model suited for novel data. ProtoNet [10] introduces the
use of metric learning for training. Recently, a line of work start to introduce the modality of text
into the few-shot image classification, such as AM3 [11], TRAML [12] and FILM [13]. All these
models are trained from scratch. With the emergence of pre-trained bi-modal models such as CLIP,
the acquisition of more precise image features is presently achievable by leveraging these pre-trained
models. Consequently, the majority of current research focuses on how to use features extracted by
CLIP to enhance the capability of few-shot learning. For instance, CoOp [14] and CoCoOp [15]
model prompt’s context words with learnable vectors, keeping all pre-trained parameters fixed. Tip-
Adapter [3] and APE [16] do not require any backpropagation to train the adapter but create the
weights through a key-value cache model constructed from the few-shot training set. VPT [17]
introduces additional learnable parameters into the input space. However, all of these methods
are processed with the backbone frozen, while our paper aims to further explore the possibility of
fine-tuning the backbone itself. Although these methods show excellent performance, they do not
exploit the potential of pre-trained models.

Fine-Tuning of Pre-trained Model. The most direct approach is fine-tuning the pre-trained model
directly. However, fully fine-tuning decreases the OOD performance of the pre-trained model [7].
WiSE-FT [18] enhances performance by ensembling the weights of the zero-shot and fine-tuned
models. Kumar et al. [7] first perform linear probing and then perform fully fine-tuning to ensure the
OOD performance of the model. Xuhong et al. [19] introduce an additional regularizer to constrain
the l2 distance between zero-shot and fine-tuned CLIP. On the other hand, Mukhoti et al. [20] prevent
the degradation of the foundational model’s capacity by constraining image features extracted by
zero-shot and fine-tuned CLIP in the feature space. Nevertheless, scant existing methods delve into
the strategies for fine-tuning pre-trained models using limited data.

Spurious Correlations. Spurious correlations denote deceptive heuristics that hold for the majority
of instances during training, but do not invariably apply [21]. For example, when the training
instance involves a cow on grass, it is tempting to misconstrue the presence of grass as a causal
determinant for categorizing cows. This misinterpretation, regarding grass as cows, embodies a form
of spurious correlation. Eliminating spurious features generally leads to enhanced OOD performance;
however, this can be accompanied by a decrease in ID performance [22]. Furthermore, even armed
with a comprehensive understanding of the spurious feature, its extraction remains a non-trivial
task [23]. The impact of spurious correlations persists within multimodal pre-trained models [24].
However, when model parameters and dataset sizes are large enough, Vision Transformer (ViT)
exhibits increased robustness against spurious correlations [8]. Furthermore, the CLIP architecture
enhances the robustness of the vision encoder to spurious correlations [25]. Consequently, improving
robustness against spurious correlations can effectively maintain the OOD performance of the model.

3 The Proposed Method

3.1 Problem Definition

Suppose that we have a pre-trained CLIP [1] which contains a visual encoder f0 and a text encoder g0.
In addition, we have access to a few-shot proxy dataset D ⊂ X ×Y , where each class has very limited
samples and each sample comprises an image x and its corresponding label y. The objective is to
fine-tune the pre-trained CLIP using this proxy dataset, aiming to enhance its zero-shot performance
for unseen target tasks related to the proxy dataset.

3.2 Fine-Tuning on Proxy Dataset

We freeze CLIP’s text encoder g0 during fine-tuning and make the visual encoder learnable. First,
we initialize the visual encoder ft using the parameters of the visual encoder of pre-trained CLIP f0.
The visual encoder ft is then used to extract the feature ft(x) of the image x. With the help of the
remarkable text-vision alignment capability of CLIP, we use the textual features of the class names of
each class as class prototypes. Following CLIP, for any class y, we combine M prompt templates
(P1, . . . , PM ) with the class name and obtain M prompts [P1, y], . . . , [PM , y]. We then use the text
encoder g0 to extract the features of the above M prompts. Subsequently, we calculated the means of
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Figure 3: The class names and prompts are combined and inputted into the text encoder to obtain
text embeddings. We calculate the mean separately in the prompt and class dimensions to derive
the class prototype and prompt embedding. On the one hand, the image features are extracted using
the fine-tuned visual encoder, and class distribution are calculated based on the class prototype to
calculate the class loss. On the other hand, we use spurious prototype correction (SPC) module to
correct the prompt embedding. By calculating the cosine similarity between the image features and
the spurious prototype, we obtain the distribution over spurious features and calculate the spurious
loss.

the M features to obtain the prototype of the corresponding class, namely, the prototype of class y is

µclass
y :=

1

M

M∑
j=1

g0([Pj , y]).

We calculate the cosine similarity s(·, ·) between the image feature and the class prototypes and
produce a distribution over classes for the image. Finally, the class loss is calculated using cross-
entropy loss by

Lclass = − 1

|D|
∑

(xi,yi)∈D

log
exp(s(ft(xi), µ

class
yi

))∑
y∈Y exp(s(ft(xi), µclass

y ))
, (1)

where Y is the label set.

3.3 Spurious Feature Constraint

Fully fine-tuning CLIP on the proxy data affects the robustness of the model to unseen data. To
preserve the model’s performance on out-of-distribution data during fine-tuning, we maintain the
model’s robustness to spurious correlations during fine-tuning. That is, keeping the spurious feature
extracted by the model before and after fine-tuning unchanged. We first calculate the mean of the
features of each prompt template Pj over all classes as prototypes of the prompt template Pj , that is,

µspurious
Pj

:=
1

|Y|
∑
y∈Y

g0([Pj , y]).

We can calculate the similarity between the feature extracted by the fine-tuned model and the spurious
prototypes and produce the distribution over spurious features as follows.

Pspurious(x; ft) = SoftMax
[
s
(
ft(x), µ

spurious
P1

)
, . . . , s

(
ft(x), µ

spurious
PM

)]
.
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Similarly, we can use the pre-trained visual encoder f0 to extract the feature and produce the
distribution over spurious features as follows.

Pspurious(x; f0) = SoftMax
[
s
(
f0(x), µ

spurious
P1

)
, . . . , s

(
f0(x), µ

spurious
PM

)]
.

We can ensure that the spurious features of the models before and after fine-tuning remain consistent
by keeping the probability distributions of the models over spurious features consistent before and
after fine-tuning, that is

Lspurious =
1

|D|
∑

(xi,yi)∈D

KL (Pspurious(xi; ft) || Pspurious(xi; f0)) . (2)

Finally, we optimize both (1) and (2) during fine-tuning to ensure classification ability and OOD
robustness:

Ltotal = α · Lclass + β · Lspurious,

where we set α to 1 and β to 20 in this paper.

3.4 Spurious Prototype Correction

Prompt templates are typically designed manually or generated by large-language models such as
GPT. These templates often include redundant or illogical prompts. Consequently, the prototypes
of spurious features calculated by these imprecise and redundant prompt templates lack accuracy.
Therefore, filtering and processing these prototypes of spurious features is necessary.

Certain prompt templates may exhibit a lack of practical significance or irrationality, making them
unsuitable for incorporation as spurious features, as exemplified by "itap of {class}." This scenario
can result in the inaccuracy of spurious prototypes. To address this problem, we employ the Isolation
Forest algorithm [26] to eliminate meaningless prototypes associated with spurious features, i.e.,
µspurious := ISOLATIONFOREST(µspurious, n). We will retain the n prototypes that exhibit the highest
degree of rationality.

Moreover, there are cases where certain prompts exhibit excessive similarity. For example, prompts
such as “a photo of the {class}.”, “a photo of a {class}.”, and “a photo of my {class}.” show notable
similarities. In such scenarios, a single piece of spurious information may correspond to multiple
prompts. However, some spurious information aligns with only one prompt. Consequently, the
relative weight of the probability of spurious information corresponding to a single prompt diminishes
during the classification process. To address this issue, we employ the k-means algorithm to merge
duplicate spurious features that arise from similar prompts, i.e., µ̃spurious := k-means(µspurious, k),
where k is the number of cluster centers.

4 Experiments

In this section, we will validate the OOD robustness of our approach. Furthermore, our method
demonstrates promising results in ID data.

4.1 Setup

Throughout this section, if not otherwise specified, we use open source ViT-B/32 as the backbone
of the CLIP, and the prompts we use are OpenAI ImageNet prompt templates2. we set n to 60, k to
20 in the spurious prototype correction stage. We employ the Stochastic Gradient Descent (SGD)
optimizer for model fine-tuning, conducting the process over 60 epochs. Since little prior work on
CLIP has been done to fine-tune the backbone for few-shot learning, we mainly compare our method
with the fully fine-tuning strategy and WiSE-FT [18].

2https://github.com/openai/CLIP/blob/main/notebooks/Prompt_Engineering_for_ImageNet.ipynb
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Dataset

For the OOD setting, we evaluate our method on two different datasets. On the one hand, we train the
model on ImageNet [27] following the few-shot task in CLIP and test the performance on two OOD
variants of ImageNet [27]: ImageNetV2 [28] and ImageNet-Sketch [29] with the same 1000 classes,
On the other hand, we follow the traditional few-shot learning strategy and fine-tune the model on the
train split of miniImageNet and evaluate the model on Meta-dataset [30], BSCDFSL benchmark [31]
and DomainNet [32], for a total of 19 datasets. These datasets cover a wide range of image styles,
such as natural images, satellite images, medical images, and sketch images.

For ID setting, we use the 11 image recognition datasets following CoOp [14], which contain
ImageNet [27], StanfordCars [33], UCF101 [34], Caltech101 [35], Flowers102 [36], SUN397 [37],
DTD [38], EuroSAT [39], FGVCAircraft [40], OxfordPets [41] and Food101 [42]. These datasets
cover a wide range of different visual recognition tasks such as generic object classification, fine-
grained classification, action, scene, texture, etc.

Method CLIP
Baselines Baselines + FD-Align

FT Tip Tip-F APE APE-T FT Tip Tip-F APE APE-T

ImageNet 63.34 64.91 65.49 68.43 66.55 68.74 66.39 65.49 68.70 67.59 69.15
ImageNetS 42.31 42.24 42.48 42.54 43.28 43.23 43.50 43.84 43.67 44.23 44.04

ImageNetV2 55,92 57.63 57.58 59.58 58.31 59.58 57.73 59.10 60.17 59.36 60.83

Table 1: OOD results. We fine-tune the model on 16-shot ImageNet and evaluate it on the variants of
ImageNet. FT means fully fine-tuning.

4.2 Results under OOD Setting

In order to evaluate the robustness of our method in OOD data, we fine-tune the model on ImageNet
in 16-shot settings and test the performance on the variants of ImageNet. As shown in Table 1,
in contrast to fully fine-tuning CLIP, our approach yields a performance boost of up to 1.75%
on ImageNetA. Additionally, we directly integrate our fine-tuned backbone into Tip-adapter [3]
and APE [16], leading to a substantial improvement in their generalization performance. The
aforementioned findings demonstrate that FD-Align improves model performance while ensuring
robust generalization. Furthermore, the fine-tuned model can seamlessly integrate into existing
methods without requiring additional fine-tuning.
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Figure 4: Performance improvement/decline of our method on different OOD datasets.

In addition, we also evaluate the robustness of our method in the N -way K-shot few-shot learning
task. We fine-tune the model on the miniImageNet train split utilizing prototypical networks [10] and
subsequently evaluate its performance on several different datasets. In our testing phase, we evaluate
the precision of 2000 tasks for 5-way-1shot and 5-way-5shot scenarios in five distinct sets generated
according to different random seeds. We then calculate the mean accuracy along with a confidence
interval 95%. As illustrated in Table 2 and Figure 4, our approach yields notable performance
enhancements across the majority of datasets. In particular, on Sketch dataset, our method achieves
a performance improvement of 12.03% compared to CLIP. Nevertheless, on certain datasets, such
as Traffic Sign, a marginal decrement in performance is observed with our approach. This may

6



Datasets
5way-1shot 5way-5shot

CLIP WiSE-FT FD-Align CLIP WiSE-FT FD-Align

Mini-test [43] 88.21±0.33 93.55±0.17 95.04±0.18 97.46±0.07 98.44±0.06 98.52±0.07
CUB-test [44] 75.21±0.78 81.16±0.71 82.38±0.69 91.48±0.34 93.41±0.32 93.87±0.24
Textures [38] 61.26±0.24 63.55±0.19 66.05±0.12 82.40±0.40 83.31±0.31 83.60±0.34

Traffic Signs [45] 58.51±0.11 60.84±0.29 57.32±0.26 76.67±0.18 78.11±0.24 73.39±0.29
Aircraft [40] 60.57±0.54 62.64±0.62 63.45±0.65 76.35±0.59 77.66±0.59 78.21±0.58

Omniglot [46] 83.27±0.37 83.56±0.28 83.81±0.25 94.29±0.13 95.26±0.09 94.81±0.19
VGG Flower [36] 90.88±0.31 94.16±0.23 93.50±0.24 98.65±0.10 99.06±0.09 98.95±0.09
MSCOCO [47] 62.30±0.38 67.28±0.32 69.16±0.28 78.93±0.38 81.08±0.35 81.37±0.24

Quick Draw [48] 62.22±0.61 62.54±0.59 64.49±0.58 82.65±0.31 82.78±0.37 82.78±0.28
Fungi [49] 50.42±0.32 53.10±0.27 53.83±0.30 71.59±0.18 73.28±0.10 73.69±0.14

Plant Disease [50] 70.64±0.28 75.66±0.33 75.13±0.33 89.50±0.24 91.78±0.31 91.84±0.19
ISIC [31, 51] 28.66±0.35 29.40±0.34 28.84±0.44 39.02±0.24 39.54±0.40 38.91±0.44
EuroSAT [39] 60.20±0.48 63.99±0.39 60.39±0.43 77.43±0.21 80.96±0.19 77.25±0.16
ChestX [52] 22.65±0.27 22.27±0.28 22.31±0.17 25.58±0.08 25.08±0.14 24.95±0.15

Real [32] 84.84±0.32 89.96±0.26 92.45±0.28 96.39±0.11 97.16±0.02 97.36±0.04
Sketch [32] 67.24±0.60 73.84±0.56 79.27±0.38 87.66±0.27 89.87±0.16 91.20±0.19

Infograph [32] 55.72±0.21 61.93±0.47 65.61±0.17 78.23±0.36 80.87±0.30 82.02±0.37
Painting [32] 68.05±0.18 74.92±0.33 79.06±0.32 87.99±0.21 90.26±0.22 91.37±0.21
Clipart [32] 75.14±0.12 81.55±0.26 85.86±0.21 92.52±0.09 94.06±0.13 94.83±0.11

Table 2: The performance of CLIP, WiSE-FT and FD-Align with SPC (FD-Align)

be attributed to the dataset images primarily encompassing the object of identification, devoid of
substantial contextual misinformation that might adversely impact direct fine-tuning. Moreover, our
method consistently outperforms WiSE-FT [18] in most datasets. In the few instances where we do
not surpass its performance, our results remain comparable.
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Figure 5: Performance comparison of
different methods on 11 datasets.

Methods 1shot 2shot 4shot 8shot 16shot

Tip 64.11 64.36 64.63 65.17 65.49
Tip + FD-Align 64.51 65.33 65.76 66.79 67.28

Tip-F 64.64 65.18 65.78 67.21 68.43
Tip-F + FD-Align 64.86 65.61 66.11 67.58 68.70

APE 65.36 65.69 66.00 66.55 66.55
APE + FD-Align 66.71 67.29 67.40 67.76 67.69

APE-T 65.89 66.18 66.82 67.99 68.74
APE-T + FD-Align 66.84 67.37 67.81 68.73 69.15

Table 3: Results on ImageNet using our backbone with
different methods.

4.3 Results under ID Setting

In addition, we evaluate the performance of our method using ID data. Models were trained on
various datasets using 1, 2, 4, 8, and 16 shots, respectively, and subsequently evaluate performance
on the respective datasets. Figure 5 illustrates a comparative analysis of the average performance
between our method and existing methods on 11 datasets. As depicted, our method significantly
outperforms other strategies and yields increasingly substantial performance enhancements as the
shot number increases. Previous research indicates that WiSE-FT effectively elevates the fine-tuning
performance of models in zero-shot learning. However, in few-shot learning, relative to fully fine-
tuning, employing WiSE-FT with a fusion parameter of 0.5 results in a performance notably inferior
to comprehensive fine-tuning. Our analysis posits that, in few-shot learning, the paucity of fine-tuning
samples results in minimal alterations in model fine-tuning. Consequently, following fusion, the
model parameters more closely resemble those of CLIP, thereby influencing the model performance.
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4.4 Discussion

4.4.1 The Generality of FD-Align

To validate the generalizability of models fine-tuned via FD-Align across various methods, we
directly incorporated the FD-Align fine-tuned visual encoder into existing approaches and evaluate
ID performance. As shown in Table 3, the visual encoder fine-tuned with FD-Align markedly
improves the performance of existing methods, achieving a peak improvement of 1.79%. The visual
encoder fine-tuned with FD-Align, can be seamlessly transitioned into existing methods, bolstering
performance without incurring additional costs.

Methods 1shot 2shot 4shot 8shot 16shot

CLIP 60.33
Fully Fine-tuning CLIP 63.48 64.87 68.10 71.14 73.43

FD-Align (80 templates) 63.90 65.64 68.10 71.30 74.03
FD-Align (Tip templates) 61.14 62.39 63.37 60.34 66.30

FD-Align + SPC 63.92 65.68 68.63 71.66 74.38

Table 4: Ablation results. All methods use the same learning rate and calculate the average perfor-
mance across 11 datasets. The setup of 80 templates means using all the features of 80 templates
as spurious prototype. The setup of Tip templates means using the prompts templates proposed by
Tip-Adapter, and SPC means spurious prototype correction.

4.4.2 Why Remove Outliers and Cluster?

In this section, we analyze the importance of eliminating outliers from spurious features and the
subsequent clustering of residual points via empirical analysis. As illustrated in Table 4, employing the
Spurious Prototype Clustering (SPC) method yields enhanced performance for the spurious prototype
relative to directly utilizing all 80 templates. This underscores the efficacy of removing outliers
and redundant values from spurious features. Furthermore, we experimented with features derived
from manually designed prompt templates as spurious prototypes. While Tip-adapter handpicked
7 templates, our findings indicate that leveraging these 7 templates directly as spurious prototypes
precipitates a marked performance degradation. A closer examination revealed that the template "itap
of a {class}" from Tip-adapter was identified and excluded as an outlier by SPC during its initial
phase. This underscores the ability of SPC to autonomously filter outliers of spurious prototypes,
thereby circumventing potential pitfalls inherent in manual selections.
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Figure 6: (a) represents all the features of prompt templates. (b) represents the features processed by
Isolation Forest. (c) represents the final results clustered by k-means.

To more intuitively illustrate the impact of outlier removal and clustering, we visualize the spurious
features. Figure 6a displays the features of all the prompt templates within the feature space, revealing
the conspicuous presence of outliers and redundant values. Figure 6b shows the visualization after
outlier elimination: red points represent preserved values, while black points denote deleted outliers,
including “itap of a {class}”. It is evident that numerous redundant values persist. As depicted in
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Figure 6c, after the clustering process, the residual spurious features are uniformly distributed across
various positions, thereby providing a rational representation of the spurious prototype.

art_painting cartoon photo sketch

(a) CLIP

art_painting cartoon photo sketch

(b) Fine-tuned CLIP

art_painting cartoon photo sketch

(c) FD-Align CLIP

Figure 7: Feature visualization for the same class under different domains.

4.4.3 OOD Visualization

To more vividly demonstrate the influence of our method on model feature extraction, we conducted
a visualization of the image features on PCAS [53], utilized for investigating OOD tasks, which
contains category and domain annotations for images. Figure 7 illustrates the visualization of features
for one of our categories. It is observable that CLIP adeptly distinguishes features across different
domains. The ability of fully fine-tuned CLIP to differentiate information across various domains
is comparatively diminished. After fine-tuning with FD-Align, the model reacquires the ability
to discern information across different domains, substantiating FD-Align’s ability to preserve the
model’s OOD performance. Additionally, as depicted in Figure 8, we visualize the features of
different categories in various domains. On the sketch data, the model, after fully fine-tuning, exhibits
a diminished capacity to differentiate between categories, whereas CLIP and FD-Align distinguish
between various categories accurately.

cartoon_dog
cartoon_horse
sketch_dog
sketch_horse

(a) CLIP

cartoon_dog
cartoon_horse
sketch_dog
sketch_horse

(b) Fine-tuned CLIP

cartoon_dog
cartoon_horse
sketch_dog
sketch_horse

(c) FD-Align CLIP

Figure 8: Feature visualization for different class under different domains.

4.4.4 Training Stability

Figure 9 depicts the evolution of model accuracy and loss on the validation set throughout the
fully fine-tuning and FD-Align processes. Notably, during the initial phases of fine-tuning, fully
fine-tuning prematurely encounters overfitting, culminating in a decline in accuracy and a surge in
classification loss. Conversely, FD-Align adeptly maintains model robustness and stability throughout
the fine-tuning process, effectively circumventing overfitting.

4.4.5 Limitation

As shown in Tables 2, our method is able to preserve the generalization of the model while fine-tuning
the model. However, in certain specific cases, such as Traffic Sign, where the images primarily
consist of target objects and lack category-independent information, the preserved pre-trained model’s
category-independent ability adversely impacts the performance on such data. Additionally, our
method does not perform well on special scenarios, such as ChestX and EuroSAT, for which one
possible reason is that the prompts we use do not contain the category-independent information of
these data. Therefore, additional prompts may need to be designed for this type of data.
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Figure 9: Validation accuracy and loss variation during the training process.

5 Conclusion

In this paper, we introduce a feature discrimination alignment fine-tuning (FD-Align) method pre-
trained models in few-shot learning. Leveraging the remarkable text-visual alignment capabilities
of CLIP, we employ text features of category-agnostic descriptions as spurious feature prototypes.
Furthermore, we constrain the probability distribution of image features extracted by the model on
spurious features, both before and after fine-tuning, to ensure the robustness of the model subsequent
to fine-tuning. Experimental results substantiate the efficacy of our approach in enhancing fine-tuning
performance while ensuring robustness across distributions.
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Appendix

A Detailed Results of Different ID Datasets

Figure 10 delineates the effectiveness of our approach across different datasets. Impressively, FD-
Align surpasses both WiSE-FT and the fully fine-tuning on a vast majority of these datasets. As the
shot count rises, the advantage of FD-Align becomes even more salient. It is pertinent to note that
when data is scarce, WiSE-FT tends to underperform compared to fully fine-tune.
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Figure 10: Performance comparison of different methods on 11 datasets.

B Time Cost of FD-Align

Table 5 shows the time cost of fully fine-tuning and FD-Align on 1-shot ImageNet. Evidently,
FD-Align introduces only a negligible increase in time overhead. It is noteworthy that during the
inference phase, both FD-Align and fully fine-tuning share identical processes, resulting in consistent
inference cost. A significant advantage of FD-Align is its ability to boost performance across varied
methodologies with just fine-tuning once.

METHOD Time

Fully Fine-tuning 7min 9s
FD-Align 8min 53s

Table 5: Time cost of Fully Fine-tuning and FD-Align.

C More Results on OOD Datasets

We also evaluate the performance of fully fine-tuned models on the OOD dataset. All models
are trained on miniImageNet and performance is tested on other datasets. As shown in Table 6,
our method performs better on Meta-Dataset, but worse on BSCDFSL. After analysis, we believe
that the reason is that the model is fine-tuned on miniImageNet, which mainly contains natural
image information, so the model better retains the domain information of natural images. However,
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BSCDFSL mainly contains satellite images, medical images, and other nonnatural images, and our
model fine-tuning does not retain the domain information of these datasets. Furthermore, our model
affects the classification ability in the classification process. Therefore, on such datasets, our method
may be slightly degraded compared to the direct fine-tuning of CLIP.

Dataset
5way-1shot 5way-5shot

FT WiSE-FT FD-Align FT WiSE-FT FD-Align
M

et
a-

da
ta

se
t

mini_test 94.15±0.19 93.55±0.17 95.04±0.18 98.13±0.12 98.44±0.06 98.52±0.07
cub-test 80.78±0.69 81.16±0.71 82.38±0.69 92.95±0.29 93.41±0.32 93.87±0.24
Textures 64.77±0.12 63.55±0.19 66.05±0.12 82.57±0.46 83.31±0.31 83.60±0.34

Traffic Signs 62.92±0.36 60.84±0.29 57.32±0.26 77.95±0.31 78.11±0.24 73.39±0.29
Aircraft 63.44±0.69 62.64±0.62 63.45±0.65 77.66±0.52 77.66±0.59 78.21±0.58

Omniglot 80.48±0.35 83.56±0.28 83.81±0.25 93.65±0.15 95.26±0.09 94.81±0.19
VGG Flower 93.81±0.11 94.16±0.23 93.50±0.24 98.81±0.11 99.06±0.09 98.95±0.09
MSCOCO 68.74±0.35 67.28±0.32 66.05±0.12 81.00±0.31 81.08±0.35 81.37±0.24

Quick Draw 63.07±0.44 62.54±0.59 64.49±0.58 82.11±0.41 82.78±0.37 82.78±0.28
Fungi 53.90±0.14 53.10±0.27 53.83±0.3 72.28±0.13 73.28±0.10 73.69±0.14

B
SC

D
FS

L Plant Disease 73.99±0.35 75.66±0.33 75.13±0.33 90.27±0.38 91.78±0.31 91.84±0.19
ISIC 29.66±0.44 29.40±0.34 28.84±0.44 40.27±0.39 39.54±0.40 38.91±0.44

EuroSAT 64.49±0.34 63.99±0.39 60.39±0.43 81.14±0.25 80.96±0.19 77.25±0.16
ChestX 21.76±0.24 22.27±0.28 22.31±0.17 23.88±0.17 25.08±0.14 24.95±0.15

D
om

ai
nN

et Real 92.48±0.20 89.96±0.26 92.45±0.28 97.22±0.05 97.16±0.02 97.36±0.04
Sketch 79.01±0.56 73.84±0.56 79.27±0.38 90.55±0.28 89.87±0.16 91.2±0.19

Infograph 65.48±0.27 61.93±0.47 65.61±0.17 81.52±0.48 80.87±0.30 82.02±0.37
Painting 79.34±0.31 74.92±0.33 79.06±0.32 90.98±0.16 90.26±0.22 91.37±0.21
Clipart 85.84±0.45 81.55±0.26 85.86±0.21 94.46±0.09 94.06±0.13 94.83±0.11

Table 6: Results on OODdataset. FT stands for fully fine-tuning; WiSE-FT stands for performance
after model fusion using Zero-Shot and fully fine-tuning; FD-Align stands for performance using our
method.
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