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Abstract

Bayesian Optimization (BO) is a powerful method for tackling expensive black-
box optimization problems. As a sequential model-based optimization strategy,
BO iteratively explores promising solutions until a predetermined budget, either
iterations or time, is exhausted. The decision on when to terminate BO significantly
influences both the quality of solutions and its computational efficiency. In this
paper, we propose a simple, yet theoretically grounded, two-step method for
automatically terminating BO. Our core concept is to proactively identify if the
search is within a convex region by examining previously observed samples. BO is
halted once the local regret within this convex region falls below a predetermined
threshold. To enhance numerical stability, we propose an approximation method
for calculating the termination indicator by solving a bilevel optimization problem.
We conduct extensive empirical studies on diverse benchmark problems, including
synthetic functions, reinforcement learning, and hyperparameter optimization.
Experimental results demonstrate that our proposed method saves up to ≈ 80%
computational budget yet is with an order of magnitude smaller performance
degradation, comparing against the other peer methods. In addition, our proposed
termination method is robust in terms of the setting of its termination criterion.

1 Introduction
“Nature does not hurry, yet everything is accomplished.” — Lao Tzu

In this paper, we consider the black-box optimization problem (BBOP) defined as follows:

maximize
x∈Ω

f(x), (1)

∗Wei Li is the corresponding author of this paper.
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Figure 1: Trajectories of termination criteria used in [22], [28] and [24] on Ackley and Levy function
where n = 1. Results are collected from 21 independent runs of vanilla BO while the mean value
of termination indicator of each termination criterion is plotted as the solid line associated with the
confidence interval. Please refer to Section 3.2 for a description of these termination criteria, as well
as the meaning of κPI, κEI and κdiff .

where x = (x1, · · · , xn)
⊤ is a decision vector (variable), Ω = [xL

i , x
U
i ]

n
i=1 ⊂ Rn represents the

search space, and f : Ω → R corresponds to the attainable set in the objective space. In real-
world scenarios, function evaluations (FEs) of f(x) can be costly, giving rise to expensive BBOPs.
Bayesian optimization (BO) has emerged as one of the most effective methods for addressing
expensive BBOPs. BO is a sequential model-based optimization technique consisting of two iterative
steps: i) employing limited expensive FEs to construct a surrogate model of the physical objective
function, such as a Gaussian process (GP) model [35]; and ii) selecting the next point of interest
for costly FE by optimizing an acquisition function, e.g., probability of improvement (PI) [18],
expected improvement (EI) [16], and upper confidence bound (UCB) [31]. Numerous theoretical and
methodological advancements have been made in BO. Interested readers can refer to comprehensive
survey papers [29, 11] and a recent textbook [13] for further information.

Nevertheless, the question of when to terminate the search process of BO remains a largely underex-
plored area in the literature. At present, the most prevalent termination criterion is a pre-specified
budget, such as the number of FEs or wall-clock time. Though intuitive, this approach neglects the
search dynamics inherent to different BBOPs. As a result, this strategy is rigid while it does not offer
a general rule for determining an appropriate budget across various problem settings. If the budget
is too small, BO may terminate prematurely, yielding a suboptimal solution. On the contrary, an
excessive budget may lead to wasted computational resources. Another simple termination method
involves stopping BO if the current best solution remains unchanged for a predetermined number of
consecutive FEs. However, as highlighted by [24], this strategy also fails to consider the observed
data during the sequential model-based optimization process and relies on a pre-defined threshold.

Beyond the aforementioned ‘naïve’ approaches, a limited number of dedicated efforts have been
made to address the termination of BO. One notable method involves monitoring the progress of
BO by termination indicators, such as the maximum of EI [28, 16] or PI [22]. In this approach, BO
is terminated when the corresponding termination indicator falls below a pre-specified threshold.
Very recently, Makarova et al. proposed using the difference between the minimal of the lower
confidence bound (LCB) and UCB as the termination indicator. As illustrated in Figure 1, we
observe that all criteria used in these termination approaches exhibit significant oscillation during
the optimization process. This can be attributed to: i) the stochastic nature of BO itself, and ii)
numerical errors arising from the non-convex optimization of acquisition functions. Furthermore, as
shown in Figures 1(a) and (b), the variation range of the same criterion can differ substantially when
addressing problems with distinct fitness landscapes. These factors make determining a universally
applicable threshold in practice challenging, resulting in fragile and less intuitive termination criteria
compared to simply establishing a budget. Additionally, we find that these termination criteria are
‘myopic’, as decision-making is based solely on the observations at the current step, leading to a
lagged termination. For instance, consider the selected samples shown in Figure 2; it is difficult, if
not impossible, to determine when to terminate BO until t = 20. However, if we look backward to
t = 5, it becomes evident that BO is likely to converge by t = 10.

Our contributions. In light of the aforementioned challenges, this paper proposes a novel termina-
tion method for BO that proactively detects whether the search is located in a convex region of −f(x)
by examining previously observed samples. BO is terminated if the local regret within this convex
region falls below a predetermined threshold. To improve numerical stability, we introduce an approx-

2



�20 �10 0 10 20
�20

�15

�10

�5

0

5

x (t = 20)
�20 �10 0 10 20

�20

�15

�10

�5

0

5

x (t = 10)
�20 �10 0 10 20

�20

�15

�10

�5

0

5

x (t = 5)

�
f
(x

)

Predictive by GP
True function

Figure 2: Search dynamics of vanilla BO on the Ackley function (n = 1) at different time steps after
the initialization. In particular, t = 5 indicates five new samples are collected after the initialization.

imation method for calculating the termination indicator by solving a bilevel optimization problem.
Our proposed termination method is simple, yet it offers theoretical guarantees. To demonstrate its
effectiveness, we compare the performance of our proposed method against four peer methods on
a variety of benchmark problems, encompassing synthetic functions, reinforcement learning, and
hyperparameter optimization.

2 Proposed Method
This section starts with a gentle tutorial of vanilla BO. Then, we delineate the implementation of our
proposed termination method, followed by a theoretical analysis at the end.
2.1 Vanilla Bayesian Optimization
As a gradient-free optimization method, BO comprises two major steps. The first step involves
constructing a surrogate model based on GP to approximate the expensive objective function. Given
a set of training data D = {⟨xi, f(xi)⟩}Ni=1, GP learns a latent function g(x), such that ∀x ∈ D, we
have f(x) = g(x) + ϵ, where ϵ ∼ N (0, σ2

ϵ ) is an i.i.d. Gaussian noise. For each testing input vector
z∗ ∈ Ω, the mean and variance of the target f(z∗) are predicted as follows:

µ(z∗) = k∗⊤(K + σ2
ϵ I)

−1f ,

σ2(z∗) = k(z∗, z∗)− k∗⊤(K + σ2
ϵ I)

−1k∗,
(2)

where X = (x1, · · · ,xN )⊤ and f = (f(x1), · · · , f(xN ))⊤. k∗ is the covariance vector between
X and z∗, and K is the covariance matrix of X . In this paper, we use the Matérn 5/2 kernel as the
covariance function to measure the similarity between a pair of data points. The second step consists
of an infill criterion based on the optimization of an acquisition function, which determines the next
point of merit x̃∗ to be evaluated by the actual expensive objective function:

x̃∗ = argmax
x∈Ω

facq(x). (3)

where facq(x) = µ(x) + ωσ(x) is the widely used UCB [31] to facilitate our theoretical analysis.
Specifically, the parameter ω > 0, determined according to the confidence level set as 0.95 in this
paper, controls the trade-off between exploration and exploitation. Subsequently, the next point of
merit x̃∗ is used to update the training dataset as D = D⋃{x̃∗}, and BO iterates between the two
aforementioned steps sequentially until a termination criterion is met. The convergence of BO can be
evaluated by regret:

r = f(x⋆)− f(x̃⋆), (4)
where x⋆ represents the ground truth global optimum and x̃⋆ = argmax

x∈D
f(x) denotes the current

best-found solution.
2.2 Proposed Termination Criterion
Inspired by the observations illustrated in Figure 2, we propose a termination method that involves
‘looking back’ at the last τ > 1 observed points in the dataset D, and storing these in a temporary
archive, denoted as D̃. The termination criterion we propose is predicated on two primary conditions.

Condition 1. The BO search process is deemed to have converged within a convex hull Ω̃ if the
following condition is satisfied:

(τ+1
2 )∑

j=1

1

(
µ

(
x+ x′

2

)
≥ f(x) + f(x′)

2

)
=

(
τ + 1

2

)
, (5)
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where 1(·) denotes the indicator function, returning 1 if the argument holds true and 0 otherwise. x
and x′ are points selected randomly and distinctively from D̃. The convex hull, Ω̃ = [x̃L

i , x̃
U
i ]

n
i=1, is a

subset of Ω, where x̃L
i = argmin

x∈D̃
xi and x̃U

i = argmax
x∈D̃

xi.

Condition 2. Assuming Condition 1 is satisfied, and x̃ denotes the most recently observed point in
D, we calculate the local regret r̃ as follows:

r̃ = µ(ẋ)− µ(x̃) + ω (σ(ẍ) + σ(x̃)) , (6)

where ẋ = argmax
x∈Ω̃

µ(x) and ẍ = argmax
x∈Ω̃

σ2(x). The BO process terminates if the following

inequality is satisfied:
r̃

ωσϵ
≤ ηlb, (7)

where r̃
ωσϵ

is used as the termination indicator, denoted as κlb, and ηlb is a predetermined threshold.

Remark 1. The inequality within the indicator function 1(·) in equation (5) is derived from Jensen’s
inequality [4], which yields a convex function:

−f(αx+ (1− α)x′) ≤ −αf(x)− (1− α)f(x′), (8)

where α ∈ [0, 1] and x,x′ ∈ Ω̃. In order to avoid the necessity of additional function evaluations
when computing f(x+x′

2 ), we substitute µ(x+x′

2 ) into equation (5).

Remark 2. In equation (6), we employ the widely-used L-BFGS algorithm [6] to compute ẋ and ẍ.
To ensure numerical stability, we suggest the following strategies for initializing the algorithm and
defining its termination criterion:

1. For ẋ, L-BFGS is initialized at a point randomly selected from Ω̃. The algorithm terminates
when ∥ ▽ µ(x)∥2 ≤ λ. In our work, we set λ = 10−6, following Proposition 1.

2. For ẍ, L-BFGS is initialized at the point argmax
x∈Ω̃

σ2(x), where σ2(x) denotes the lower

bound of σ2(x) over Ω̃. The termination criterion is ∥▽σ2(x)∥2 ≤ λ, as per Proposition 2.

Remark 3. Considering equation (7), given that µ(ẋ)−µ(ẍ)
ωσϵ

≥ 0 and σ(ẋ)+σ(ẍ)
σϵ

≥ 2, we deduce that
ηlb ≥ 2. The upper bound of ηlb is empirically determined, as detailed in Section 4.1.

Remark 4. When the GP model is overfitting, BO tends to converge within the local region of the
current best solution. In this case, both Condition 1 and Condition 2 are easily met while BO will
be terminated prematurely. On the other hand, when the model is underfitting, BO will explore Ω
in a random manner. In this case, satisfying Condition 1 becomes challenging, and BO will face
the risk of failing to be terminated. Therefore, we designed three mitigation strategies: 1) restrict
the lengthscale to [0.05, 200] during GP training to prevent lengthscales from becoming excessively
large or small; 2) normalize the input of training data to [0, 1]; and 3) standardize the output of the
training data by centering it on the mean and scaling it by the variance.

Proposition 1. Consider ∀x ∈ Ω̃, where −µ(x) represents a convex function. If ∥ ▽ µ(x)∥2 ≤ λ,
we can establish:

µ(ẋ)− µ(x) ≤ ξ, (9)

where λ = (2m1ξ)
1/2, ξ is a positive constant, and m1 denotes the strong convexity parameter of

−µ(x) [4].

Lemma 1. Assume the GP employs a stationary kernel k(·, ·). For ∀x ∈ Ω̃, the lower bound of
σ2(x) is given by:

σ2(x) = k(x,x) + c

|D|∑
i=1

k2(x,xi), (10)

where c < 0 is a constant and xi ∈ D for i ∈ {1, · · · , |D|}.
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Lemma 2. Given Lemma 1, determining argmax
x∈Ω̃

σ2(x) is equivalent to solving the following bilevel

optimization problem:

minimize
x∈Ω̃

d(x,x1,x2) = ∥x− x1∥22 + ∥x− x2∥22
subject to {x1,x2} = argmax

x1, x2∈D∩Ω̃

x1 ̸=x2, Ω̂∩D=∅

∥x1 − x2∥22, (11)

where Ω̂ = [x̂L
i , x̂

U
i ]

n
i=1 ⊂ Ω̃, x̂L

i = min(x1
i , x

2
i ) and x̂U

i = max(x1
i , x

2
i ). Given that the lower-level

optimization can be addressed via exhaustive search, the analytical solution of (11) is given by
x̂ = (x̂L

1 +
x̂U
1 −x̂L

1

2 , · · · , x̂L
n +

x̂U
n−x̂L

n

2 )⊤.

Proposition 2. Leveraging Lemma 2, suppose minimize
x∈Ω̃

− σ2(x) exhibits convexity in its local

optimal regions, the following inequality is satisfied when ∥ ▽ σ2(x)∥2 ≤ λ:

σ2(ẍ)− σ2(x) ≤ β + ξ, (12)

where λ = (2m2ξ)
1/2, ξ > 0, m2 > 0 represents the strong convexity parameter of −σ2(x) in its

local optimal regions [4], and β is constrained by 0 ≤ β ≤ σ2(ẍ)− σ2(x̂).

2.3 Theoretical Analysis of the Proposed Termination Criterion
In this subsection, we delve into the theoretical underpinnings of the proposed termination method,
focusing on the convergence of BO when the UCB is utilized as the acquisition function.
Lemma 3. As per Srinivas et al., the optimization process in BO can be conceptualized as a sampling
process from a GP. Hence, for any x ∈ Ω, we have:

Pr
(
|f(x)− µ(x)| ≤ ωσ(x)

)
> δ, (13)

where δ > 0 signifies the confidence level adhered to by the UCB.
Corollary 1. Based on Lemma 3 and Condition 2, we deduce that:

Pr
(
facq(x̃⋆) + ε ≥ f(x⋆)

)
> δ, (14)

where ε is a numerical error when optimizing the acquisition function, x̃⋆ = argmax
x∈Ω

facq(x), and

x⋆ represents the true global optimum. Furthermore,

0 ≤ ε ≤ µ(ẋ) + ωσ(ẍ)− facq(x̃⋆), (15)

where ẋ, ẍ, and x̃⋆ are elements of Ω̃, while δ > 0 denotes the confidence level of the UCB.
Theorem 1. Leveraging Corollary 1, when employing the termination method proposed in this paper,
we deduce that the global regret bound of BO as:

Pr
(
r ≤ 2ωσ(x̃⋆) + ε

)
> δ, (16)

where δ > 0 signifies the confidence level associated with the UCB.
Theorem 2. Building upon Condition 1 and Condition 2, and employing the termination method
proposed in this paper, we establish the local regret bound of BO as:

Pr
(
f(x⋆)− f(x) ≤ r̃

)
> δ, (17)

where x ∈ Ω̃, x⋆ denotes the true global optimum in Ω̃, and δ > 0 is the confidence level of the UCB.

Remark 5. Drawing from Theorem 1 and Theorem 2, we observe that if ε can be considered
negligible when x̃⋆ is accurately determined by optimizing the UCB, r̃ subsequently represents the
upper bound of BO regret within the domain Ω. Conversely, if ε cannot be disregarded, r̃ is posited
as the upper bound of BO regret within the restricted domain Ω̃.

3 Experimental Settings
In this section, we present the experimental setup for our empirical study, which encompasses the
benchmark test problems, the peer algorithms, and the performance metrics used for evaluation.
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3.1 Benchmark Problems
We evaluate the performance of our proposed method on three types of benchmark problems.

• Synthetic functions: We consider Ackley, Levy, and Schwefel functions [33] with n ∈
{2, 5, 10}. The objective function f(x) is contaminated by Gaussian noise ζ ∼ N (0.0, 0.2).
The maximal number of FEs is set to NFE = 50n, with 5n allocated to initialization.

• Reinforcement learning (RL): We examine two RL tasks chosen from OpenAI Gym [5]:
Lunar Lander with n = 12 and Swimmer with n = 16. We set NFE = 50n, with 5n FEs
allocated to initialization.

• Hyperparameter optimization (HPO): We consider 5 HPO tasks picked up from the
HPOBench [9] for tuning support vector machine (SVM) with n = 2, multi-layer per-
ceptron (MLP) with n = 5, random forest with n = 4 and XGBoost with n = 8. The
computational budget is set the same as in the RL tasks.

Note that, due to the use of termination criteria, it may not be necessary to exhaust the entire
allocated computational budget to terminate BO. To ensure statistical significance, each experiment
is independently conducted 21 times with different random seeds.
3.2 Peer Algorithms
As discussed in Section 1, the termination criterion for BO is an understudied topic in the literature.
In our experiments, we compare our proposed method with the following four termination methods.

• Naïve method: This method ceases BO when x̃⋆ stays unchanged for κn consecutive itera-
tions. Here, κn is also the termination indicator. In our experiments, we test three settings of
the thresholds ηn as 150, 337 and 524, respectively.

• Nguyen’s method [28]: In each iteration of BO, the optimization of acquisition function
produces the current optimal EI. By using this as the termination indicator, denoted as κEI,
the Nguyen’s method terminates BO when it falls below a predetermined threshold ηEI. In
our experiments, we consider three settings of ηEI as 0.01, 0.04 and 0.06, respectively.

• Lorenz’s method [22]: Analogous to the Nguyen’s method, the Lorenz’s method replaces the
EI with PI as the termination indicator, denoted as κPI. In our experiments, the termination
threshold ηPI is set as 0.07, 0.2 and 0.33, respectively.

• Makarova’s method [24]: Similar to the previous two methods, the Makarova’s method uses
the difference between the lower and upper confidence bounds as the termination indicator,
denoted as κdiff . It terminates BO when κdiff ≤ ηdiff , a predetermined threshold and is set
as 0.26, 0.62 and 0.97, respectively, in our experiments.

• Our proposed method: According to Condition 1 and Condition 2, our proposed method
terminates BO when κlb falls below a predetermined threshold ηlb, which is set as 2.02, 2.05
and 2.08, respectively. Furthermore, we introduce a hyperparameter τ to control the number
of observed samples being looked backward, which is set to τ = 10 in our experiments.
The code is available at https://github.com/COLA-Laboratory/OptimalStoping_
NeurIPS2023.

According to the aforementioned settings, it is evident that the naïve method tends to delay termination
when a large ηn is used. On the other hand, other methods may incur a delayed termination if a
small threshold is used. Note that the choices of the corresponding termination thresholds and the
sensitivity of τ are empirically examined in Sections 4.1 and 4.2.
3.3 Performance Metrics
In our experiments, we consider the following three performance metrics to measure the effectiveness
of a termination method.

• Empirical cumulative probability of a termination indicator:

Icdf =
1

NFE × 21

NFE×21∑
i=0

1(κ ≤ κ̃i), (18)

where κ̃i = κ+ (κ̄−κ)×i
NFE×21 , and i ∈ {0, · · · , NFE × 21}. For a given termination method, κ

represents its termination indicator as outlined in Section 3.2. The minimum and maximum
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Figure 3: Trajectories of Icdf collected on different benchmark problems. Here we only show some
results without loss of generality, while full results can be found in the supplementary document.
Different subplots are (a) our proposed method, (b) Naïve method, (c) Nguyen’s method, (d) Lorenz’s
method, and (e) Makarova’s method, respectively.
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Figure 4: Bar charts with error bars of normalized κ̃i for different termination methods when Icdf is
set as 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5 respectively.

values of κ, represented by κ and κ̄ respectively, are determined across all 21 repeated
experiments on each benchmark problem. If Icdf exhibits consistency across a range of
benchmark problems, it implies that the threshold choice for the corresponding termination
method is consistent and not dependent on the specific problem.

• The relative computational cost:

Icost =
ÑFE

NFE
, (19)

where ÑFE is the number of FEs used by a termination criterion when early stopping occurs.
A lower value of Icost indicates a higher degree of computational budget saving.

• The relative performance degradation incurred by early stopping:

Iperf =
f(x̄)− f(x̃⋆)

f(x̄)− f(x)
, (20)

where x̄ and x are the best and the worst solutions found by BO when consuming all NFE

FEs. x̃⋆ signifies the best solution found when early stopping is prompted by a termination
criterion. A smaller Iperf value indicates less performance degradation resulting from the
application of the corresponding termination criterion.

4 Empirical Studies
In this section, our experiments2 aim to investigate three aspects: i) the robustness of the termination
threshold for different termination methods; ii) the trade-off between the computational budget saving
versus the performance degradation; and iii) the sensitivity of τ in our proposed termination method.
4.1 Robustness of the Selection of Termination Threshold
In this subsection, we use the Icdf metric to scrutinize the threshold choice of various termination
methods across different problems. As per equation (18), it is evident that Icdf ∝ κ̃i. As discussed
earlier in Section 3.2, a large κ̃i can lead to premature early stopping. Consequently, we confine
our analysis to instances where Icdf ≤ 0.5. As shown in Figure 3, the trajectories of Icdf for our
proposed method appear to converge, whereas those for the other methods diverge with different
magnitudes. More specifically, as shown in Figure 3(a), κ̃i = 2 can be regarded as a transition point
where Icdf ≥ 0.95 if κ̃i ≥ 2. This empirical observation corroborates the theoretical result derived

2Due to page limits, additional ablation experiments can be found in the supplementary document.
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Figure 7: Trajectories of the regret of BO versus the number of FEs during the BO process on five
selected problems. Full results can be found in the supplementary document.

in Condition 2. In contrast, there do not exist a consistent lower bound for the other termination
methods. To further elucidate these observations, we plot the distributions of κ̃i when Icdf ranges
from 0.05 to 0.5 in Figure 4. It is clear that the bar charts exhibit the least variation for our proposed
method. For the naïve method, κ̃i increases as Icdf grows. However, the bars for the other three
methods show significant fluctuations, particularly for the Nguyen’s and the Lorenz’s methods. These
observations are further substantiated by the trajectories of the termination indicators throughout
the BO process, as shown in Figure 5. We present results for the Ackley and HPO for SVM
problems here, while complete results are available in the supplementary document. These plots
reveal that the trajectories for our proposed method converge to a certain threshold, while those for
the other methods not only diverge but also differ significantly on different problems. Based on
this discussion, we use Icdf = 0.05 as the capping point to guide the selection of the termination
threshold for different termination methods: ηlb ∈ [2, 2.1], ηn ∈ [57, 617], ηEI ∈ [3.8× 10−24, 0.08],
ηPI ∈ [2 × 10−21, 0.39], ηdiff ∈ [0.09, 1.15]. In our experiments, we apply the Latin hypercube
design method [26] to choose three settings as listed in Section 3.2.

4.2 Computational budget saving versus performance degradation
There is a trade-off when early terminating BO, i.e., the performance of BO can be compromised
when using less FEs. In this subsection, we employ Icost and Iperf to characterize such trade-off.
From the comparison results shown in Figure 6 and Table 1, we can see that although the naïve
method achieves the best Iperf , it consumes almost all FEs. In contrast, our proposed method saves
up to ≈ 80% computation budget while the performance degradation is up to a order of magnitude
smaller than the other three termination methods. As the trajectories of the regret of BO versus the
number of FEs shown in Figure 7, we can see that the other three termination methods suffer from a
premature early stopping.

8



Table 1: The statistical comparison results of different termination methods on Icost and Iperf .

Metrics Thresholds Naïve method Nguyen’s method Lorenz’s method Makarova’s method Proposed method

Icost
η1 1(0)† 0.1313(4.48E-1)‡ 0.1244(4.48E-1)‡ 0.7856(4.17E-1)† 0.6206(3.17E-1)
η2 1(0)† 0.1082(3.5E-2)‡ 0.1053(1.47E-2)‡ 0.1414(3.89E-2)‡ 0.3012(1.94E-1)
η3 0.8343(2.51E-1)† 0.1048(9.01E-3)‡ 0.1044(4.20E-3)‡ 0.1313(3.33E-2)‡ 0.2209(1.12E-1)

Iperf
η1 0(0)‡ 0.0077(7.28E-2)† 0.0067(7.71E-2)† 0(1.56E-2)† 0(6.81E-3)
η2 0(0)‡ 0.0614(1.08E-1)† 0.0721(1.13E-1)† 0.0167 (6.51E-2)† 0(3.35E-2)
η3 0(0)‡ 0.0704(1.14E-1)† 0.0978(1.18E-1)† 0.0355 (8.08E-2)† 0.0028(4.17E-2)

† denotes the performance of our proposed method is significantly better than the other peers according to the Wilcoxon’s rank sum test at
a 0.05 significance level; ‡ denotes the opposite case.
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Figure 8: Bar charts with error bars of Icost and Iperf when using τ ∈ {2i}9i=1 in our proposed
termination method.

4.3 Parameter Sensitivity Study

In this subsection, we investigate the sensitivity of our proposed termination method with respect
to the parameter τ . We consider various settings of τ ∈ {2i}9i=1 and repeat the experiments on all
benchmark problems introduced in Section 3.1. The aggregated comparison results for Icost and
Iperf are illustrated as bar charts with error bars in Figure 8. Specifically, we present the results
for ηlb = 2.05, while the complete results can be found in the supplementary document. The
plots show that the choice of τ has minimal impact on the results, except for cases with τ = 2
and τ = 4. This is reasonable, as the termination method may not utilize sufficient previous
information when only considering a few observed samples. Additionally, we examine the scenario
where the equality constraint in Condition 1, i.e., equation (5) is relaxed. The comparison results
in Figure 8 reveal similar observations regarding the settings of τ . However, we also notice a slight
performance degradation and more aggressive early stopping in this case. These findings demonstrate
that the Condition 1 helps mitigate the risk of premature early stopping.

5 Other Partially Related Works

Despite the limited number of dedicated studies on termination criteria for BO, various efforts have
been made to explore early stopping strategies in different contexts.

The first category primarily focuses on detecting change points in sequential processes [34], with
applications spanning various fields such as financial analysis [20], bioinformatics [7], and network
traffic data analysis [23], among others. However, modeling the automatic termination of BO as a
change point detection (CPD) problem may present several challenges. These include: 1) the absence
of suitable stopping metrics that can provide signals for CPD in the optimization process of BO; 2)
the unknown and uncertain nature of signal distribution, the number of change points, and change
point consistency; 3) limited data available for CPD; and 4) the necessity to further evaluate change
points in order to determine an appropriate moment for terminating BO.

The second category primarily focuses on determining the statistically optimal stopping moment for
generalized sequential decision-making processes [14, 13]. For instance, in the classical secretary
problem, termination criteria are developed to identify the maximum of an unknown distribution
with minimal cost through sequential search [12]. They typically establish relationships between
the costs and rewards of decision-making using cost coefficients [8, 2, 3], unknown observation
costs [15, 37, 30, 25] or discount factors [36], subsequently deriving statistically optimal stopping
conditions. However, quantifying the relationship between the improvement of the fitness and the

9



cost of BO remains challenging. Furthermore, these criteria do not leverage the information provided
by the surrogate model, which is crucial in BO.

The third category primarily aims to balance exploration and exploitation in the optimization process.
Among them, heuristic methods, exemplified by simulated annealing, are widely employed to halt the
local search step of optimization algorithms [17, 1, 21]. However, such methods’ hyperparameters lack
interpretability and must be fine-tuned according to different problem characteristics. Additionally,
McLeod et al. propose a regret-based strategy for switching between local and global optimization.
Although promising for complex functions, this approach has certain limitations, including reliance
on the authors’ proposed regret reduction acquisition function and the potential need for additional
computational resources to approximate intractable integrals. Furthermore, Eriksson et al. developed
a trust-region-based BO that balances exploitation and exploration. This algorithm terminates local
search when the trust region size is reduced to zero. However, the termination criteria lack theoretical
guarantees and are bound to the proposed trust region maintenance mechanism.

6 Conclusion
In this paper, we developed a simple yet theoretically grounded two-step method for automatically
terminating BO. The key insight is to proactively detect the local convex region and it terminates BO
whenever the termination indicator built upon the local regret therein falls below a predetermined
threshold. Our proposed termination method naturally strikes a balance between the quality of
solution found by BO versus its computational efficiency. The proposed termination method is
supported by robust theoretical underpinnings, and we have additionally introduced an approximation
method to enhance the numerical stability by solving a bilevel optimization problem. Our extensive
empirical studies, conducted across a variety of benchmark problems, including synthetic functions,
reinforcement learning, and hyperparameter optimization, consistently demonstrated the better
performance of our proposed method compared to other state-of-the-art techniques.

Besides, experimental results also show that the termination criterion of our proposed method is
robust across different problems. This property paves an additional opportunity for our proposed
termination method to go beyond automatically terminate BO, but to a broader range of applications,
such as early stopping to avoid overfitting in neural network traing, change point or anomaly detection
in data stream, and even a new perspective to strike the balance between exploitation and exploration
under a bandit setting. The primary limitation of the proposed termination criterion is that it requires
a predefined termination threshold, which needs to be determined based on prior knowledge or
empirical observations. Although a recommended threshold selection range is given here, finding an
optimal threshold that suits a wide range of optimization problems remains a challenge.
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