Appendix

A Postfix Transformation Conversion

Algorithm|1|is the pseudo-code for the convert the original feature transformation sequence I" to the
postfix notation based sequence Y. In detail, we first initialize a list T and two stacks S7 and So,
respectively. For each element 7 in I', we scan it from left to right. When getting a feature ID token,
we push it to S2. When receiving a left parenthesis, we push it to S;. When obtaining any operations,
we pop each element in S7 and push them into S5 until the last component of .Sy is the left bracket.
Then we push this operation into S; When getting a right parenthesis, we pop every element from
S1 and then push into S5 until we confront a left bracket. Then we remove this left bracket from
the top of S;. When the end of the input 7 encounters, we append every token from Ss into Y. If
this 7 is not the last element in I', we will append a <SEP> token to indicate the end of this 7. After
we process every element in I', we add <SOS> and <EOS> tokens to the beginning and end of T to
form the postfix notation-based transformation sequence Y = [y1, -+ ,7yas]. Each element in T is
a feature ID token, operation token, or three other special tokens. We convert each transformation
sequence through this algorithm and construct the training set with them.

Algorithm 1: Postfix transformation sequence conversion

input :Feature transformation sequence I"
output : Postfix notation based transformation sequence Y

1Y 0

2 for 7 < I"do

3 S1,89 +— @, 0;

4 for v < 7 do

5 if -y is left bracket then

6 | Si.push(7);

7 else if v is right bracket then

8 while ¢ < S;.pop() is not left bracket do
9 | S2.push(t);
10 else if v is operation then

11 while S;.peek() is not left bracket do
12 | S2.push(Si.pop());

13 Sy.push(7);
14 else

15 | Sa.push(v);

16 while Ssnot = () do

17 | T.append(Sa.pop(0));

18 if 7 is not the last element then
19 | | Y.append(<SEP>);

20 Add <SOS> and <EOS> to the head and tail of Y respectively;
21 return Y

B Experimental Settings and Reproducibility

B.1 Hyperparameter Settings and Reproducibility

The operation set consists of square root, square, cosine, sine, tangent, exp, cube, log, reciprocal,
quantile transformer, min-max scale, sigmoid, plus, subtract, multiply, divide. For the data collec-
tion part, we ran the RL-based data collector for 512 epochs to collect a large amount of feature
transformation-accuracy pairs. For the data augmentation part, we randomly shuffled each transfor-
mation sequence 12 times to increase data diversity and volume. We adopted a single-layer LSTM

12

Table 3: Time complexity comparison between MOAT and DIFER
Model Data Collection = Model Solution

Dataset Name 512 instances Training Searching Performance

Wine Red MOAT 921.6 5779.2 101.2 0.559
Wine White ~ MOAT 2764.8 7079.6 103.4 0.536
Openml_618 MOAT 4556.8 30786.1 111.3 0.692
Openml_589 MOAT 4044.8 8942.3 105.2 0.656

Wine Red DIFER 323.2 11 180 0.476
Wine White DIFER 1315.8 33 624 0.507
Openml_618 DIFER 942.3 33 534 0.408
Openml_589 DIFER 732.5 157 535 0.463

Table 4: Space complexity comparison on MOAT with different dataset

Dataset Sample Number Column Number Parameter Size
Airfoil 1503 5 139969
Amazon employee 32769 9 138232
ap_omentum_ovary 275 10936 155795
german_credit 1001 24 141127
higgs 50000 28 141899
housing boston 506 13 139004
ionosphere 351 34 143057
lymphography 148 18 139969
messidor_features 1150 19 140162
openml_620 1000 25 141320
pima_indian 768 8 138039
spambase 4601 57 147496
spectf 267 44 144987
svmguide3 1243 21 140548
uci_credit_card 30000 25 141127
wine_red 999 12 138618
wine_white 4900 12 138618
openml_586 1000 25 141320
openml_589 1000 25 141320
openml_607 1000 50 146145
openml_616 500 50 146145
openml_618 1000 50 146145
openml_637 500 50 146145

as the encoder and decoder backbones and utilized 3-layer feed-forward networks to implement
the predictor. The hidden state sizes of the encoder, decoder and predictor are 64, 64, and 200,
respectively. The embedding size of each feature ID token and operation token was set to 32. To train
MOAT, we set the batch size as 1024, the learning rate as 0.001, and A as 0.95 respectively. For
inferring new transformation sequences, we used top-20 records as the seeds with beam size 5.

B.2 Experimental Platform Information

All experiments were conducted on the Ubuntu 18.04.6 LTS operating system, AMD EPYC 7742
CPU, and 8 NVIDIA A100 GPUs, with the framework of Python 3.9.10 and PyTorch 1.8.1.

C Experimental Results

C.1 Time complexity analysis.

To analyze the time complexity of MOAT, we selected the SOTA model DIFER as a comparison
baseline. Figure 3| shows the time costs of data collection, model training, and solution searching in
terms of seconds. We let both MOAT and DIFER collect 512 instances in the data collection phase.
We found that the increased time costs for MOAT occur in the data collection and model training
phases. However, once the model converges, MOAT °’s inference time is significantly reduced. The
underlying driver is that the RL-based collector spends more time gathering high-quality data, and the

13

() Search Time -e- Sample Size () Search Time % Feature Num. S
| Q]
)
Y/ 7
% $9 %
O i) L
Py 2 = =
8 &5 8 5
2 S 09 o ‘a: S o
A g o9 H
£ vt E =
[~ =
o N 12
¢ S 2, o)
N ’70%,7”’76/,, f%@ Sz ;%05 /"7%0%/, 7080, oty 0oy, g
Sre Sty S0y, n g, o 675 e
(a) Sample Size (b) Feature Number
Figure 6: Scalability check of MOAT in search time based on sample size and feature number.
n=4 n= a=0.20 a=0.15
0\98 0. 9/8 0\94 0. §§A
\ s
=5 heg / \ g6 ") 95 9=010
n=6 ©:98-0-98-6:84 98 n=1 694 0=0.05

09

029

3 4
n=10 a=0.50

== Precision
Recall
- F1-Score

(a) Search Step Size n (under « = 0.05) (b) Training Trade-off o (under n = 1)
Figure 7: Parameter sensitivity on search step size 17 and trade-off parameter o on Spectf dataset.

== Precision
Recall
-®- F1-Score

sequence formulation for the entire feature space increases the learning time cost for the sequential
model. But, during inference, MOAT outputs the entire feature transformation at once, whereas
DIFER requires multiple reconstruction iterations based on the generated feature space’s dimension.
The less inference time makes MOAT more practical and suitable for real-world scenarios.

C.2 Space Complexity Analysis.

To analyze the space complexity of MOAT, we illustrate the parameter size of MOAT when
confronted with different datasets. Table [shows the comparison results. We can find that the model
size of MOAT keeps relatively stable without significant fluctuations. The underlying driver is that
the encoder-evaluator-decoder learning paradigm can embed the knowledge of discrete sequences
with variant lengths into a fixed-length embedding vector. Thus, such an embedding process can make
the parameter size to be stable instead of increasing as the data size grows. Thus, this experiment
indicates that MOAT has good scalability when confronted with different scaled datasets.

C.3 Scalability Check

We visualized the changing trend of the time cost of searching for better feature spaces over sample
size and feature dimensions of different datasets. Figure[6] shows the comparison results. We found
that the time cost of MOAT keeps stable with the increase of sample size of the feature set. A possible
reason is that MOAT only focuses on the decision-making benefits of feature ID and operation tokens
instead of the information of the entire feature set, making the searching process sample size irrelevant.
Another interesting observation is that the search time is still stable although the feature dimension of
the feature set varies significantly. A possible explanation is that we map transformation records of
varying lengths into a continuous space with a constant length. The searching time in this space is
input dimensionality-agnostic. Thus, this experiment shows the MOAT has excellent scalability.

C.4 Parameter sensitivity analysis

To validate the parameter sensitivity of the search step size 1 (See section and the trade-off
parameter « in the training loss (See section [3.4), we set the value of 7) from 1 to 10, and set the value
of a from 0.05 to 0.50 to observe the difference. Figure[7]shows the comparison results in terms of
precision, recall, and F1-score. When the search step size grows, the downstream ML performance
initially improves, then declines marginally. A possible reason for this observation is that a too-large

14

40

30

20

o., -“ff . "
B a\‘.)

LRI &

' -

40

30

20

o2
e

-20 -10 0 10 20 30

(a) Openml_616

(b) Airfoil

Figure 8: The visualization of learned transformation sequence embedding (from MOAT).

Original Feature Set

dioxide]
[fixéd acidity "

loitric acidlq_gcore:0.456

[chlorides]

[residual sugar] .
[density] [sulnlm[«‘?s’]a””.l=l ity]

MOAT Generated Feature Set

idity] - [alcohol]

[residual sugar]
qTrans(...) - [...] - qTrans(...)

[density] F1-Score:0.559 [alcohol]x(...)-
[ETE)
([alcohol]x(...) - () x(...)

() - qTrans(sin([alcohol] - [...]) [chlorides]
EHoL ((minmax(L..]))x[..]) - ()

(a) Original Feature Space (b) MOAT Generated Feature Space
Figure 9: Comparison of traceability on the original feature space and the MOATgenerated one.

step size may make the gradient-ascent search algorithm greatly vibrate in the continuous space,
leading to missing the optimal embedding point and transformed feature space. Another interesting
observation is that the standard deviation of the model performance is lower than 0.01 under different
parameter settings. This observation indicates that MOAT is not sensitive to distinct parameter
settings. Thus, the learning and searching process of MOAT is robust and stable.

C.5 Learned embedding Analysis.

We selected Airfoil and Openml_616 as examples to visualize their learned continuous embedding
space. In detail, we first collected the latent embeddings generated by the transformation records.
Then, we use T-SNE to map them into a 2-dimensional space for visualization. Figure [§] shows
the visualization results, in which each point represents a unique feature transformation sequence.
The size of each point means its downstream performance. The bigger point size indicates that
the downstream performance is superior. We colored the top 20 embedding points according to
the performance in red. We found that the distribution locations of the top 20 embedding points
are different. A potential reason is that the corresponding transformation sequences of the top 20
embedding points are different lengths. The sequence reconstruction loss distributes them to different
areas of the embedding space. Moreover, we observed that the top 20 embedding points are close
in the space even though the positions are different. The underlying driver is that the estimation
loss makes these points with good performance clustered. Thus, this case study reflects that the
reconstruction loss and estimation loss make the continuous space associate the transformation
sequence and the corresponding model performance.

C.6 Traceability case study

We selected the top 10 essential features for prediction in the original, and MOAT transformed feature
space of the Wine Quality Red dataset for comparison. Figure[9]shows the comparison results. The
texts associated with each pie chart are the corresponding feature name. The larger the pie area is, the
more critical the feature is. We found that almost 70% critical features in the new feature space are
generated by MOAT and they improve the downstream ML performance by 22.6%. This observation

15

indicates that MOAT really comprehends the properties of the feature set and ML models in order to
produce a more effective feature space. Another interesting finding is that ‘[alcohol]’ is the essential
feature in the original feature set. But MOAT generates more mathematically composited features
using ‘[alcohol]’. This observation reflects that MOAT not only can capture the significant features
but also produce more effective knowledge for enhancing the model performance. Such composited
features can make domain experts trace their ancestor resources and summarize new analysis rules
for evaluating the quality of red wine.

D Compared MOATwith SOTAs

Recent studies tried to convert the feature transformation into a continuous optimization task to search
the optimal feature space efficiently. DIFER [§]] is a cutting-edge method that is comparable to our
work in problem formulation. However, the following constraints limit its practicality: 1) DIFER col-
lects transformation-accuracy data at random, resulting in many invalid training data with inconsistent
transformation performances; 2) DIFER embeds and reconstructs each transformed feature separately
and, thus, ignores feature-feature interactions; 3) DIFER needs to manually decide the number of
generated features, making the reconstruction process ad-hoc. 4) the greedy search for transformation
reconstruction in DIFER leads to suboptimal transformation results. To fill these gaps, we first
implement an RL-based data collector to automate high-quality transformation record collection. We
then leverage the postfix expression idea to represent the entire transformation operation sequence to
model feature interactions and automatically identify the number of reconstructed features. Moreover,
we employ beam search to advance the robustness, quality, and validity of transformation operation
sequence reconstruction.

16

	Postfix Transformation Conversion
	Experimental Settings and Reproducibility
	Hyperparameter Settings and Reproducibility
	Experimental Platform Information

	Experimental Results
	Time complexity analysis.
	Space Complexity Analysis.
	Scalability Check
	Parameter sensitivity analysis
	Learned embedding Analysis.
	Traceability case study

	Compared MOATwith SOTAs

