Reinforcement-Enhanced Autoregressive Feature
Transformation: Gradient-steered Search in
Continuous Space for Postfix Expressions

Dongjie Wang* Meng Xiao* Min Wu

Department of CS CNIC, CAS Institute for Infocomm Research
University of Central Florida University of CAS A*STAR
dongjie.wang@ucf.edu shaow@cnic.cn wumin@i2r.a-star.edu.sg

Pengfei Wang Yuanchun Zhou Yanjie Fuf

CNIC, CAS CNIC, CAS School of Computing and Al

University of CAS University of CAS Arizona State University
wpf@cnic.cn zyc@cnic.cn yanjiefu@asu.edu
Abstract

Feature transformation aims to generate new pattern-discriminative feature space
from original features to improve downstream machine learning (ML) task perfor-
mances. However, the discrete search space for the optimal feature explosively
grows on the basis of combinations of features and operations from low-order
forms to high-order forms. Existing methods, such as exhaustive search, expansion
reduction, evolutionary algorithms, reinforcement learning, and iterative greedy,
suffer from large search space. Overly emphasizing efficiency in algorithm design
usually sacrifices stability or robustness. To fundamentally fill this gap, we refor-
mulate discrete feature transformation as a continuous space optimization task and
develop an embedding-optimization-reconstruction framework. This framework
includes four steps: 1) reinforcement-enhanced data preparation, aiming to prepare
high-quality transformation-accuracy training data; 2) feature transformation oper-
ation sequence embedding, intending to encapsulate the knowledge of prepared
training data within a continuous space; 3) gradient-steered optimal embedding
search, dedicating to uncover potentially superior embeddings within the learned
space; 4) transformation operation sequence reconstruction, striving to reproduce
the feature transformation solution to pinpoint the optimal feature space. Finally,
extensive experiments and case studies are performed to demonstrate the effec-
tiveness and robustness of the proposed method. The code and data are publicly
accessible https://www.dropbox.com/sh/imh8ckui7va3k5u/AACulQegVxOMuywYyoCqSdVPa?d1=0.

1 Introduction

Feature transformation aims to derive a new feature space by mathematically transforming the original
features to enhance the downstream ML task performances. However, feature transformation is
usually manual, time-consuming, labor-intensive, and requires domain knowledge. These limitations
motivate us to accomplish Automated Feature Transformation (AFT). AFT is a fundamental task
because AFT can 1) reconstruct distance measures, 2) form a feature space with discriminative
patterns, 3) ease machine learning, and 4) overcome complex and imperfect data representation.

There are two main challenges in solving AFT: 1) efficient feature transformation in a massive
discrete search space; 2) robust feature transformation in an open learning environment. Firstly, it

*These authors have contributed equally to this work.
"Corresponding Author

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://www.dropbox.com/sh/imh8ckui7va3k5u/AACulQegVx0MuywYyoCqSdVPa?dl=0

is computationally costly to reconstruct the optimal feature space from a given feature set. Such
reconstruction necessitates a transformation sequence that contains multiple combinations of features
and operations. Each combination indicates a newly generated feature. Given the extensive array
of features and operations, the quantity of possible feature-operation combinations exponentially
grows, further compounded by the vast number of potential transformation operation sequences. The
efficiency challenge seeks to answer: how can we efficiently identify the best feature transformation
operation sequence? Secondly, identifying the best transformation operation sequence is unstable
and sensitive to many factors in an open environment. For example, if we formulate a transformation
operation sequence as a searching problem, it is sensitive to starting points or the greedy strategy
during iterative searching. If we identify the same task as a generation problem, it is sensitive to
training data quality and the complexity of generation forms. The robustness challenge aims to
answer: how can we robustify the generation of feature transformation sequences?

Prior literature partially addresses the two challenges. Existing AFT algorithms can be grouped into
three categories: 1) expansion-reduction approaches [[1} 2} 3], in which all mathematical operations
are randomly applied to all features at once to generate candidate transformed features, followed
by feature selection to choose valuable features. However, such methods are based on random
generation, unstable, and not optimization-directed. 2) iterative-feedback approaches [4, 3, |6]], in
which feature generation and selection are integrated, and learning strategies for each are updated
based on feedback in each iteration. Two example methods are Evolutionary Algorithms (EA) or
Reinforcement Learning (RL) with downstream ML task accuracy as feedback. However, such
methods are developed based on searching in a massive discrete space and are difficult to converge in
comparison to solving a continuous optimization problem. 3) Neural Architecture Search (NAS)-
based approaches [7,8]. NAS was originally to identify neural network architectures using a discrete
search space containing neural architecture parameters. Inspired by NAS, some studies formulated
AFT as a NAS problem. However, NAS-based formulations are slow and limited in modeling all
transformation forms. Existing studies show the inability to jointly address efficiency and robustness
in feature transformation. Thus, we need a novel perspective to derive a novel formulation for AFT.

Our Contribution: A Postfix Expression Embedding and Generation Perspective. To fun-
damentally fill these gaps, we formulate the discrete AFT problem as a continuous optimization
task and propose a reinforceMent-enhanced autOregressive feAture Transformation framework,
namely MOAT. To advance efficiency and robustness, this framework implements four steps: 1)
reinforcement-enhanced training data preparation; 2) feature transformation operation sequence
embedding; 3) gradient-steered optimal embedding search; 4) beam search-based transformation
operation sequence reconstruction. Step 1 is to collect high-quality transformation operation sequence-
accuracy pairs as training data. Specifically, we develop a cascading reinforcement learning structure
to automatically explore transformation operation sequences and test generated feature spaces on
a downstream predictor (e.g., decision tree). The self-optimizing policies enable agents to collect
high-quality transformation operation sequences. The key insight is that when training data is difficult
or cost expensive to collect, reinforcement intelligence can be used as an automated training data
collector. Step 2 is to learn a continuous embedding space from transformation-accuracy training data.
Specifically, we describe transformation operation sequences as postfix expressions, each of which
is mapped into an embedding vector by jointly optimizing the transformation operation sequence
reconstruction loss and accuracy estimation loss. Viewing feature transformation through the lens
of postfix expressions offers the chance to mitigate the challenges associated with an exponentially
expanding discrete search problem. By recasting the feature transformation operation sequence
in postfix form, the search space becomes smaller, as each generation step involves selecting a
single alphabetical letter pertaining to a feature or mathematical operation, rather than considering
high-order expansions. Moreover, this postfix form captures feature-feature interaction information
and empowers the generation model with the capacity to autonomously determine the optimal number
and segmentation way of generated features. Step 3 is to leverage the gradient calculated from the
improvement of the accuracy evaluator to guide the search for the optimal transformation operation
sequence embedding. Step 4 is to develop a beam search-based generative module to reconstruct
feature transformation operation sequences from embedding vectors. Each sequence is used to
obtain a transformed feature space, and subsequently, the transformed space that yields the highest
performance in the downstream ML task is identified as the optimal solution. Finally, we present
extensive experiments and case studies to show the effectiveness and superiority of our framework.

2 Definitions and Problem Statement
2.1 Important Definitions

Operation Set. To refine the feature space for improving the downstream ML models, we need
to apply mathematical operations to existing features to generate new informative features. All
operations are collected in an operation set, denoted by O. Based on the computation property, these
operations can be classified as unary operations and binary operations. The unary operations such as

non non "non

"square"”, "exp", "log", etc. The binary operations such as "plus", "multiply", "minus", etc.

Cascading Agent Structure. We create a cascading agent structure comprised of head feature
agent, operation agent, and tail feature agent to efficiently collect quantities of high-quality feature
transformation records. The selection process of the three agents will share the state information and
sequentially select candidate features and operations for refining the feature space.

Feature Transformation Operation Sequence. Assuming that D = {X,y} is a dataset,
which includes the original feature set X = [f1,---,fn] and predictive targets .
As shown in Figure [} we transform the existing

ones using mathematical compositions 7 consistin

of featuregID tokens and operzll)tions to generate ne\% il CEE=) =) = (VR e ()
and informative features. K transformation composi- Figure 1: An example of feature transforma-
tions are adopted to refine X to a better feature space tion sequence: 7(,) indicates the generated
X =[f1, -, [k]. The collection of the K compo- feature that is the combination of original fea-
sitions refers to the feature transformation sequence, tures and mathematical operations.

which is denoted by T = [rq, - - - , Tk].

(fi + f2)

2.2 Problem Statement

We aim to develop an effective and robust deep differentiable automated feature transformation
framework. Formally, given a dataset D = {X, y} and an operation set O, we first build a cascading
RL-agent structure to collect n feature transformation accuracy pairs as training data, denoted by R =
{(Ts, v;) }i_,, where T'; is the transformation sequence and v; is the associated downstream predictive
performance. We pursue two objectives thereafter: 1) building an optimal continuous embedding
space for feature transformation sequences. We learn a mapping function ¢, a reconstructing
function v, and an evaluation function w to convert R into a continuous embedding space £ via
joint optimization. In £, each embedding point is associated with a feature transformation sequence
and corresponding predictive performance. 2) identifying the optimal feature space. We adopt a
gradient-based search to find the optimal feature transformation sequence I'*, given by:

I = ¢ (E") = argmaxg g AM((E) (X)),), (1)

where 1) can reconstruct a feature transformation sequence from any embedding point of £; E is
an embedding vector in £ and E* is the optimal one; M is the downstream ML model and A is
the performance indicator. Finally, we apply I'* to transform X to the optimal feature space X*
maximizing the value of A.

3 Methodology

3.1 Framework Overview

Figure [2] shows the framework of MOAT including four steps: 1) reinforcement-enhanced
transformation-accuracy data preparation; 2) deep postfix feature transformation operation sequence
embedding; 3) gradient-ascent optimal embedding search; 4) transformation operation sequence re-
construction. In Step 1, a cascading agent structure consisting of two feature agents and one operation
agent is developed to select candidate features and operators for feature crossing. The transformed
feature sets are applied to a downstream ML task to collect the corresponding accuracy. The data
collection process is automated and self-optimized by policies and feedback in reinforcement learning.
We then convert these feature transformation operation sequences into postfix expressions. In Step
2, we develop an encoder-evaluator-decoder model to embed transformation operation sequence-
accuracy pairs into a continuous embedding space by jointly optimizing the sequence reconstruction
loss and performance evaluation loss. In detail, the encoder maps these transformation operation

sequences into continuous embedding vectors; the evaluator assesses these embeddings by predicting
their corresponding model performance; the decoder reconstructs the transformation sequence using
these embeddings. In Step 3, we first learn the embeddings of top-ranking transformation operation
sequences by the well-trained encoder. With these embeddings as starting points, we search along
the gradient induced by the evaluator to find the acceptable optimal embeddings with better model
performances. In Step 4, the well-trained decoder then decodes these optimal embeddings to generate
candidate feature transformation operation sequences through the beam search. We apply the feature
transformation operation sequences to original features to reconstruct refined feature spaces and
evaluate the corresponding performances of the downstream predictive ML task. Finally, the feature
space with the highest performance is chosen as the optimal one.

Transformation Sequence

Policy: Expre | Bl

Transformation-accuracy Data Preparation Deep Feature Transformation Embedding N . .
,,,,,,,,,,,,,,, Reconstruction and Evaluation
Original Reinforcement Learning Feature Postfix | : [EEEEEE Decoder Decoder with Beam Search |
Feature Set Based Data Collector Transformation! | Notation Based | E VI QAR Lo
ncoder i ISk
Records Records A0e8 — " BEE
Head Feature Agent 8 IT1T1™ o 2
Feature f1 R SIGIS
State: ep(X; o
Feature f2 b S (T ser
Policy: | Exvlore _ Explot |
Feature ¢ | Eval:0.72 vl : aQe Lost
eature f3 A St) L) i gl E t o
L1 Action Ly -l Embeddings LS 8 / ”‘ / ‘
Feature fy B
Feature f5 Operation Agent Seqifi + il VT Seq: ExwsEs s>)
. | Rep(X)&Rep(fu) Eval: 069 Eval: 069 Gradient-ascent Optimal Embedding Search
Feature fo e - — P! f\, "
: Poloy: [Ewas]f ot —Beam 1 —Boam2
= Action: o Seq: (ot £
Eval:0.74 N
- - Tail Feature Agent —_ o x| Fro BT
State: FlXER SR © o pET AN
- O e adudo fi
o ==
5
wrm

Downslr’e_f‘tm Model

Seq: emmswem® | | Records
Eval: 0.76 As Seeds

\
|
! 4
"l

\Unary Tep0n0 b Action: Je Top-T

= [e S

|
|

Record: I

Generaied Optimal Feature Space
. " X"k fi.f2. 05 00

Figure 2: An overview of our framework. MOAT consists of four main components: 1)
transformation-accuracy data preparation; 2) deep feature transformation embedding; 3) gradient-
ascent optimal embedding search; 4) transformation sequence reconstruction and evaluation.

3.2 Reinforcement Training Data Preparation

Why Using Reinforcement as Training Data Collector. Our extensive experimental analysis
shows that the quality of embedding space directly determines the success of feature transformation
operation sequence construction. The quality of the embedding space is sensitive to the quality and
scale of transformation sequence-accuracy training data: training data is large enough to represent the
entire distribution; training data include high-performance feature transformation cases, along with
certain random exploratory samples. Intuitively, we can use random sample features and operations
to generate feature transformation sequences. This strategy is inefficient because it produces many
invalid and low-quality samples. Or, we can use existing feature transformation methods (e.g.,
AutoFeat [2]) to generate corresponding records. However, these methods are not fully automated
and produce a limited number of high-quality transformation records without exploration ability. We
propose to view reinforcement learning as a training data collector to overcome these limitations.

Reinforcement Transformation-Accuracy Training Data Collection. Inspired by [4, 9], we
formulate feature transformation as three interdependent Markov decision processes (MDPs). We
develop a cascading agent structure to implement the three MDPs. The cascading agent structure
consists of a head feature agent, an operation agent, and a tail feature agent. In each iteration, the
three agents collaborate to select two candidate features and one operation to generate a new feature.
Feedback-based policy learning is used to optimize the exploratory data collection to find diversified
yet quality feature transformation samples. To simplify the description, we adopt the i-th iteration as
an example to illustrate the reinforcement data collector. Given the former feature space as X;, we
generate new features X, using the head feature fj,, operation o, and tail feature f; selected by the
cascading agent structure.

1) Head feature agent. This learning system includes: State: is the vectorized representation of X;.
Let Rep(-) be a state representation method, and the state can be denoted by Rep(X;). Action: is the
head feature fj, selected from X; by the reinforced agent.

2) Operation agent. This learning system includes: State: includes the representation of X; and
the head feature, denoted by Rep(X;) @ Rep(fr), where @ indicates concatenation. Action: is the
operation o selected from the operation set O.

3) Tail feature agent. This learning system includes: State: includes the representation of X;, selected
head feature, and operation, denoted by Rep(X;) & Rep(fr) ® Rep(o). Action: is the tail feature f;
selected from X; by this agent.

4) State representation method, Rep(-). For the representation of the feature set, we employ a
descriptive statistical technique to obtain the state with a fixed length. In detail, we first compute the
descriptive statistics (i.e. count, standard deviation, minimum, maximum, first, second, and third
quantile) of the feature set column-wise. Then, we calculate the same descriptive statistics on the
output of the previous step. After that, we can obtain the descriptive matrix with shape R”*7 and
flatten it as the state representation with shape R'*4°. For the representation of the operation, we
adopt its one-hot encoding as Rep(0).

5) Reward function. To improve the quality of the feature space, we use the improvement of a
downstream ML task performance as the reward. Thus, it can be defined as: R(X;, X;+1) =

AM(Xit1),y) — AM(X:),y).

6) Learning to Collect Training Data. To optimize the entire procedure, we minimize the mean
squared error of the Bellman Equation to get a better feature space. During the exploration process, we
can collect amounts of high-quality records (I, v) for constructing an effective continuous embedding
space, where I is the transformation sequence, and v is the downstream model performance.

3.3 Postfix Expressions of Feature Transformation Operation Sequences

Why Transformation Operation Sequences as Postfix Expressions. After training data collection,
a question arises: how can we organize and represent these transformation operation sequences in a
computationally-tangible and machine-learnable format?

Figure[3](a) shows an example of a feature trans- 1 To

formation operation sequence with two gener- (x4 (7,/f) — f2), (V)

ated features. To convert this sequence into a (a) Feature transformation Sequence

machine-readable expression, a naive idea is to

enclose each calculatlijon in a pair of brackets to @ @ @ @ @ @ @ @ @
indicate its priority (Figure b)) But, the repre- (b) Original infix notation based sequence

sentation of Figure [3(b) has four limitations: (1) HGHHOGHEO® R

Redundancy. Many priority-related brackets are (c) Postfix notation based sequence

included to ensure the unambiguous property

and correctness of mathematical calculations. Figure 3: Compared to infix-based expressions,
(2) Semantic Sparsity. The quantity of bracket postfix-based expressions optimize token redun-
tokens can dilute the semantic information of dancy, enhance semantics, prevent illegal transfor-
the sequence, making model convergence diffi- mations, and minimize the search space.

cult. (3) Illegal Transformation. If the decoder makes one mistake on bracket generation, the entire
generated sequence will be wrong. (4) Large Search Space. The number of combinations of features
and operations from low-order to high-order interactions is large, making the search space too vast.

Using Postfix Expression to Construct Robust, Concise, and Unambiguous Sequences. To
address the aforementioned limitations, we convert the transformation operation sequence I into a
postfix-based sequence expression. Specifically, we scan each mathematical composition 7 in I' from
left to right and convert it from the infix-based format to the postfix-based one. We then concatenate
each postfix expression by the <SEP> token and add the <SOS> and <EOS> tokens to the beginning
and end of the entire sequence. Figure [3[c) shows an example of such a postfix sequence. We denote
itas T = [y, ,var), Where each element is a feature ID token, operation token, or three other
unique tokens. The detailed pseudo code of this conversion process is provided in Appendix

The postfix sequences don’t require numerous brackets to ensure the calculation priority. We only
need to scan each element in the sequence from left to right to reconstruct corresponding transformed
features. Such a concise and short expression can reduce sequential modeling difficulties and
computational costs. Besides, a postfix sequence indicates a unique transformation process, thus,
reducing the ambiguity of the feature transformation sequence. Moreover, the most crucial aspect is
the reduction of the search space from exponentially growing discrete combinations to a limited token
set C that consists of the original feature ID tokens, operation tokens, and other three unique tokens.
The length of the token set is |O| + | X | 4 3, where | O] is the number of the operation set, | X| is the
dimension of the original feature set, and 3 refers to the unique tokens <SOS>, <SEP>, <EOS>.

Data Augmentation for Postfix Transformation Sequences. Big and diversified transformation
sequence records can benefit the learning of a pattern discriminative embedding space. Be sure to
notice that, a feature transformation sequence consists of many independent segmentations, each of
which is the composition of feature ID and operation tokens and can be used to generate a new feature.
These independent segmentations are order-agnostic. Our idea is to leverage this property to conduct
data augmentation to increase the data volume and diversity. For example, given a transformation
operation sequence and corresponding accuracy {Y, v}, we first divide the postfix expression into
different segmentations by <SEP>. We then randomly shuffle these segmentations and use <SEP> to
concatenate them together to generate new postfix transformation sequences. After that, we pair the
new sequences with the corresponding model accuracy performance to improve data diversity and
data volume for better model training and to create the continuous embedding space.

3.4 Deep Feature Transformation Embedding

After collecting and converting large-scale feature transformation training data to a set of postfix
expression-accuracy pairs {(1;, v;)},, we develop an encoder-evaluator-decoder structure to map
the sequential information of these records into an embedding space. Each embedding vector is
associated with a transformation operation sequence and its corresponding model accuracy.

Encoder ¢: The Encoder aims to map any given postfix expression to an embedding (a.k.a., hidden
state) E. We adopt a single layer long short-term memory [[10] (LSTM) as Encoder and acquire the
continuous representation of Y, denoted by E = ¢(T) € R™*4, where M is the total length of
input sequence Y and d is the hidden size of the embedding.

Decoder : The Decoder aims to reconstruct the postfix expression of the feature transformation
operation sequence Y from the hidden state E. In MOAT, we set the backbone of the Decoder as a
single-layer LSTM. For the first step, 1) will take an initial state (denoted as k) as input. Specifically,
in step-i, we can obtain the decoder hidden state h¢ from the LSTM. We use the dot product attention
to aggregate the encoder hidden state and obtain the combined encoder hidden state h{. Then, the
d e

distribution in step-j can be defined as: Py (v;|E, YT<;) = Zexfg;”(iv(‘z ﬁ: 675)}3‘?)) , where ; € T is the
i-th token in sequence Y, and C is the token set. W stand for tlclg parameterlof the feedforward network.
T .; represents the prediction of the previous or initial step. By multiplying the probability in each
step, we can form the distribution of each token in Y, given as: Py (T |E) = Hf\il Py (v |E, T <;).
To make the generated sequence similar to the real one, we minimize the negative log-likelihood of
the distribution, defined as: £,... = —log Py (T|E).

Evaluator w: The Evaluator is designed to estimate the quality of continuous embeddings. Specifi-
cally, we will first conduct mean pooling on E by column to aggregate the information and obtain the
embedding E € RY. Then E is input into a feedforward network to estimate the corresponding model
performance, given as: ¢ = w(E). To minimize the gap between estimated accuracy and real-world
gold accuracy, we leverage the Mean Squared Error (MSE) given by: L. = MSE(v,w(E)).

Joint Training Loss £: We jointly optimize the encoder, decoder, and evaluator. The joint training

loss can be formulated as: £ = aLec + (1 —) Lest, where « is the trade-off hyperparameter that
controls the contribution of sequence reconstruction and accuracy estimation loss.

3.5 Gradient-Ascent Optimal Embedding Search

To conduct the optimal embedding search, we first select top-7 transformation sequences ranked by
the downstream predictive accuracy. The well-trained encoder is then used to embed these postfix
expressions into continuous embeddings, which later will be used as seeds (starting points) of gradient
ascent. Assuming that one search seed embedding is E, we search, starting from E, toward the

gradient direction induced by the evaluator w: E=E+ ng—g, where E denotes the refined embedding,
7 is the size of each searching step. The model performance of E is supposed to be better than E due
to w(E) > w(E). For T seeds, we can obtain the enhanced embeddings [E1, Es, -+ ,E7].

3.6 Transformation Operation Sequence Reconstruction and Evaluation

We reconstruct the transformation sequences by the well-trained decoder 1 using the collected

candidate (i.e., acceptable optimal) embeddings [El, E, - ,ET}. This process can be denoted
by: [El, Eg, . ,ET] LN {'i} }E_ . To identify the best transformation sequence, we adopt the

beam search strategy [[11}[12}[13] to generate feature transformation operation sequence candidates.
Specifically, given a refined embedding E, at step-t, we maintain the historical predictions with
beam size b, denoted as {Y%,}’_,. For the i-th beam, the probability distribution of the token
identified by the well-trained decoder v at the ¢-th step is is v, which can be calculated as follows:
Pi(v) = Py(v|E,TL,) * Py(Y%,|E), where the probability distribution P} () is the continued
multiplication between the probability distribution of the previous decoding sequence and that of
the current decoding step. We can collect the conditional probability distribution of all tokens for
each beam. After that, we append tokens with top-b probability values to the historical prediction
of each beam to get a new historical set {Y%, _H}li’:l. We can iteratively conduct this decoding
process until confronted with the <EOS> token. We select the transformation sequence with the
highest probability value as output. Hence, 1" enhanced embeddings may produce 7" transformation
sequences {Yl}szl We divide each of them into different parts according to the <SEP> token and
check the validity of each part and remove invalid ones. Here, the validity measures whether the
mathematical compositions represented by the postfix part can be successfully calculated to produce
a new feature. These valid postfix parts reconstruct a feature transformation operation sequence
{T;}L_,, which are used to generate refined feature space {X;}7_,. Finally, we select the feature set
with the highest downstream ML performance as the optimal feature space X*.

4 Experiments

This section reports the results of both quantitative and qualitative experiments that were performed
to assess MOAT with other baseline models. All experiments were conducted on AMD EPYC 7742
CPU, and 8 NVIDIA A100 GPUs. For more platform information, please refer to Appendix

4.1 Datasets and Evaluation Metrics

We used 23 publicly available datasets from UCI [[14], LibSVM [15]], Kaggle [16], and OpenML [17]
to conduct experiments. The 23 datasets involve 14 classification tasks and 9 regression tasks. Table[T]
shows the statistics of these datasets. We used F1-score, Precision, Recall, and ROC/AUC to evaluate
classification tasks. We used 1-Relative Absolute Error (1-RAE) [4], 1-Mean Average Error (1-MAE),
1-Mean Square Error (1-MSE), and 1-Root Mean Square Error (1-RMSE) to evaluate regression
tasks. We used the Valid Rate to evaluate the transformation sequence generation. A valid sequence
means it can successfully conduct mathematical compositions without any ambiguity and errors. The
valid rate is the average of all correct sequence numbers divided by the total number of generated
sequences. The greater the valid rate is, the superior the model performance is. Because it indicates
that the model can capture the complex patterns of mathematical compositions and search for more
effective feature transformation sequences.

4.2 Baseline Models

We compared our method with eight widely-used feature generation methods: (1) RDG generates
feature-operation-feature transformation records at random for generating new feature space; (2) ERG
first applies operation on each feature to expand the feature space, then selects the crucial features as
new features. (3) LDA [[18]] is a matrix factorization-based method to obtain the factorized hidden state
as the generated feature space. (4) AFAT [2]] is an enhanced version of ERG that repeatedly generate
new features and use multi-step feature selection to select informative ones. (5) NFS [7] models
the transformation sequence of each feature and uses RL to optimize the entire feature generation
process. (6) TTG [3] formulates the transformation process as a graph, then implements an RL-based
search method to find the best feature set. (7) GRFG [4] uses three collaborated reinforced agents to
conduct feature generation and proposes a feature grouping strategy to accelerate agent learning. (8)
DIFER [8] embeds randomly generated feature transformation records with a seq2seq model, then
employs gradient search to find the best feature set. MOAT and DIFER belong to the same setting.
We demonstrate the differences between them in Appendix ??. Besides, we developed two variants
of MOAT in order to validate the impact of each technical component: (i) MOAT ¢ replaces the
RL-based data collection component with collecting feature transformation-accuracy pairs at random.
(ii)) MOAT ~“ removes the data augmentation component. We randomly split each dataset into two
independent sets. The prior 80% is used to build the continuous embedding space and the remaining
20% is employed to test transformation performance. This experimental setting avoids any test data
leakage and ensures a fairer transformation performance comparison. We adopted Random Forest
as the downstream machine learning model. Because it is a robust, stable, well-tested method, thus,

Table 1: Overall performance comparison. ‘C’ for binary classification, and ‘R’ for regression. The
best results are highlighted in bold. The second-best results are highlighted in underline. (Higher
values indicate better performance.)

Dataset Source C/R Samples Features RDG ERG LDA AFAT NFS TTG GRFG DIFER MOAT
Higgs Boson UCIrvine C 50000 28 0.695 0.702 0.513 0.697 0.691 0.699 0.707 0.669 0.712
Amazon Employee Kaggle C 32769 9 0932 0934 0916 0930 0932 0933 0932 0929 0.936
Pimalndian UCIrvine C 768 8 0.760 0.761 0.638 0.765 0.749 0.745 0.754 0.760 0.807
SpectF UCIrvine C 267 44 0.760 0.757 0.665 0.760 0.792 0.760 0.818 0.766 0.912
SVMGuide3 LibSVM C 1243 21 0.787 0.826 0.652 0.795 0.792 0.798 0.812 0.773 0.849
German Credit UCIrvine C 1001 24 0.680 0.740 0.639 0.683 0.687 0.645 0.683 0.656 0.730
Credit Default UCIrvine C 30000 25 0.805 0.803 0.743 0.804 0.801 0.798 0.806 0.796 0.810
Messidor_features UCIrvine C 1150 19 0.624 0.669 0475 0.665 0.638 0.655 0.692 0.660 0.749
Wine Quality Red UCIrvine C 999 12 0466 0.461 0433 0480 0462 0467 0470 0476 0.559
Wine Quality White UCIrvine C 4900 12 0.524 0.510 0449 0516 0525 0.531 0.534 0.507 0.536
SpamBase UCIrvine C 4601 57 0906 0917 0.889 0912 0925 0919 0922 0912 0.932
AP-omentum-ovary OpenML C 275 10936 0.832 0.814 0.658 0.830 0.832 0.758 0.849 0.833 0.885
Lymphography UCIrvine C 148 18 0.108 0.144 0.167 0.150 0.152 0.148 0.182 0.150 0.267
Tonosphere UCIrvine C 351 34 0912 0921 0.654 0928 0913 0.902 0933 0.905 0.985
Housing Boston UCIrvine R 506 13 0.404 0409 0.020 0416 0425 0.396 0404 0.381 0.467
Airfoil UCIrvine R 1503 5 0.519 0.519 0220 0521 0.519 0.500 0.521 0.558 0.629
Openml_618 OpenML R 1000 50 0472 0.561 0.052 0472 0473 0467 0.562 0408 0.692
Openml_589 OpenML R 1000 25 0.509 0.610 0.011 0508 0.505 0.503 0.627 0.463 0.656
Openml_616 OpenML R 500 50 0.070 0.193 0.024 0.149 0.167 0.156 0.372 0.076 0.526
Openml_607 OpenML R 1000 50 0.521 0.555 0.107 0.516 0519 0.522 0.621 0.476 0.673
Openml_620 OpenML R 1000 25 0.511 0.546 0.029 0527 0513 0512 0.619 0442 0.642
Openml_637 OpenML R 500 50 0.136 0.152 0.043 0.176 0.152 0.144 0307 0.072 0.465
Openml_586 OpenML R 1000 25 0.568 0.624 0.110 0543 0.544 0544 0.646 0482 0.700

* We reported F1-Score for classification tasks, and 1-RAE for regression tasks.

1. 14

N N

Z\
4

7 ¥ 7

0.8

v

7 % 0.6
7 7 . o

0.4+

Z

\
§
\
§
\

AN

Kz

AR
)

vz
17

024 T

@ MOAT"
MOAT®

o B 72 NZE N

2
=
S
b

0.2+ |

AT TR
7222222222222

AN

\
7 N\
. \
% \
7 N

%

%,

17

V2722222222277
7722222222222

AT NN

22
AHHHHHHHHTHT N

o 8N 7 N7

(a) Spectf (b) SpamBase (c) Openml_616 (d) Openml_618
Figure 4: The influence of data collection (MOAT %) and data augmentation (MOAT %) in MOAT.

we can reduce performance variation caused by the model, and make it easy to study the impact of
feature space. We provided more experimental and hyperparameter settings in Appendix [B.1]

4.3 Performance Evaluation

Overall Performance This experiment aims to answer: Can MOAT effectively generate transfor-
mation sequence for discovering optimal feature space with excellent performance? Table[I]shows
the overall comparison between MOAT and other models in terms of Fl-score and 1-RAE. We
noticed that MOAT beats others on all datasets. The underlying driver is that MOAT builds an
effective embedding space to preserve the knowledge of feature transformation, making sure the
gradient-ascent search module can identify the best-transformed feature space following the gradient
direction. Another interesting observation is that MOAT significantly outperforms DIFER and has
a more stable performance. There are two possible reasons: 1) The high-quality transformation
records produced by the RL-based data collector provide a robust and powerful foundation for
building a discriminative embedding space; 2) Postfix notation-based transformation sequence greatly
decreases the search space, making MOAT easily capture feature transformation knowledge. Thus,
this experiment validates the effectiveness of MOAT.

Data collection and augmentation. This experiment aims to answer: Is it essential to conduct data
collection and augmentation to maintain the performance of MOAT ? To achieve this goal, we devel-
oped two model variants of MOAT: 1) MOAT 4, which randomly collects feature transformation
records for continuous space construction; 2) MOAT ~¢, which removes the data augmentation step
in MOAT. We select two classification tasks (i.e., Spectf and SpamBase) and two regression tasks
(i.e., Openml_616 and Openml_618) to show the comparison results. The results are reported in
the Figure 4 Firstly, we found that the performance of MOAT is much better than MOAT ~?. The
underlying driver is that high-quality transformation records collected by the RL-based collector build
a robust foundation for embedding space learning. It enables gradient-ascent search to effectively
identify the optimal feature space. Moreover, we observed that the performance of MOAT ~“ is infe-
rior to MOAT. This observation reflects that limited data volume and diversity cause the construction

Table 3: Time complexity comparison between MOAT and DIFER
Model Data Collection = Model Solution

Dataset Name 512 instances Training Searching Performance

Wine Red MOAT 921.6 5779.2 101.2 0.559
Wine White ~ MOAT 2764.8 7079.6 103.4 0.536
Openml_618 MOAT 4556.8 30786.1 111.3 0.692
Openml_589 MOAT 4044.8 8942.3 105.2 0.656

Wine Red DIFER 323.2 11 180 0.476
Wine White DIFER 1315.8 33 624 0.507
Openml_618 DIFER 942.3 33 534 0.408
Openml_589 DIFER 732.5 157 535 0.463

of embedding space to be unstable and noisy. Thus, this experiment shows the necessity of the data
collection and augmentation components in MOAT.

Beam search. This experiment aims to answer
What is the influence of beam search for improv-
ing the valid rate of generated transformation)
sequences? To observe the impacts of beam
search, we set the beam size as 5 and 1 respec-
tively, and add DIFER as another comparison
object. We compare the generation performance 20
in terms of valid rate. Figure[5|shows the com-
parison results in terms of valid rate. We no-
ticed that the 5-beams search outperforms the ™ . o
1-beam search. The underlying driver is that the ~ Figure 5: The influence of beam size in MOAT.
increased beam size can identify more legal and reasonable transformation sequences. Another
interesting observation is that DIFER is significantly worse than MOAT and its error bar is longer.
The underlying driver is that DIFER collects transformation records at random and it generates
transformation sequences using greedy search. The collection and generation ways involve more
random noises, distorting the learned embedding space.

() MOAT (5-Beams) @ DIFER
@ MOAT (1-Beam)

Valid Rate (%)

OV ary

Joyee jere capty Base
o) E‘;“: o 1onoSPE pnod o

SPAT Gredit

petat W write) 807
i

o Quat ope

NN

Robustness check. This experiment aims to

answer: Is MOAT robust to different down- Table 2: Robustness check of MOAT with distinct

stream machine learning models? We replaced ML models on Spectf dataset in terms of Fl-score.
the downstream ML models with Random For- RF—TXGB | SVM | RNN | Ridge | TASSO | DT
est (RF), XGBoost (XGB), Support Vector Ma- [RbG [0.760 | 0.818 | 0.750 | 0.792 | 0.718 | 0.749 | 0.864
chine (SVM), K-Nearest Neighborhood (RNN), | 50— G851 655-6 700740 | 0759 | 0760 | 0668
Ridge, LASSO, and Decision Tree (DT) to ob- | arat | 0.760 | 0.808 | 0.722 | 0.759 | 0.723 | 0.770 | 0.844
serve the variance of model performance respec- NES 0.792 1 0799 [0.732] 0.792 | 0.744 | 0.749 | 0.864

. . TTG | 0.760 | 0.819 | 0.765 | 0.750 | 0.716 | 0.749 | 0.842
tively. Table [2shows the comparison results on | crrg 0818 | 0.8%2 | 058 | 0.760 | 0.729 | 0744 | 0786
Spectf in terms of the Fl-score. We observed [DIFER | 0.766 | 0.794 | 0.727 | 0.777 | 0.647 | 0.744 | 0.809
that MOAT keeps the best performance regard- _MOAT 0.912 | 0.897 | 0.876 | 0.916 | 0.780 | 0.844 | 0.929
less of downstream ML models. A possible reason is that the RL-based data collector can customize
the transformation records based on the downstream ML model. Then, the learned embedding space
may comprehend the preference and properties of the ML model, thereby resulting in a globally

optimal feature space. Thus, this experiment shows the robustness of MOAT.

Time complexity analysis. This experiment aims to answer What is the time complexity of each
technical component of MOAT ? To accomplish this, we selected the SOTA model DIFER as a
comparison baseline. Figure 3]shows the time costs comparison of data collection, model training,
and solution searching in terms of seconds. We let both MOAT and DIFER collect 512 instances
in the data collection phase. We found that the increased time costs for MOAT occur in the data
collection and model training phases. However, once the model converges, MOAT °’s inference
time is significantly reduced. The underlying driver is that the RL-based collector spends more
time gathering high-quality data, and the sequence formulation for the entire feature space increases
the learning time cost for the sequential model. But, during inference, MOAT outputs the entire
feature transformation at once, whereas DIFER requires multiple reconstruction iterations based on
the generated feature space’s dimension. The less inference time makes MOAT more practical and
suitable for real-world scenarios.

To thoroughly analyze the multiple characteristics of MOAT, we also analyzed the space com-
plexity (See Appendix [C.I)), model scalability (See Appendix [C.2)), and parameter sensitivity (See
Appendix [C.3). Meanwhile, we provided two qualitative analyses: learned embedding visualization
(See Appendix [C.4) and traceability case study (See Appendix[C.5).

5 Related Works

Automated Feature Transformation (AFT) can enhance the feature space by automatically trans-
forming the original features via mathematical operations [19}20]. Existing works can be divided
into three categories: 1) expansion-reduction based approaches [, 3} 121} 2 22]. Those methods first
expand the original feature space by explicitly [23] or greedily [24] decided mathematical transfor-
mation, then reduce the space by selecting useful features. However, they are hard to produce or
evaluate both complicated and effective mathematical compositions, leading to inferior performance.
2) evolution-evaluation approaches [4, 15,16, 25| 9, [26]. These methods integrate feature generation
and selection into a closed-loop learning system. They iteratively generate effective features and
keep the significant ones until they achieve the maximum iteration number. The entire process is
optimized by evolutionary algorithms or reinforcement learning models. However, they still focus
on how to simulate the discrete decision-making process in feature engineering. Thus, they are still
time-consuming and unstable. 3) Auto ML-based approaches [7, [8]. Auto ML aims to find the
most suitable model architecture automatically [27, 28], |29/ 30]. The success of auto ML in many
area [31} 132} [33) 34} 135, [36]] and the similarity between auto ML and AFT inspire researchers to
formulate AFT as an auto ML task to resolve. However, they are limited by: 1) incapable of producing
high-order feature transformation; and 2) unstable transformation performance. Recent studies tried
to convert the feature transformation problem into a continuous space optimization task to search
for the optimal feature space efficiently. DIFER [8] is a cutting-edge method that is comparable to
our work in problem formulation. However, the following constraints limit DIFER’s practicality:
1) DIFER collects transformation-accuracy data at random, resulting in many invalid training data
with inconsistent transformation performances; 2) DIFER embeds and reconstructs each transformed
feature separately and, thus, ignores feature-feature interactions; 3) DIFER needs to manually decide
the number of generated features, making the reconstruction process more complicated. 4) the greedy
search for transformation reconstruction in DIFER leads to suboptimal transformation results. To fill
these gaps, we first implement an RL-based data collector to automate high-quality transformation
record collection. We then leverage the postfix expression idea to represent the entire transformation
operation sequence to model feature interactions and automatically identify the number of recon-
structed features. Moreover, we employ beam search to advance the robustness, quality, and validity
of transformation operation sequence reconstruction.

6 Conclusion Remarks

In this paper, we propose an automated feature transformation framework, namely MOAT. In detail,
we first develop an RL-based data collector to gather high-quality transformation-accuracy pairs.
Then, we offer an efficient postfix-based sequence expression way to represent the transformation
sequence in each pair. Moreover, we map them into a continuous embedding space using an encoder-
decoder-evaluator model structure. Finally, we employ a gradient-ascent search to identify better
embeddings and then use beam search to reconstruct the transformation sequence and identify the
optimal one. Extensive experiments show that the continuous optimization setting can efficiently
search for the optimal feature space. The RL-based data collector is essential to keep an excellent and
stable transformation performance. The postfix expression sequence enables MOAT to automatically
determine the transformation depth and length, resulting in more flexible transformation ways. The
beam search technique can increase the validity of feature transformation. The most noteworthy
research finding is that the success of MOAT indicates that the knowledge of feature transformation
can be embedded into a continuous embedding space to search for better feature space. Thus, it
inspires us to regard the learning paradigm as the backbone to develop a large feature transformation
model and quickly fine-tune it for different sub-tasks, which is also our future research direction.

7 Acknowledgments

This research was partially supported by the National Science Foundation (NSF) via grant numbers:
2040950, 2006889, and 2045567.

10

References

[1] James Max Kanter and Kalyan Veeramachaneni. Deep feature synthesis: Towards automating
data science endeavors. In 2015 IEEE international conference on data science and advanced
analytics (DSAA), pages 1-10. IEEE, 2015.

[2] Franziska Horn, Robert Pack, and Michael Rieger. The autofeat python library for automated
feature engineering and selection. arXiv preprint arXiv:1901.07329, 2019.

[3] Udayan Khurana, Deepak Turaga, Horst Samulowitz, and Srinivasan Parthasrathy. Cognito:
Automated feature engineering for supervised learning. In 2016 IEEE 16th International
Conference on Data Mining Workshops (ICDMW), pages 1304—1307. IEEE, 2016.

[4] Dongjie Wang, Yanjie Fu, Kunpeng Liu, Xiaolin Li, and Yan Solihin. Group-wise reinforce-
ment feature generation for optimal and explainable representation space reconstruction. In
Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
KDD 22, page 18261834, New York, NY, USA, 2022. Association for Computing Machinery.

[5] Udayan Khurana, Horst Samulowitz, and Deepak Turaga. Feature engineering for predictive
modeling using reinforcement learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018.

[6] Binh Tran, Bing Xue, and Mengjie Zhang. Genetic programming for feature construction and
selection in classification on high-dimensional data. Memetic Computing, 8(1):3-15, 2016.

[7] Xiangning Chen, Qingwei Lin, Chuan Luo, Xudong Li, Hongyu Zhang, Yong Xu, Yingnong
Dang, Kaixin Sui, Xu Zhang, Bo Qiao, et al. Neural feature search: A neural architecture
for automated feature engineering. In 2019 IEEE International Conference on Data Mining
(ICDM), pages 71-80. IEEE, 2019.

[8] Guanghui Zhu, Zhuoer Xu, Chunfeng Yuan, and Yihua Huang. Difer: differentiable automated
feature engineering. In International Conference on Automated Machine Learning, pages 17—1.
PMLR, 2022.

[9] Meng Xiao, Dongjie Wang, Min Wu, Ziyue Qiao, Pengfei Wang, Kunpeng Liu, Yuanchun
Zhou, and Yanjie Fu. Traceable automatic feature transformation via cascading actor-critic
agents. Proceedings of the 2023 SIAM International Conference on Data Mining (SDM), pages
775-783.

[10] Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735-1780, 1997.

[11] Markus Freitag and Yaser Al-Onaizan. Beam search strategies for neural machine translation.
arXiv preprint arXiv:1702.01806, 2017.

[12] Thibault Viglino, Petr Motlicek, and Milos Cernak. End-to-end accented speech recognition. In
Interspeech, pages 2140-2144, 2019.

[13] Chunhui Bao and Qianru Sun. Generating music with emotions. [EEE Transactions on
Multimedia, 2022.

[14] Public. Uci dataset download. [EB/OL], 2022. https://archive.ics.uci.edu/|

[15] Lin Chih-Jen. Libsvm dataset download. [EB/OL], 2022. https://www.csie.ntu.edu.tw/
"“cjlin/libsvmtools/datasets/.

[16] Jeremy Howard. Kaggle dataset download. [EB/OL], 2022. https://www.kaggle.com/
datasets.

[17] Public. Openml dataset download. [EB/OL], 2022. https://www.openml .org,
[18] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. the Journal of
machine Learning research, 3:993-1022, 2003.

11

https://archive.ics.uci.edu/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.kaggle.com/datasets
https://www.kaggle.com/datasets
https://www.openml.org

[19] Yi-Wei Chen, Qingquan Song, and Xia Hu. Techniques for automated machine learning. ACM
SIGKDD Explorations Newsletter, 22(2):35-50, 2021.

[20] Andrew Kusiak. Feature transformation methods in data mining. IEEE Transactions on
Electronics packaging manufacturing, 24(3):214-221, 2001.

[21] Hoang Thanh Lam, Johann-Michael Thiebaut, Mathieu Sinn, Bei Chen, Tiep Mai, and Oznur
Alkan. One button machine for automating feature engineering in relational databases. arXiv
preprint arXiv:1706.00327, 2017.

[22] Udayan Khurana, Fatemeh Nargesian, Horst Samulowitz, Elias Khalil, and Deepak Turaga.
Automating feature engineering. Transformation, 10(10):10, 2016.

[23] Gilad Katz, Eui Chul Richard Shin, and Dawn Song. Explorekit: Automatic feature generation
and selection. In 2016 IEEE 16th International Conference on Data Mining (ICDM), pages
979-984. IEEE, 2016.

[24] Ofer Dor and Yoram Reich. Strengthening learning algorithms by feature discovery. Information
Sciences, 189:176-190, 2012.

[25] Guanghui Zhu, Shen Jiang, Xu Guo, Chunfeng Yuan, and Yihua Huang. Evolutionary automated
feature engineering. In PRICAI 2022: Trends in Artificial Intelligence: 19th Pacific Rim
International Conference on Artificial Intelligence, PRICAI 2022, Shanghai, China, November
10-13, 2022, Proceedings, Part I, pages 574-586. Springer, 2022.

[26] Meng Xiao, Dongjie Wang, Min Wu, Kunpeng Liu, Hui Xiong, Yuanchun Zhou, and Yanjie
Fu. Traceable group-wise self-optimizing feature transformation learning: A dual optimization
perspective. arXiv preprint arXiv:2306.16893, 2023.

[27] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey.
The Journal of Machine Learning Research, 20(1):1997-2017, 2019.

[28] Yaliang Li, Zhen Wang, Yuexiang Xie, Bolin Ding, Kai Zeng, and Ce Zhang. Automl: From
methodology to application. In Proceedings of the 30th ACM International Conference on
Information & Knowledge Management, pages 4853-4856, 2021.

[29] Xin He, Kaiyong Zhao, and Xiaowen Chu. Automl: A survey of the state-of-the-art. Knowledge-
Based Systems, 212:106622, 2021.

[30] Shubhra Kanti Karmaker, Md Mahadi Hassan, Micah J Smith, Lei Xu, Chengxiang Zhai, and
Kalyan Veeramachaneni. Automl to date and beyond: Challenges and opportunities. ACM
Computing Surveys (CSUR), 54(8):1-36, 2021.

[31] Ziwei Zhang, Xin Wang, and Wenwu Zhu. Automated machine learning on graphs: A survey.
arXiv preprint arXiv:2103.00742, 2021.

[32] Marcel Wever, Alexander Tornede, Felix Mohr, and Eyke Hiillermeier. Automl for multi-label
classification: Overview and empirical evaluation. IEEE transactions on pattern analysis and
machine intelligence, 43(9):3037-3054, 2021.

[33] Maroua Bahri, Flavia Salutari, Andrian Putina, and Mauro Sozio. Automl: state of the art with
a focus on anomaly detection, challenges, and research directions. International Journal of
Data Science and Analytics, 14(2):113-126, 2022.

[34] Dakuo Wang, Josh Andres, Justin D Weisz, Erick Oduor, and Casey Dugan. Autods: Towards
human-centered automation of data science. In Proceedings of the 2021 CHI Conference on
Human Factors in Computing Systems, pages 1-12, 2021.

[35] Meng Xiao, Dongjie Wang, Min Wu, Pengfei Wang, Yuanchun Zhou, and Yanjie Fu. Beyond
discrete selection: Continuous embedding space optimization for generative feature selection.
arXiv preprint arXiv:2302.13221, 2023.

[36] Wangyang Ying, Dongjie Wang, Kunpeng Liu, Leilei Sun, and Yanjie Fu. Self-optimizing

feature generation via categorical hashing representation and hierarchical reinforcement crossing.
arXiv preprint arXiv:2309.04612, 2023.

12

Appendix

A Postfix Transformation Conversion

Algorithm|1|is the pseudo-code for the convert the original feature transformation sequence I" to the
postfix notation based sequence Y. In detail, we first initialize a list T and two stacks S7 and So,
respectively. For each element 7 in I', we scan it from left to right. When getting a feature ID token,
we push it to S2. When receiving a left parenthesis, we push it to S;. When obtaining any operations,
we pop each element in S7 and push them into S5 until the last component of .Sy is the left bracket.
Then we push this operation into S; When getting a right parenthesis, we pop every element from
S1 and then push into S5 until we confront a left bracket. Then we remove this left bracket from
the top of S;. When the end of the input 7 encounters, we append every token from Ss into Y. If
this 7 is not the last element in I', we will append a <SEP> token to indicate the end of this 7. After
we process every element in I', we add <SOS> and <EOS> tokens to the beginning and end of T to
form the postfix notation-based transformation sequence Y = [y1, -+ ,7yas]. Each element in T is
a feature ID token, operation token, or three other special tokens. We convert each transformation
sequence through this algorithm and construct the training set with them.

Algorithm 1: Postfix transformation sequence conversion

input :Feature transformation sequence I"
output : Postfix notation based transformation sequence Y

1Y 0

2 for 7 < I"do

3 S1,89 +— @, 0;

4 for v < 7 do

5 if -y is left bracket then

6 | Si.push(7);

7 else if v is right bracket then

8 while ¢ < S;.pop() is not left bracket do
9 | S2.push(t);
10 else if v is operation then

11 while S;.peek() is not left bracket do
12 | S2.push(Si.pop());

13 Sy.push(7);
14 else

15 | Sa.push(v);

16 while Ssnot = () do

17 | T.append(Sa.pop(0));

18 if 7 is not the last element then
19 | | Y.append(<SEP>);

20 Add <SOS> and <EOS> to the head and tail of Y respectively;
21 return Y

B Experimental Settings and Reproducibility

B.1 Hyperparameter Settings and Reproducibility

The operation set consists of square root, square, cosine, sine, tangent, exp, cube, log, reciprocal,
quantile transformer, min-max scale, sigmoid, plus, subtract, multiply, divide. For the data collec-
tion part, we ran the RL-based data collector for 512 epochs to collect a large amount of feature
transformation-accuracy pairs. For the data augmentation part, we randomly shuffled each transfor-
mation sequence 12 times to increase data diversity and volume. We adopted a single-layer LSTM

13

Table 4: Space complexity comparison on MOAT with different dataset

Dataset Sample Number Column Number Parameter Size
Airfoil 1503 5 139969
Amazon employee 32769 9 138232
ap_omentum_ovary 275 10936 155795
german_credit 1001 24 141127
higgs 50000 28 141899
housing boston 506 13 139004
ionosphere 351 34 143057
lymphography 148 18 139969
messidor_features 1150 19 140162
openml_620 1000 25 141320
pima_indian 768 8 138039
spambase 4601 57 147496
spectf 267 44 144987
svmguide3 1243 21 140548
uci_credit_card 30000 25 141127
wine_red 999 12 138618
wine_white 4900 12 138618
openml_586 1000 25 141320
openml_589 1000 25 141320
openml_607 1000 50 146145
openml_616 500 50 146145
openml_618 1000 50 146145
openml_637 500 50 146145

as the encoder and decoder backbones and utilized 3-layer feed-forward networks to implement
the predictor. The hidden state sizes of the encoder, decoder and predictor are 64, 64, and 200,
respectively. The embedding size of each feature ID token and operation token was set to 32. To train
MOAT, we set the batch size as 1024, the learning rate as 0.001, and A as 0.95 respectively. For
inferring new transformation sequences, we used top-20 records as the seeds with beam size 5.

B.2 Experimental Platform Information

All experiments were conducted on the Ubuntu 18.04.6 LTS operating system, AMD EPYC 7742
CPU, and 8 NVIDIA A100 GPUs, with the framework of Python 3.9.10 and PyTorch 1.8.1.

C Experimental Results

C.1 Space Complexity Analysis.

To analyze the space complexity of MOAT, we illustrate the parameter size of MOAT when
confronted with different datasets. Table [d] shows the comparison results. We can find that the model
size of MOAT keeps relatively stable without significant fluctuations. The underlying driver is that
the encoder-evaluator-decoder learning paradigm can embed the knowledge of discrete sequences
with variant lengths into a fixed-length embedding vector. Thus, such an embedding process can make
the parameter size to be stable instead of increasing as the data size grows. Thus, this experiment
indicates that MOAT has good scalability when confronted with different scaled datasets.

C.2 Scalability Check

We visualized the changing trend of the time cost of searching for better feature spaces over sample
size and feature dimensions of different datasets. Figure[6] shows the comparison results. We found
that the time cost of MOAT keeps stable with the increase of sample size of the feature set. A possible
reason is that MOAT only focuses on the decision-making benefits of feature ID and operation tokens
instead of the information of the entire feature set, making the searching process sample size irrelevant.
Another interesting observation is that the search time is still stable although the feature dimension of
the feature set varies significantly. A possible explanation is that we map transformation records of
varying lengths into a continuous space with a constant length. The searching time in this space is
input dimensionality-agnostic. Thus, this experiment shows the MOAT has excellent scalability.

14

() Search Time -e- Sample Size () Search Time -% Feature Num. S
- o -
)
Y/ 7
% $9 %
O |) L
o z = z
8 $5 8 5
28 ISHE- S g
0]]] H
E vt E =
= [~
o N o
{ % R, L O,
ey, /70%/7’07% g S0l s K o 0% 050, et Py P,
re e e “ery, s, L) 675 o
(a) Sample Size (b) Feature Number
Figure 6: Scalability check of MOAT in search time based on sample size and feature number.
n=4 n=3 a=0.20 a=0.15
0\98 0.8/8 0\94 0. f§4
0.92
n=5 s o a=0.10
5 086
08 o\afy 08
073 Q.73
=6 0.98 0.5 084909072 & n=1 694 0=0.05
298 4
n=7 “n=10 " 0=0.50
0.68 0\98 =& Precision 4 =& Precision
/ \ % Recall / \ % Recall
n=8 n=9 - F1-Score a=0.40 a=0.45 - F1-Score

(a) Search Step Size n (under = 0.05) (b) Training Trade-off o (under n = 1)
Figure 7: Parameter sensitivity on search step size 7) and trade-off parameter v on Spectf dataset.

40
30)
* Ll 30 “
. « o .. P
20 LEONER S . ‘
o e ‘ 20 o L
- . - ,) N
10) 10 e . R
0 : G 0 ORe
o . " by o
-10 . e -10 5" o
‘e o % , % v 9.8
’ e I e T, |
-20 . ’ 20 . p r‘.
Ry 2 £e 1
P L -30 L] ‘. ® ‘
-30 s
S Sy
’ -40 Y
40 : :
-50
-40 =30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30
(a) Openml_616 (b) Airfoil

Figure 8: The visualization of learned transformation sequence embedding (from MOAT).

C.3 Parameter sensitivity analysis

To validate the parameter sensitivity of the search step size 7 (See section [3.3) and the trade-off
parameter < in the training loss (See section[3.4), we set the value of 1 from 1 to 10, and set the value
of a from 0.05 to 0.50 to observe the difference. Figure[7]shows the comparison results in terms of
precision, recall, and F1-score. When the search step size grows, the downstream ML performance
initially improves, then declines marginally. A possible reason for this observation is that a too-large
step size may make the gradient-ascent search algorithm greatly vibrate in the continuous space,
leading to missing the optimal embedding point and transformed feature space. Another interesting
observation is that the standard deviation of the model performance is lower than 0.01 under different
parameter settings. This observation indicates that MOAT is not sensitive to distinct parameter
settings. Thus, the learning and searching process of MOAT is robust and stable.

C.4 Learned embedding Analysis.

We selected Airfoil and Openml_616 as examples to visualize their learned continuous embedding
space. In detail, we first collected the latent embeddings generated by the transformation records.
Then, we use T-SNE to map them into a 2-dimensional space for visualization. Figure [§] shows

15

Original Feature Set MOAT Generated Feature Set

idity] - [alcohol]

dioxide]

[residual sugar]
{fixéd aci dity][pH] qTrans(...) - [...] - qTrans(...)
lotric a0y gore0.456 ! [density] F1-Score:0.559 {a|;;::|n;]x(,,.j_
[residual sugar] ([alcnhol]xf...) = ()% (en) _
[density] [suiphalbgl o) () amans(ein@IEOnOl-E-D gDy - ()
(a) Original Feature Space (b) MOAT Generated Feature Space

Figure 9: Comparison of traceability on the original feature space and the MOAT generated one.

the visualization results, in which each point represents a unique feature transformation sequence.
The size of each point means its downstream performance. The bigger point size indicates that
the downstream performance is superior. We colored the top 20 embedding points according to
the performance in red. We found that the distribution locations of the top 20 embedding points
are different. A potential reason is that the corresponding transformation sequences of the top 20
embedding points are different lengths. The sequence reconstruction loss distributes them to different
areas of the embedding space. Moreover, we observed that the top 20 embedding points are close
in the space even though the positions are different. The underlying driver is that the estimation
loss makes these points with good performance clustered. Thus, this case study reflects that the
reconstruction loss and estimation loss make the continuous space associate the transformation
sequence and the corresponding model performance.

C.5 Traceability case study

We selected the top 10 essential features for prediction in the original, and MOAT transformed feature
space of the Wine Quality Red dataset for comparison. Figure[9]shows the comparison results. The
texts associated with each pie chart are the corresponding feature name. The larger the pie area is, the
more critical the feature is. We found that almost 70% critical features in the new feature space are
generated by MOAT and they improve the downstream ML performance by 22.6%. This observation
indicates that MOAT really comprehends the properties of the feature set and ML models in order to
produce a more effective feature space. Another interesting finding is that ‘[alcohol]’ is the essential
feature in the original feature set. But MOAT generates more mathematically composited features
using ‘[alcohol]’. This observation reflects that MOAT not only can capture the significant features
but also produce more effective knowledge for enhancing the model performance. Such composited
features can make domain experts trace their ancestor resources and summarize new analysis rules
for evaluating the quality of red wine.

16

	Introduction
	Definitions and Problem Statement
	Important Definitions
	Problem Statement

	Methodology
	Framework Overview
	Reinforcement Training Data Preparation
	Postfix Expressions of Feature Transformation Operation Sequences
	Deep Feature Transformation Embedding
	Gradient-Ascent Optimal Embedding Search
	Transformation Operation Sequence Reconstruction and Evaluation

	Experiments
	Datasets and Evaluation Metrics
	Baseline Models
	Performance Evaluation

	Related Works
	Conclusion Remarks
	Acknowledgments
	Postfix Transformation Conversion
	Experimental Settings and Reproducibility
	Hyperparameter Settings and Reproducibility
	Experimental Platform Information

	Experimental Results
	Space Complexity Analysis.
	Scalability Check
	Parameter sensitivity analysis
	Learned embedding Analysis.
	Traceability case study

