
A Nyström Estimator Error bound403

Nyström estimator can easily approximate the kernel mean embedding ψp1
, ψp2

as well as the MMD404

distance between two distribution density p1 and p2. We need first assume the boundedness of the405

feature map to the kernel k:406

Assumption 2. There exists a positive constant K ≤ ∞ such that supx∈X ∥ϕ(x)∥ ≤ K407

The true MMD distance between p1 and p2 is denoted as MMD(p1, p2). The estimated MMD408

distance when using a Nyström sample size ni, sub-sample size mi for pi respectively, is denoted as409

MMD(pi,mi,ni). Then the error410

Err(pi,ni,mi) := |MMD(p1, p2)− MMD(pi,mi,ni)|

and now we have the lemma from Theorem 5.1 in [8]411

Lemma 1. Let Assumption 2 hold. Furthermore, assume that for i ∈ 1, 2, the data points412

Xi
1, · · · , Xi

ni
are drawn i.i.d. from the distribution ρi and that mi ≤ ni sub-samples X̃i

1, · · · , X̃i
mi

413

are drawn uniformly with replacement from the dataset {Xi
1, · · · , Xi

ni
}. Then, for any δ ∈ (0, 1), it414

holds with probability at least 1− 2δ415

Err(pi,ni,mi) ≤
∑
i=1,2

 c1√
ni

+
c2
mi

+

√
log(mi/δ)

mi

√
N pi(

12K2 log(mi/δ)

mi
)

 ,

provided that, for i ∈ {1, 2},

mi ≥ max(67, 12K2∥Ci∥−1
L(H)) log(mi/δ)

where c1 = 2K
√

2 log(6/δ), c2 = 4
√
3K log(12/δ) and c4 = 6K

√
log(12/δ). The notation N pi416

denotes the effective dimension associated to the distribution pk.417

Specifically, when the effective dimension N satisfies, for some c ≥ 0,418

• either N ρi(σ2) ≤ cσ2−γ for some γ ∈ (0, 1),419

• or N ρi(σ2) ≤ log(1 + c/σ2)/β, for some β > 0.420

Then, choosing the subsample size m to be421

• mi = n
1/(2−γ)
i log(ni/δ) in the first case422

• or mi =
√
ni log(

√
ni max(1/δ, c/(6K2)) in the second case,423

we get Err(ρi,ni,mi) = O(1/
√
ni)424

B Proofs of Section 4425

B.1 Exact kernel uncertainty GP formulating426

Following the same notation in Section 4, now we can construct a Gaussian process GP(0, k̂)427

modelling functions over P . This GP model can then be applied to learn f̂ from a given set of428

observations Dn = {(Pi, yi)}ni=1. Under zero mean condition, the value of f̂(P∗) for a given P∗ ∈ P429

follows a Gaussian posterior distribution with430

µ̂n(P∗) = k̂n(P∗)
T (K̂n + σ2I)−1yn (21)

σ̂2
n(P∗) = k̂(P∗, P∗)− k̂n(P∗)

T (K̂n + σ2I)−1k̂n(P∗), (22)

where yn := [y1, · · · , yn]T , k̂n(P∗) := [k̂(P∗, P1), · · · , k̂(P∗, Pn)]
T and [K̂n]ij = k̂(Pi, Pj).431
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Now we restrict our Gaussian process in the subspace PX = {Px, x ∈ X} ⊂ P . We assume the432

observation yi = f(xi) + ζi with the noise ζi. The input-induced noise is defined as ∆fpxi
:=433

f(xi)−EPxi
[f ] = f(xi)− f̂(Pxi

). Then the total noise is yi−EPxi
[f ] = ζi+∆fpxi

. To formulate434

the regret bounds, we introduce the information gain given any {Pt}nt=1 ⊂ P:435

Î(yn; f̂n|{Pt}nt=1) :=
1

2
ln det(I+ σ−2K̂n), (23)

and the maximum information gain is defined as γ̂n := supR∈PX ;|R|=n Î(yn; f̂n|R). Here f̂n :=436

[f̂(p1), · · · , f̂(pn)]T .437

We define the sub-Gaussian condition as follows:438

Definition 1. For a given σξ > 0, a real-valued random variable ξ is said to be σξ-sub-Gaussian if:439

∀λ ∈ R,E[eλξ] ≤ eλ
2σ2

ξ/2 (24)

Now we can state the lemma for bounding the uncertain-inputs regret of exact kernel evaluations,440

which is originally stated in Theorem 5 in [25].441

Lemma 2. Let δ ∈ (0, 1), f ∈ Hk, and the corresponding ∥f̂∥k̂ ≤ b. Suppose the observation noise442

ζi = yi − f(xi) is conditionally σζ-sub-Gaussian. Assume that both k and Px satisfy the conditions443

for ∆fPx to be σE-sub-Gaussian, for a given σE > 0. Then, we have the following results:444

• The following holds for all x ∈ X and t ≥ 1:445

|µ̂n(Px)− f̂(Px)| ≤

(
b+

√
σ2
E + σ2

ζ

√
2
(
Î(yn; f̂n|{Pt}nt=1) + 1 + ln(1/δ)

))
σ̂n(Px)

(25)

• Running with upper confidence bound (UCB) acquisition function α(x|Dn) = µ̂n(Px) +446

β̂nσ̂n(Px) where447

β̂n = b+
√
σ2
E + σ2

ζ

√
2
(
Î(yn; f̂n|{Pt}nt=1) + 1 + ln(1/δ)

)
, (26)

and set σ2 = 1 + 2/n, the uncertain-inputs cumulative regret satisfies:448

R̂n ∈ O(
√
nγ̂n(b+

√
γ̂n + ln(1/δ))) (27)

with probability at least 1− δ.449

Note that although the original theorem restricted to the case when k̂(p, q) = ⟨ψP , ψQ⟩k, the results450

can be easily generated to other kernels over P , as long as its universal w.r.t C(P) given that X is451

compact and the mean map ψ is injective [11, 21].452

B.2 Error estimates for inexact kernel approximation453

Now let us derivative the inference under the introduce of inexact kernel estimations.454

Theorem 2. Under the Assumption 1 for ε > 0, let µ̃n, σ̃n, Ĩ(yn; f̂n|{Pt}nt=1) as defined in455

(14),(15),(16) respectively, and µ̂n, σ̂n, Î(yn; f̂n|{Pt}nt=1) as defined in (21),(22),(23). Assume456

maxx∈X f(x) =M , and assume the observation error ζi = yi − f(xi) satisfies |ζi| < A for all i.457

Then we have the following error bound holds with probability at least 1− ε:458

|µ̂n(P∗)− µ̃n(P∗)| < (
n

σ2
+
n2

σ4
)(M +A)eε +O(e2ε) (28)

|σ̂2
n(P∗)− σ̃2

n(P∗)| < (1 +
n

σ2
)2eε +O(e2ε) (29)∣∣∣Ĩ(yn; f̂n|{Pt}nt=1)− Î(yn; f̂n|{Pt}nt=1)

∣∣∣ < n3/2

2σ2
eε +O(e2ε) (30)
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Proof. Denote e(P∗, Q) = k̃(P∗, Q) − k̂(P∗, Q), en(P∗) = [e(P∗, P1), · · · , e(P∗.Pn)]
T , and

[En]i,j = e(Pi, Pj). Now according to the matrix inverse perturbation expansion,

(X + δX)−1 = X−1 −X−1δXX−1 +O(∥δX∥2),
we have

(K̂n + σ2I+En)
−1 = (K̂n + σ2I)−1 − (K̂n + σ2I)−1En(K̂n + σ2I)−1 +O(∥En∥2),

thus459

µ̃n(P∗) =(k̂n(P∗) + en(P∗))
T (K̂n + σ2I+En)

−1yn (31)

=µ̂n(P∗) + en(P∗)
T (K̂n + σ2I)−1yn − k̂n(P∗)

T (K̂n + σ2I)−1En(K̂n + σ2I)−1yn

(32)

+O(∥En∥2) +O(∥en(P∗))∥ · ∥En∥) (33)

σ̃2
n(P∗) =σ̂

2
n(P∗) + e(P∗, P∗)− (k̂n(P∗) + en(P∗))

T (K̂n + σ2I+En)
−1(k̂n(P∗) + en(P∗))

(34)

=σ̂2
n(P∗) + e(P∗, P∗)− 2en(P )

T (K̂n + σ2I)−1k̂n(P∗) + k̂n(P )
T (K̂n + σ2I)−1En(K̂n + σ2I)−1k̂n(P∗)

(35)

+O(∥En∥2) +O(∥en∥ · ∥En∥) +O(∥en∥2 · ∥En∥) (36)

Notic that the following holds with a probability at least 1− ε,460

|en(P∗)
T (K̂n + σ2I)−1yn| ≤ ∥en(P∗)∥2∥(K̂n + σ2I)−1∥2∥yn∥2 ≤ n

σ2
(M +A)eε, (37)

461

|k̂n(P∗)
T (K̂n + σ2I)−1En(K̂n + σ2I)−1yn| ≤ ∥k̂n(P∗)∥2∥(K̂n + σ2I)−1∥22∥En∥2∥yn∥2

(38)

≤
√
nσ−4neε

√
n(M +A) =

n2

σ4
(M +A), (39)

here we use the fact that K̂n semi-definite (which means ∥(K̂n + σ2I)−1∥2 ≤ σ−2), k̂(P∗, P∗) ≤ 1,
|yi| ≤M +A. Combining these results, we have that

|µ̃n(P∗)− µ̂n(P∗)| < (
n

σ2
+
n2

σ4
)(M +A)eε +O(e2ε),

holds with a probability at least 1− ε.462

Similarly, we can conduct the same estimation to en(P )
T (K̂n + σ2I)−1k̂n(P∗) and k̂n(P )

T (K̂n +

σ2I)−1En(K̂n + σ2I)−1k̂n(P∗), and get

|σ̃2
n(P∗)− σ̂2

n(P∗)| < (1 +
n

σ2
)2eε +O(e2ε)

holds with a probability at least 1− ε.463

It remains to estimate the error for estimating the information gain. Notice that, with a probability at464

least 1− ε,465 ∣∣∣Ĩ(yn; f̂n|{pt}nt=1)− Î(yn; f̂n|{pt}nt=1)
∣∣∣ = ∣∣∣∣∣12 log

det(I+ σ−2K̃n)

det(I+ σ−2K̂n)

∣∣∣∣∣ (40)

=

∣∣∣∣12 log det(I− (σ2I+ K̂n)
−1En)

∣∣∣∣ (41)

=

∣∣∣∣12Tr(log(I− (σ2I+ K̂n)
−1En))

∣∣∣∣ (42)

=

∣∣∣∣12Tr(−(σ2I+ K̂n)
−1En) +O(∥En∥2)

∣∣∣∣ (43)

≤ n3/2

2σ2
eε +O(∥En∥2), (44)
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here the second equation uses the fact that det(AB−1) = det(A) det(B)−1, and the third and fourth
equations use log det(I + A) = Tr log(I + A) = Tr(A − A2

2 + · · · ). The last inequality follows
from the fact

Tr(σ2I+ K̂n)
−1En) ≤ ∥(σ2I+ K̂n)

−1∥F ∥En∥F ≤ n3/2σ−2eε

and K̂n is semi-definite.466

With the uncertainty bound given by Lemma 2, let us prove that under inexact kernel estimations, the467

posterior mean is concentrated around the unknown reward function f̂468

Theorem 3. Under the former setting as in Theorem 2, with probability at least 1 − δ − ε, let469

σν =
√
σ2
ζ + σ2

E , taking σ = 1 + 2
n , the following holds for all x ∈ X :470

|µ̃n(Px)− f̂(Px)| ≤β̃nσ̃n(Px) +
(
β̃n(1 + n) + σ̃n(Px)σνn

3/4
)
e1/2ε +

(
n+ n2

)
(M +A)eε,

(45)

where β̃n =

(
b+ σν

√
2(Ĩ(yn; f̂n|{Pt}nt=1)− ln(δ) + 1)

)
(46)

Proof. According to Lemma 2, equation (25), we have471

|µ̂n(Px)− f̂(Px)| ≤ β̂nσ̂n(Px) (47)

with472

β̂n = b+ σν

√
2
(
Î(yn; f̂n|{Pt}nt=1) + 1 + ln(1/δ)

)
. (48)

Notice that473

|µ̃n(Px)− f̂(Px)| ≤ |µ̃n(Px)− µ̂n(Px)|+ |µ̂n(Px)− f̂(Px)|, (49)

β̂n = b+ σν

√
2
(
Î(yn; f̂n|{Pt}nt=1) + 1 + ln(1/δ)

)
(50)

≤ b+ σν

√
2

(
Ĩ(yn; f̂n|{Pt}nt=1) +

n3/2

2
eε + 1 + ln(1/δ)

)
(51)

≤ b+ σν

√
2
(
Ĩ(yn; f̂n|{Pt}nt=1) + 1 + ln(1/δ)

)
+ σνn

3/4e1/2ε (52)

where the second inequality follows from Theorem 2, (30), and the third inequality follows from the474

inequality
√
a1 + a2 ≤ √

a1 +
√
a2, a1 > 0, a2 > 0.475

We also have (29), which means476

σ̂n(Px) =
√
σ̂n(Px)2 ≤

√
σ̃n(Px)2 + (1 + n)2eε ≤ σ̃n(Px) + (1 + n)e1/2ε , (53)

combining (28), (49), (50) and (53), we finally get the result in (45).477

478

B.3 Proofs for Theorem 1479

Now we can prove our main theorem 1.480

Proof of Theorem 1. Let x∗ maximize f̂(Px) over X . Observing that at each round n ≥ 1, by the481

choice of xn to maximize the aquisition function α̃(x|Dn−1) = µ̃n−1(Px) + β̃n−1σ̃n−1(Px), we482

have483
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r̃n = f̂(Px∗)− f̂(Pxn
) (54)

≤ µ̃n−1(Px∗) + β̃n−1σ̃n−1(Px∗)− µ̃n−1(Pxn
) + β̃n−1σ̃n−1(Pxn

) + 2Err(n− 1, eε) (55)

≤ 2β̃n−1σ̃n−1(Pxn
) + 2Err(n− 1, eε). (56)

Here we denote Err(n, eε) :=
(
β̃n(1 + n) + σ̃n(Px)σνn

3/4
)
e
1/2
ε +

(
n+ n2

)
(M + A)eε. The484

second inequality follows from (45),485

f̂(Px∗)− µ̃n−1(Px∗) ≤ β̃n−1σ̃n−1(Px∗) + Err(n− 1, eε) (57)

µ̃n−1(Pxn)− f̂(Pxn) ≤ β̃n−1σ̃n−1(Pxn) + Err(n− 1, eε), (58)

and the third inequality follows from the choice of xn:

µ̃n−1(Px∗) + β̃n−1σ̃n−1(Px∗) ≤ µ̃n−1(Pxn
) + β̃n−1σ̃n−1(Pxn

).

Thus we have486

R̃n =

n∑
t=1

r̃t ≤ 2β̃n

n∑
t=1

σ̃t−1(Pxt
) +

T∑
t=1

Err(t− 1, eε). (59)

From Lemma 4 in [9], we have that

n∑
t=1

σ̃t−1(Pxt) ≤
√
4(n+ 2) ln det(I + σ−2K̃n) ≤

√
4(n+ 2)γ̃n,

and thus

2β̃n

n∑
t=1

σ̃t−1(Pxt
) = O

(√
nγ̃n +

√
nγ̃n(γ̃n − ln δ)

)
.

On the other hand, notice that

n∑
t=1

Err(t− 1, eε) = O
(
(
√
γ̃nn

2 + n7/4)eε + (n2 + n3)eϵ

)
,

we immediately get the result.487

C Evaluation Details488

C.1 Implementation489

In our implementation of AIRBO, we design the kernel k used for MMD estimation to be a linear490

combination of multiple Rational Quadratic kernels as its long tail behavior circumvents the fast491

decay issue of kernel [6]:492

k(x, x′) =
∑

ai∈{0.2,0.5,1,2,5}

(
1 +

(x− x′)2

2ail2i

)−ai
, (60)

where li is a learnable lengthscale and ai determines the relative weighting of large-scale and493

small-scale variations.494

Depending on the form of input distributions, the sampling and sub-sampling sizes for Nyström495

MMD estimator are empirically selected via experiments. Moreover, as the input uncertainty is496

already modeled in the surrogate, we employ a classic UCB-based acquisition as Eq. 5 with β = 2.0497

and maximize it via an L-BFGS-B optimizer.498
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Figure 7: Simulation results of the push configurations found by different algorithms.

C.2 Supplementary Experiments499

Robust Robot Pushing: This benchmark is based on a Box2D simulator from [30], where our500

objective is to identify a robust push configuration, enabling a robot to push a ball to predetermined501

targets under input randomness. In our experiment, we simplify the task by setting the push angle to502

ra = arctan
ry
rx

, ensuring the robot is always facing the ball. Also, we intentionally define the input503

distribution as a two-component Gaussian Mixture Model as follows:504

(rx, ry, rt) ∼ GMM
(
µ =

[
0 0 0
−1 1 0

]
,Σ =

 0.12 −0.32 1e− 6
−0.32 0.12 1e− 6
1e− 6 1e− 6 1.02

 , w =

[
0.5
0.5

] )
,

where the covariance matrix Σ is shared among components and w is the weights of mixture505

components. Figure 5b shows some example samples from this GMM distribution. Meanwhile, as506

the SKL-UCB and ERBF-UCB surrogates can only accept Gaussian input distributions, we choose to507

approximate the true input distribution with a Gaussian. As shown in Figure 5b, the approximation508

error is obvious, which explains the performance gap among these algorithms in Figure 5c.509

Apart from the statistics of the found pre-images in Figure 6, we also simulate the robot pushes510

according to the found configurations and visualize the results in Figure 7. In this figure, each black511

hollow square represents an instance of the robot’s initial location, the grey arrow indicates the push512

direction and duration, and the blue circle marks the ball’s ending position after the push. We can513

find that, as the GP-UCB ignores the input uncertainty, it randomly pushes to these targets and the514

ball ending positions fluctuate. Also, due to the incorrect assumption of the input distribution, the515

SKL-UCB and ERBF-UCB fail to control the ball’s ending position under input randomness. On516

the contrary, AIRBO successfully recognizes the twin targets in quadrant I as an optimal choice517

and frequently pushes to this area. Moreover, all the ball’s ending positions are well controlled and518

centralized around the targets under input randomness.519
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