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Abstract

Deep learning methods have achieved state-of-the-art performance in most model-
ing tasks involving images, text and audio, however, they typically underperform
tree-based methods on tabular data. In this paper, we hypothesize that a signifi-
cant contributor to this performance gap is the interaction between irregular target
functions resulting from the heterogeneous nature of tabular feature spaces, and the
well-known tendency of neural networks to learn smooth functions. Utilizing tools
from spectral analysis, we show that functions described by tabular datasets often
have high irregularity, and that they can be smoothed by transformations such as
scaling and ranking in order to improve performance. However, because these trans-
formations tend to lose information or negatively impact the loss landscape during
optimization, they need to be rigorously fine-tuned for each feature to achieve
performance gains. To address these problems, we propose introducing frequency
reduction as an inductive bias. We realize this bias as a neural network layer that
promotes learning low-frequency representations of the input features, allowing
the network to operate in a space where the target function is more regular. Our
proposed method introduces less computational complexity than a fully connected
layer, while significantly improving neural network performance, and speeding up
its convergence on 14 tabular datasets.

1 Introduction

Despite being one of the simplest and most natural ways to describe data, tabular data with heteroge-
neous columns poses a significant challenge for deep learning models. Recently, [5, 13] benchmarked
various deep learning approaches against tree-based models and showed that tree-based models
tend to perform the best on tabular data. Nevertheless, novel neural network architectures provide
several advantages over classical machine learning methods. Specifically, neural networks operate on
differentiable loss functions, are able to learn meaningful and high-dimensional data representations,
and can scale to large datasets. In addition, the rapid advances of neural networks in generative image
and language modeling clearly indicate their capability to encode complex information [8, 18]. In
order to fully utilize these benefits on tasks that include tabular datasets, identifying and addressing
the reasons behind neural networks’ lack of performance on this form of data is essential.

Several influential research efforts on synthetic and image data point out that, despite being universal
approximators, neural networks have a spectral bias, i.e., they tend to learn the low frequency
components of a function much more easily than higher frequency components [22, 27]. In addition,
recent empirical studies on tabular deep learning provide insights on why neural networks typically
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Figure 1: (Left) Due to their heterogeneous nature, tabular datasets tend to describe higher frequency
target functions compared to images. The spectra corresponding to image datasets (curves in color)
tend to feature lower Fourier amplitudes at higher frequencies than hetergoneous tabular datasets
(cyan region). (Top Right) Data with labels varying over small distances are difficult for neural
networks to learn, but easy for tree-based methods. (Bottom Right) Ranking is a transformation that
redistributes the data and increases the scales over which the feature labels vary. This transformation
effectively lowers the frequency of the target function, making it easier for a neural network to learn.

underperform on tabular data, including the latter’s tendency to feature irregular target functions [13,
5]. Notably, the feature spaces of the tabular datasets considered in these studies are heterogeneous.
Unlike images in tabular form where columns correspond to the same signal on different sensors,
columns of tabular deep learning tasks typically represent features of different nature. These features
are engineered to be informative as individuals (or subsets) and tend to have different statistical
properties than each other.

In this work, we connect these lines of inquiry and claim that the spectral bias of neural networks
may prevent them from learning the information present in the high frequency components of
heterogeneous tabular datasets. We provide evidence to support this claim by analyzing the Fourier
components of image and tabular datasets, as well as neural networks. To best of our knowledge,
we present the first analysis on the relationship between spectral bias and tabular deep learning.
We suggest that transforming tabular features into low-frequency representations may alleviate the
negative impact of spectral bias. Notably, such transformations need to be performed in a way that
balances the benefits of reduced frequency against potential information loss and additional negative
effects on optimization (e.g., creating large gradients along certain directions) that can arise when
altering the representation of the data. Figure 1 illustrates an example of the analyses we conduct.
From the left panel, it can be observed that many tabular datasets tend to have higher power in
their high frequency components, compared to some of the popular image datasets. We extend this
comparison and present additional observations in Appendix C. The right panel depicts the impact of
a frequency-reducing transformation on the functions learned by a multilayer perceptron (MLP) and
Extreme Gradient Boosting (XGB) [7] on synthetic data. From this panel, it can be observed that the
MLP is able to fit the target function better after the frequency-reducing transformation. Details of
this analysis are provided in Appendix B.

Driven by these observations, we propose using frequency reduction as an inductive bias during
neural network training. We apply this bias by introducing a trainable layer that promotes learning
lower frequency feature mappings. We show that several commonly-used data processing methods
impact the frequency spectrum of the target function as well as the resulting neural network learned
from the data, however, their impact on performance varies with the dataset. Our proposal leads
to the best performance, converges faster across all datasets considered, and introduces minimal
computational complexity.

2 Related Work

Spectral Analysis of Neural Networks. Spectral properties of neural networks have been extensively
studied. [22, 27] rely on Fourier analysis to investigate the learning behavior of neural networks,
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observing that neural networks learn lower frequency components of target functions first. This
phenomenon is referred to as spectral bias or the frequency principle. [3] study spectral bias on data
with non-uniform density by examining the NTK for deep fully-connected networks, observing that
both data density and frequency impact the gradient descent behavior. [6] show that during neural
network training, error terms from different frequencies are controlled by the eigenvalues of the NTK.
[16] decompose the reconstruction error of neural networks into low and high frequency components
with respect to a cutoff frequency, and use these components to define a metric that quantifies spectral
bias. [26] study the spectral bias of coordinate-based MLPs for modeling functions in low dimensions.
Using NTKs, they show that mapping input coordinates to Fourier features [23] enables learning
higher frequency information. Notably, they focus on the frequency described by pixels of a given
image, rather than the frequency of the target function described by the whole dataset. The existing
studies mainly focus on advancing the understanding of spectral bias on synthetic and image datasets,
however, real-world tabular datasets are not considered.

Tabular Deep Learning. Due to neural networks’ inferior performance on tabular data compared
to tree-based models, various approaches have been proposed to close this performance gap. [1]
take raw tabular data as input and use sequential attention to choose the set of features to use for
every step of inference. This instance-wise feature selection is shown to improve performance and
enable interpretability. [28, 2] extend self and semi-supervised learning to tabular data by introducing
pretext tasks that aim to optimize a model to recover input samples from their corrupted variants.
[25] leverage row- and column-wise attention combined with contrastive pre-training. [12] embed
numerical features using linear transformations and categorical features using lookup tables, and
feed these embeddings to a transformer. [15] show that using hyperparameter tuning, one can find a
strong combination of 13 regularizers to be used with a simple MLP to outperform other tabular deep
learning methods, as well as tree-based methods such as XGB. [11] propose individually embedding
numerical features onto high-dimensional spaces before jointly using them in a model. The authors
explore approaches such as piecewise linear embeddings that use bins selected by decision trees, and
periodic activations to transform numerical features into high-dimensional representations.

Discussion. In most learning tasks that include images, audio or text, deep neural networks provide
state-of-the-art performance. Breakthroughs in these domains are strongly connected to the design
choices that exploit the salient characteristics of the corresponding data modality (e.g., convolutional
layers in computer vision). On the other hand, existing studies on tabular deep learning mainly
focus on applying approaches that are successful in other domains to improve performance [1, 12,
2, 25]. These studies do not rigorously investigate the fundamental reasons behind the performance
gap between neural networks and tree-based methods. As a result, in order to gain performance,
these approaches tend to sacrifice simplicity by complicating training and hyper-parameter tuning
significantly. Such complexity causes these models to perform inconsistently across different studies,
as utilizing the full potential of these models can be challenging. For example, [13] provide an
extensive set of benchmarks, showing that tree-based approaches significantly outperform various
tabular deep learning methods that originally claimed to outperform tree-based models. Similarly,
[25] show that simple MLPs perform better than TabNet, an architecture that is tailored for tabular
deep learning. As a result, instead of focusing on designing complex models to improve performance,
we aim to identify and address the fundamental weaknesses of neural networks when learning from
tabular data. We show that our approach improves performance of neural networks significantly
without introducing additional complexity for fine-tuning, and helps them to converge faster.

3 Methodology

3.1 Background

Consider classification tasks defined on a tabular dataset D = {(xi, yi)}Ni=1 where xi ∈ Rn and
yi ∈ {0, 1}m is the corresponding label. The task is to learn a classifier f : Rn → {0, 1}m. For
simplicity, set m = 1 (i.e., binary classification), and let y = 1 correspond to the minority class in all
cases. In Section 4, we provide experimental results and analyses for multi-class datasets as well, by
extending this approach via one-vs-rest.

We are interested in the frequency spectra of various functions, including target functions implicitly
defined by the data, for which f(xi) = yi. Since we only have the labels defined at the datapoints
supplied in each dataset, we rely on spectral analysis methods that take an arbitrary set of points as
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input and output a measure of the strength of fluctuations at particular scales. One such method is a
generalized Fourier transform known as the non-uniform discrete Fourier transform (NUDFT) [10].
For a function f(x) and a set of points X = {xi}Ni=1, the NUDFT defines a function of frequency
vector k ∈ Rn as

f̃X(k) =
1

N

N∑
i=1

f(xi)e
−2πik·xi . (1)

Equation (1) can be interpreted as an approximation of the multidimensional continuous Fourier
transform (FT) of f(x) weighted by the empirical distribution represented by the datapoints X ,
further discussed in Appendix A. [27] demonstrate the spectral bias of neural networks in terms of
the NUDFT.

The Fourier transform approximated in Equation 1 evaluated at a given k, corresponds to the
coefficient of the e2πik·x term in a projection onto complex exponentials. Therefore, a natural
definition of one function being higher frequency than another corresponds to the former having
larger-magnitude Fourier amplitudes away from a specified low-frequency regime than the latter. We
can make this comparison concrete by evaluating amplitudes along specific directions in k-space.
Defining k = kk̂, with k̂ a unit vector in Rn, we can compare the size of the squared NUDFT

amplitudes, Pf (k) =
∣∣∣f̃X(k)

∣∣∣2, for functions along a given k direction by computing the sum

Sk̂[f ] =
2

f
2

(k∗−k0)/∆k∑
n=0

Pf

(
(k0 + n∆k)k̂

)
∆k, (2)

where f is a function of interest. Here, f is the mean of f(x) (i.e., y) evaluated on the the points in
X , so that the scales at low frequencies are comparable for any given dataset (see Appendix A.2).
Equation (2) can then be used to compare spectra: if Sk̂[f1] > Sk̂[f2] for two functions f1 and f2
defined on Rn, we say that f2 is a higher frequency function than f1 along the direction k̂, in the
sense that it has more normalized signal energy (variance) in the region of interest, and refer to
frequency reduction as reducing Sk̂(k). In the above expression, k0 defines the boundary between the
low- and high-frequency regions, and k∗ is a cutoff frequency, discussed in Appendix A.4. Notably,
Equation (2) only considers the magnitude of Fourier amplitudes along one dimension of Rn at a
time. In Appendices A.3 and A.6, we discuss an alternative approach that works in the full feature
space Rn and show that using (2) to evaluate along principal components (PCs) yields similar results
to working in Rn, while being more computationally efficient. Therefore, we rely on evaluations
along PCs.

3.2 Spectral Analysis of a Class of Target Functions

The NUDFT, when evaluated using the labels f(xi) = yi, can be understood in terms of the
continuous Fourier transform of a class of target functions fitting the data. Given a binary classification
task described by a dataset D = {(xi, yi)}Ni=1, a typical way to train a neural network f is minimizing
the empirical risk 1/N

∑N
i=1 ℓ(yi, f(xi)), where ℓ denotes the cross-entropy loss. Assuming that

D maps each unique xi to a single yi, the cross-entropy loss without explicit regularization terms
is exactly minimized for any function f(x) such that f(xi) = yi∀i ∈ {1, . . . , N}. This defines a
set of equalities satisfied by any ideal target function perfectly fitting the training set2, but does not
further specify the form of the function away from the training instances. Indeed, there is no unique
definition of the target function given only a finite set of points. However, we can parameterize a
class of target functions minimizing the loss by convolving the target values at known data points
with a given envelope function, G(x,x′), that falls off sufficiently rapidly away from the points {xi}:

f̂ [x, G] ≡
N∑
i=1

∫
Rn

yiG(x,x′;αi)δ
n(x′ − xi)d

nx′, (3)

where δn(x) is the Dirac delta function in Rn and αi denotes the parameters defining the envelope
for the point xi. A typical loss function (neglecting regularization terms) will be exactly minimized

2In practice, some form of regularization will need to be utilized to avoid overfitting, but this set of equalities
should still approximately hold. We verify empirically that the spectra of classifier functions learned in realistic
settings approach the spectra of the target functions defined in this idealized sense.

4



provided G(xi,xi;αi) = 1 and G(xi,xj ;αi) = 0∀xi,xj ∈ D. Perhaps the simplest such envelope
is a multi-dimensional generalization of the boxcar function

B(x′,x; ∆i) =

n∏
j=1

rect
(x′

j − xj

∆i

)
, (4)

where rect(a
′−a
∆ ) = 1 if |a′ − a| < ∆/2, = 0.5 if |a′ − a| = ∆/2, and vanishes otherwise. Notably,

∆ corresponds to an upper bound on the L∞ distance between a and a′, in order for them to be
assigned to the same value of y. The target function defined by inserting Equation (4) into Equation (3)
is then

f(x) =

N∑
i=1

yi

n∏
j=1

∫
Rn

rect

(
xj − x′

j

∆i

)
δ(x′

j − (xi)j)dx
′. (5)

Provided that ∆i satisfies

|xi − xj |∞ ≥ ∆i ∀xj ∈ D, (6)

for each xi, this function minimizes the cross-entropy loss on the training set, since its values at
each point are simply the corresponding label. This corresponds to tiling the feature space with
n-dimensional hypercubes of edge lengths ∆i∀i, centered on each datapoint xi and taking the target
function to be constant within that region with value yi. This is the simplest possible choice for the
envelope function in that it does not assume any spectral features present in the target functions on
distances smaller than ∆i.

We can now use the continuous Fourier transform to analyze the frequency spectrum of the target
function defined in Equation (5). Denote the Fourier transform of a function g(x) as Fx[g(x)](k).
By the convolution theorem, we have

Fx[f(x)](k) =

N∑
i=1

yie
−2πik·xi∆n

i

 n∏
j=1

sinc(kj∆i)

 , (7)

where sinc(x) = sin(πx)/(πx). Different choices for the ∆i correspond to different assumptions
about the target function away from the datapoints. One simple class of target functions is obtained
by taking a common ∆i = ∆ = min

{
|xi − xj)|∞

}N−1,N

i=1,j=i+1
. This choice satisfies Eq. (6) and in

the limit |k|∞ ≪ 1/(π∆), yields

Fx[f(x)](k) ≈ ∆n
N∑
i=1

yie
−2πik·xi = N ∆n f̃X(k) (8)

where the approximation holds up to terms O(|k|2∆2π2) (here || denotes Euclidean distance). The
RHS above is the NUDFT up to a constant dimensionful scaling factor, which will drop out when
using a procedure like Equation (2) that normalizes the amplitudes to the value at k = 0. Therefore,
the NUDFT reproduces the spectral properties of a simple class of target functions defined by
Equation (3) for frequencies below the scale set by the inverse minimum nearest-neighbor separation
of points in the dataset. We implicitly enforce the latter restriction by cutting off our analysis at k∗,
as discussed in Appendix A.4. Note that other choices for the ∆i result in different target functions
with spectra that can be analyzed by appropriately modifying the NUDFT.

In order to compare against the same quantity in all analyses, we also utilize Equation (1) for
analyzing the frequency spectra of classifiers. A similar argument holds, and the corresponding
results can be interpreted as analyzing the spectra of a classifier coarse-grained by convolving the
neural network predictions at the datapoints with a narrow envelope as in Equation (5). In all
cases, the classifier spectra defined in this way converge to that of the target function as training
progresses, up to deviations caused by spectral bias (see also [27] for similar results). This suggests
that high-frequency target functions, defined as above, are best fit by high-frequency classifiers, and
that transformations affecting the target function spectrum will impact the frequency spectrum of the
corresponding classifier.
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house electricity phoneme MagicTelescope bankMarketing MiniBooNE albert california

unit length 1.31 1.46 1.66 0.13 2.01 16.24 1.74 1.5
rank 0.11 0.18 0.44 0.07 0.74 0.34 0.17 0.3
scale 0.01 0.18 0.06 0.01 0.17 0.35 0.04 0.03

selrank 0.11 0.22 0.58 0.07 1.28 0.34 0.29 0.32

house electricity phoneme MagicTelescope bankMarketing MiniBooNE albert california

unit length 88.94 ± 0.17 85.28 ± 0.12 87.78 ± 0.28 87.84 ± 0.18 90.56 ± 0.11 90.78 ± 0.04 66.35 ± 0.04 88.51 ± 0.15
rank 89.61 ± 0.14 86.1 ± 0.19 88.0 ± 0.46 87.9 ± 0.24 90.41 ± 0.08 95.01 ± 0.06 66.21 ± 0.08 88.51 ± 0.17
scale 89.65 ± 0.16 85.19 ± 0.13 88.64 ± 0.21 87.88 ± 0.23 90.56 ± 0.13 94.0 ± 0.04 66.48 ± 0.05 88.53 ± 0.22

selrank 89.91 ± 0.16 87.04 ± 0.17 88.15 ± 0.32 88.14 ± 0.27 90.56 ± 0.13 94.94 ± 0.05 66.28 ± 0.06 88.48 ± 0.2

Table 1: (Top) Normalized sum of high-frequency Fourier amplitudes, Sk̂, for various binary
classification datasets and transformations, averaged over the 1st principal component direction after
each transform is applied. Ranking and scaling individual features tends to significantly reduce
the high-frequency energy of tabular datasets relative to features normalized to unit scale. For an
extended discussion, see Appendix A.6. (Bottom) Accuracy measurements corresponding to different
transformations. Overall, lower frequencies are correlated with better performance. However, the
benefits of frequency reduction is transformation- and dataset-dependent.

3.3 Case Study: Impact of Transformations on Target Function Spectra

Most neural networks need their input to be transformed in order to converge faster and generalize
better. [14] show that these transformations serve to regulate layer input/output gradient statistics
and/or the conditioning of input/gradient covariance matrices. A typical example of such transfor-
mations is scaling the features so that they vary over the unit interval [0, 1], i.e., min-max scaling.
Different choices of transformations can dramatically impact the target function frequency spectrum,
and therefore the spectrum of the network that best fits the data with a given loss function. Due to
the spectral bias of neural networks, we expect that using transformations that reliably reduce the
high frequency components of the target functions result in better performance (see Appendix D for
further discussion and illustration of this point).

Let us consider two types of such transformations, rank and scale, that are applied to each feature
independently. Consider a vector zℓ ∈ RN with elements (zℓ)r ∈ {(x1)ℓ, . . . , (xN )ℓ} such that
(zℓ)r ≤ (zℓ)s ∀r ≤ s. Then

rank((xi)ℓ) =
1

N
min

{
r ∈ N|(zℓ)r = (xi)ℓ

}
, (9)

scale((xi)ℓ) = a× (xi)ℓ, (10)

for xi ∈ X and a ∈ R. Equation (9) simply maps a feature to the range [0, 1], proportional to its
position when ranked by magnitude along with the other values in the dataset. For any (x)ℓ not
in the original dataset, rank returns a value interpolated between rank(xi)ℓ and rank(xj)ℓ for the
(xi)ℓ, (xj)ℓ ∈ X nearest to (x)ℓ such that (xi)ℓ < (x)ℓ < (xj)ℓ. Both scale and rank may alter
the frequency spectrum of the target function described by a dataset by either stretching/squeezing
fluctuations while preserving relative distances between points or neglecting distance information
altogether and forcing the points to be uniformly distributed along a direction, respectively.

Using Equation (2), we present the high-frequency Fourier amplitudes (i.e., |k| > 0.5) of the target
functions of 8 tabular binary classification datasets with different transformations and their impact on
performance across 10 random seeds in Table 1. Here, we implement scale as standardization, such
that a in Equation (10) is the inverse standard deviation of the feature in the training set population.
From the top panel of Table 1, it can be observed that scale and rank consistently reduce the frequency
of the target functions of all datasets, although by different relative amounts.

The bottom panel of Table 1 shows that, overall, lowering target function frequency is correlated
with better NN performance: converting the averaged Sk̂ and NN performance for unit length, rank,
and scale to their ranks within each dataset and comparing yields a Spearman’s rank correlation
coefficient of ≈ −0.7 with a p−value of ≈ 3× 10−4. However, this correlation is not exact: large
reduction in high-frequency Fourier amplitudes may not always result in significant performance
improvements. This is because the amount of high frequency information encoded by each feature
is different across datasets. Also, scaling up the feature values by a significant amount reduces the
high-frequency energy, but can also negatively impact optimization by generating large gradients
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during training. Finally, rank discards relative distance information between points in favor of
frequency reduction, and also impacts optimization as it produces non-centered features. Therefore,
it is important to simultaneously balance the effect of a given frequency-reducing transformation with
other potentially negative impacts on the loss landscape or due to information loss.

These observations indicate that there is not a simple one-size-fits-all transformation that reliably and
consistently reduces the high-frequency spectral energy that results in improved network performance.
However, with this trade-off between frequency reduction and potential loss of information or
effects on the loss landscape in mind, we can take a first step in improving over the rank and scale
transformations by doing them selectively. For example, to balance the aforementioned trade-off we
consider a selective version of rank defined as

selrank((x)ℓ) =

{
rank((x)ℓ), Sk̂ℓ

[{rank((xi)ℓ), yi}
Ntr

i=1
] ≤ ΘSk̂ℓ

[{(xi)ℓ, yi}
Ntr

i=1
]

(x)ℓ, otherwise
(11)

where the datapoints in the conditions are those in the training set and Θ ∈ R. selrank applies
rank only if it reduces the high frequency energy of the target function defined for the starting data
representation by a certain relative amount, Θ. Otherwise, selrank leaves a given feature as-is. The
threshold Θ parameterizes how significant the frequency reduction must be in order to outweigh the
potentially detrimental loss of information or impact on the loss landscape. From Table 1, it can be
observed that selrank performs comparably or better than its counterpart rank across the datasets
considered, motivating the use of frequency-informed transformations.

3.4 Frequency Reduction as Inductive Bias

Reducing the frequency of the target function may improve neural network performance by reducing
the impact of spectral bias. On the other hand, the way we reduce frequency may impact other factors
that play a significant role in neural network training. Since the interactions between transformations
that reduce frequency and other learning dynamics are unique to how a feature is originally distributed,
we can loosely formulate finding a transformation g parameterized by θg that reliably and beneficially
reduces the frequency as a constrained optimization problem:

argmin
θf ,θg

1

N

N∑
i=1

ℓ(yi, f(g(xi; θg)); θf ) s.t.
∫
K

Pf◦g(k)dk <

∫
K

Pf∗(k)dk, (12)

where θf denotes the trainable parameters of neural network f , P can be evaluated on arbitrary
(including unlabeled) points, K denotes a high frequency region of k-space, and f∗ denotes a neural
network that minimizes the empirical loss 1/N

∑N
i=1 ℓ(yi, f

∗(xi; θf∗)). Equation (12) suggests that
a beneficial frequency-reducing transformation can be found by limiting the space of acceptable
solutions represented by f to yield lower spectral energy in its high frequency components, compared
to its analogous model f∗ trained on the raw data. One way to attempt solving this optimization
problem is to simplify the frequency reduction constraint and directly use Pf (k) to regularize the
training loss towards finding a low frequency solution. However, this approach is computationally
expensive, would in general require transformations on multiple features simultaneously, and would
require careful pre-determination of the region K to represent the spectral energy in high-frequency
components of the learned function.

To alleviate these challenges we make the following simplifications. First, to avoid the computational
complexity of working in the full feature space, we assume that all input features are conditionally
independent given the target y, hence, they do not have interactions that significantly impact the
frequency of the high dimensional decision boundary described by the data. Notably, we only use
this assumption to limit our consideration to transformations that reduce the high frequency spectral
energy by acting on individual features one at a time instead of jointly. After the transformation is
conducted, consideration of feature interactions for the learning task is dictated by the underlying
network architecture. Second, instead of relying on Sk̂ as a proxy for

∫
K
Pf (k)dk to impose a

frequency reduction constraint on f ◦ g during training, we constrain g to be a composition of the
two frequency-reducing transformations rank (9) and scale (10) (understood to be acting on the
individual components of the feature vector x):

g
(
x; θg : {θsg, θrg, θcg}

)
= θcg scale

(
rank(x; θrg); θ

s
g

)
+(1−θcg) scale(x; θ

s
g) s.t. θcg ∈ [0, 1], (13)

where θrg represents the set of parameters specifying the mapping from original feature values to
their ranked counterparts (e.g., how the interpolation is done), and θsg denotes the set of coefficients
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used to scale the input features. Note that θrg is not a variable of this optimization problem as it only
depends on the order of feature values in training set. Equation (13) describes a linear trajectory
between scaled features and their ranked counterparts, while the degree of scaling applied to original
and ranked features can be different. Notably, although we describe a linear relationship, one can
encode more complex relationships to enable exploration of a larger space of frequency reducing
transformations. With g applying frequency reduction as a soft constraint, we drop the constraint
from Equation (12), and set {θf , θg} to the minimizers of the empirical loss. We implement Equation
(13) as the input layer of a neural network and let θg get updated jointly with the rest of the network
parameters during backpropagation. We satisfy the constraint θcg ∈ [0, 1] by clamping these weights
after each update. Note that, computational complexity introduced by Equation (13) is linear in the
number of input features (see Appendix F).

It is important to note that rank and scale are used to individually reduce the high frequency spectral
energy of the empirical distribution function p̂(x), even though our objective is to reduce the spectral
energy for f(x; θf ) ∼ P (y|x) instead. This is motivated by the observation that (13) is designed as
an inductive bias that exploits the neural network f ’s spectral bias, and g’s parameters are selected
towards minimizing the empirical loss. Given that neural networks have strong spectral bias towards
learning low frequency functions, when jointly optimized during training, f prefers mapping the
training instances to an informative low-frequency form using g and fitting to this low-frequency
alternative in order to minimize the loss further. In Section 4, we show empirical evidence that neural
networks trained with g indeed have reduced spectral energy in their high-frequency components
compared to the networks trained on the same input data.

4 Experiments and Results

Our evaluation focuses on 3 key metrics: performance, rate of convergence and the irregularity of
functions learned. Performance is evaluated using accuracy and the area under the receiver operating
characteristic curve (AUROC). Rate of convergence is evaluated using the mean number of training
epochs required to minimize validation loss. Finally, irregularity of functions learned by the neural
network models are measured using total high-frequency power in Equation 2 along top principal
components (PCs). We evaluate our proposed approach using 14 benchmark classification datasets
listed in Table 2. These datasets are used by [13] to demonstrate the performance gap between tree-
based models and neural networks. However, unlike [13], we use these datasets without truncating
any samples, and we drop id and date type features as the approaches we compare are not designed
to utilize the information conveyed by them. Because we consider a wide variety of datasets, the
evaluation metrics we collect for the baselines and the proposed method highly fluctuate. This
makes it challenging to draw conclusions for the overall behavior of these methods. Based on these
observations, similar to [13], we normalize our measurements and aggregate them across datasets.
In Appendix E, we provide the raw measurements and additional details on data preparation and
training. Implementation details to reproduce our results are provided in Appendix H.

Frequency Reduction with Neural Networks. We present normalized and aggregated statistics
across 14 datasets to highlight the general behavior of different transformations. Figure 2 depicts
these statistics, where boxes represent quartiles, notches represent 95% confidence intervals and
whiskers represent the full range except outliers. From the figure, it can be observed that our proposed

Name #Samples #Features Source
electricity [9] 45312 9 https://openml.org/d/151
house_16H 22784 17 https://openml.org/d/821

pol 15000 49 https://openml.org/d/722
kdd_ipums_la_97-small 7019 61 https://openml.org/d/993

MagicTelescope [9] 19020 11 https://openml.org/d/1120
bank-marketing [9] 45211 17 https://openml.org/d/1461

phoneme 5404 6 https://openml.org/d/1489
MiniBooNE [9] 130064 51 https://openml.org/d/41150

eye_movements [24] 10936 28 https://openml.org/d/1044
jannis 83733 55 https://openml.org/d/41168

california [19] 20640 8 https://www.dcc.fc.up.pt/ltorgo/Regression/cal_housing.html
albert 425240 79 https://openml.org/d/41147

credit card clients [9] 30000 24 https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
Diabetes [9] 768 9 https://www.openml.org/search?type=data&sort=runs&id=37

Table 2: 14 Tabular datasets used in the experiments
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Figure 2: Normalized measurements of performance, convergence and frequency across datasets
and seeds. The simple frequency-informed approach, selrank, with rank implemented as quantile
transform improves upon rank alone. Additionally, our proposed methods significantly outperform
all baselines, while converging faster.

Figure 3: Weights learned by the proposed approach on electricity dataset. Lines represent values
taken by the weights θg throughout 250 epochs, and shaded regions represent the 95% confidence
intervals. The weights consistently converge to similar values across 10 random seeds that vary data
splits and neural network initializations. Due to heterogeneous nature of tabular datasets, scaling and
ranking weights that minimize the loss for different features are different.

method provides significantly higher normalized accuracy and AUROC, while taking significantly
less epochs to converge. All of the transformations considered result in reduction of frequency of the
function learned, compared to the neural network trained on unit scaled data. However, as discussed
in Section 3.3, existing methods do not benefit from frequency reduction as much as our proposed
methods, as they may have side effects such as losing relevant information (i.e., rank), or negatively
impacting optimization (i.e., robust, standard and rank). On the other hand, our proposed method
is able to balance the tradeoff between performance gain from frequency reduction and loss due to
the side effects of the transformations used, providing an effective inductive bias for tabular deep
learning.

Investigating the Learned Weights. Figure 3 depicts the change of the weights of our proposed
approach across 10 random seeds on electricity dataset. Appendix E.1 extends this plot to all datasets.
Across different seeds, initialization of our proposed layer’s weights stay the same (i.e., θsg := 1
and θcg := 0.5), however, the network weights θf and data splits change. The first two columns of
the figure correspond to the scaling weights θsg for the raw features and ranked features, and the
third column corresponds to the weights θcg that combine these features from Equation (13). Shaded
regions in the figure represent 95% confidence intervals. From the figure, it can be observed that
the confidence intervals of the learned weights are small, relative to their change over epochs. This
implies that the values of these weights stay consistent across random seeds. Consequently, the
network consistently learns similar representations for the same feature and the representations do not
overfit to the underlying network architecture. The figure also shows that the amount of scaling and
ranking that can be applied to gain performance is data-dependent. Therefore, it is computationally
expensive to exhaustively find the best transformations for each feature.

Frequency Reduction with Tree-based Models. XGB typically outperforms all other tabular
learning approaches and is known to not be impacted by irregularity of target functions [13]. Therefore,
in order to isolate the performance improvements observed by our approach to spectral bias of neural
networks, it is important to confirm that our approach does not improve XGB performance. In
Appendix E, we provide empirical evidence that our approach’s impact to XGB is insignificant.
Additionally, even though we do not intend this study to be a benchmarking of state-of-the-art methods,
we see that using our approach, a simple MLP with no regularization and limited hyperparameter

9



Figure 4: AUROCs of MLPs using the baseline transforms and the proposed method over multiple
scale factors. As the scale factor increases, the target function frequency of the dataset also increases.
Shaded regions correspond to 95% confidence intervals across 10 random seeds.

tuning can outperform XGB in 4 of the datasets that were identified to be tree-friendly by previous
studies [13], while providing competitive performance in 2 datasets.

Frequency Reduction with other Network Architectures. Frequency reduction as an inductive bias
can improve the performance of more sophisticated deep learning architectures as well. For example,
our proposed layer’s mappings can be used as an input to TabNet to significantly reduce the amount
of hyperparameter tuning required. As discussed in Section 2, it is challenging to utilize TabNet’s full
potential due to its hyperparameter sensitivity, causing inconsistent results across different studies.
However, this model also offers additional benefits beyond performance improvements such as
interpretability. Therefore, we believe TabNet is a good candidate to evaluate our inductive bias on
beyond the vanilla MLP. Similar to our other experiments, we limit the number of hyperparameter
configurations swept for tuning to 100. For each dataset, we train an MLP with our proposed layer
until convergence and use the layer to generate low-frequency versions of the corresponding dataset.
We compare the performance of our approach to TabNet trained by following the author’s suggestions
[1]. We find that our approach improves TabNet’s AUROC by 4%± 1.6% (see Appendix E.2).

Performance over Varying Target Function Frequency. Due to the diverse nature of the datasets
considered in our experiments, it may appear challenging to reliably draw conclusions about the effect
of the proposed method. Different dataset characteristics naturally lead to variation in the performance
gain observed from our methods. To address these concerns, we provide additional results using
synthetic data. Specifically, we generate synthetic datasets of varying target function frequency by
applying a common scale factor to ki in Equation (24) while keeping all other parameters fixed.
We train the same 2-hidden-layer MLP for 200 epochs on the unit-scaled, ranked, and scaled (via
standardization) features. Figure 4 depicts the AUROCs of these MLPs over different target function
frequencies. From the figure we observe that for low target function frequencies, all methods perform
comparably. Also, performance decreases with increasing target function frequency due to NN’s
spectral bias. Our proposed method consistently outperforms the others and is the most robust to high
frequency target functions.

5 Conclusion

In this paper, we studied the impact of spectral bias of neural networks on tabular datasets. We
showed that tabular datasets tend to describe irregular target functions and this irregularity negatively
impacts neural network performance. We proposed incorporating frequency reduction as an inductive
bias when training neural networks to reduce the irregularity of these functions. We showed that our
proposed method significantly improves neural network performance while reducing the number
of training epochs needed to converge. Although we propose the new direction of using frequency
reduction as an inductive bias for tabular deep learning, we merely scratched the surface when it
comes to realizing said bias. For example, our analyses can be extended to other tabular deep learning
approaches to determine if the performance improvements they offer can be explained from the lens
of spectral analysis. We discuss other future directions as well as the limitations of our work in
Appendix G.
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Supplementary Material

A Fourier Analysis Details

In this section, we provide additional details regarding our Fourier analysis.

A.1 The NUDFT and its continuous limit

The primary starting point for our spectral analysis is the non-uniform discrete Fourier transform
defined in Equation (1). This particular transform conveys spectral information about functions
sampled at arbitrary data points and its adjoint is commonly used in the medical imaging domain to
reconstruct images from measurements taken in Fourier space. Equation (1) can be interpreted as an
approximation of the multidimensional continuous Fourier transform (FT) of f(x) weighted by the
empirical distribution represented by the datapoints X . Its continuous limit as N → ∞ is the Fourier
integral

Fx[f(x);µ](k) =

∫
Rn

f(x)e−2πk·xµ(dx), (14)

where µ(dx) is the probability measure representing the distribution from which the points in the
dataset are sampled.

The NUDFT (as well as any spectral analysis method relying solely on information at a finite
number of points without additional interpolation or assumptions) reflects the spectral information
of not only the target function, but also the underlying distribution of the datapoints itself. It is
in principle possible to separate out these contributions using density estimation methods, e.g., a
multidimensional generalization of the technique in [16]. Presently, however, we simply define the
frequency spectra of interest as that reflected in Equation 14 (and its approximations) and frame our
analysis self-consistently in terms of this definition. In particular, we empirically observe spectral
bias (see also [27]), see that certain transformation reduce high frequency energy, and propose an
inductive bias that consistently outperforms other methods, all using this definition.

A.2 Limiting behavior of the NUDFT with respect to |k|

Some of the limiting behavior of the NUDFT amplitude spectrum can be understood from Equation (1).
Specifically, consider the expression for Pf (k):

Pf (k) =
1

N2

∣∣∣∣∣
N∑
i=1

f(xi)e
−2πik·xi

∣∣∣∣∣
2

=
1

N
f2 +

2

N2

N−1∑
i=1

N∑
j=i+1

f(xi)f(xj) cos (2πk · (xi − xj)) .

(15)
The overline represents the mean of a quantity evaluated over the xi. At small |k|, the RHS of
Equation (15) is approximately f

2
, the mean squared of the function or labels. This is the reason

for the 1/f
2

scaling in front of Equation (2); otherwise, the scales of the Fourier amplitudes would
not be directly comparable across datasets. As |k| increases from 0, at some point, Pf starts to
deviate from the mean squared. This happens when the cos term in the expression above begins to
deviate from 1 for a significant number of points. This occurs schematically when |k| ∼ 1/(2π∆x),
where ∆x is a typical separation between datapoints. In the other limit, once |k| ≫ 1/(2π∆x),
the NUDFT is probing distances much smaller than the separations of points in the dataset. At this
point, the NUDFT ceases to provide meaningful spectral information, as the dataset does not convey
information about the target function on such small scales. The spectrum becomes noisy, since the
last term on the RHS of Equation (15) features many cancellations, resulting in fluctuations around
the first term, f2/N , on the RHS. The most interesting region from the standpoint of our analysis is
that between these two regimes, describing collective oscillatory behavior, which is the region we
focus on in our analysis.

There is another way to see that the 1/N asymptotic behavior of Pf at large frequencies is
an artifact of the discrete distribution of datapoints. The NUDFT approximates the integral∫∞
−∞ f(x)ρ(x)e−2πik·xdx. For f(x)ρ(x) continuous, bounded, and compactly supported, the in-

tegrated spectral energy density will be finite. However, the corresponding integral of the squared
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NUDFT amplitudes, which should yield the same result as N → ∞ by the Plancherel theorem,
does not exist for finite N . The problem again arises from the behavior discussed in the previous
paragraph. To obey the Plancherel theorem, the result in the continuous limit needs to fall off fast
enough in |k| to be integrable, meaning that the f2/N asymptotic behavior discussed above is an
artifact of the discrete approximation. We therefore limit our analysis to below this range, which
motivates the upper cutoff k∗ appearing in several of our expressions.

A.3 Approximating the high-dimensional spectral energy integral

Our spectral analysis primarily relies on the quantity Sk̂ defined as a sum of squared NUDFT
amplitudes as in Equation (2). This method considers spectral energy along single dimensions
of Rn at a time. Here we describe an alternative convolution method for approximating the full
n-dimensional spectral energy integral over a finite high-frequency region in Rn. In Appendix A.6
we show that both methods yield similar results for the datasets analyzed.

The method here is similar to that in [16]. Consider the approximate energy spectral density, Pf (k),
for a function f integrated over a high-frequency region K ⊂ Rn,

SK =

∫
K

Pf (k)dk. (16)

Rather than attempting to perform this high-dimensional integral in Fourier space, we can make
use of the convolution theorem and work directly in feature space. Consider a region K defined
by k0 < |k|∞ ≤ k∗, where ||∞ is the L∞ norm, k0 is a threshold determining the start of the
high-frequency region, and k∗ is a cutoff of the high frequency region introduced for the same reason
as discussed in the previous section. We can then write

SK =

∫
Rn

Pf (k)1|k|∞≤k∗dk−
∫
Rn

Pf (k)1|k|∞≤k0
dk. (17)

Defining the function

g(x) =

∫
Rn

f(x′)(2k∗)
n

n∏
i=1

sinc (2k∗(x− x′)i)µ(dx
′), (18)

the convolution theorem dictates that

Fx[g(x);µ](k) = Fx[f(x);µ](k)1|k|∞≤k∗ , (19)

so that ∫
Rn

|g(x)|2 dx =

∫
Rn

|Fx[g(x);µ](k)|2 dk =

∫
|k|∞≤k∗

Pf (k)dk. (20)

Approximating the x′ integral in Equation (18) with a Monte Carlo integral sampling from the density
defined by µ, substituting the resulting expression into Equation (20) and using the definition in
Equation (17), we arrive at

SK [f ] ≈ (2k∗)
n

N2

N∑
i,j=1

f(xi)f(xj)

(
n∏

ℓ=1

sinc [2k∗(xi − xj)ℓ]−
n∏

ℓ=1

sinc [2k0(xi − xj)ℓ]

)
, (21)

This estimate of the spectral integral in Equation (16) is evaluated for binary classification datasets in
Appendix A.6 below.

A.4 Defining the high-frequency regime

Both the NUDFT and fully-integrated energy spectrum approach rely on two different cutoffs to define
the high-frequency range. The lower cutoff, k0, sets the start of what we consider the high-frequency
range. We take k0 = 0.5 in our analyses, motivated by two observations. First, in our conventions,
and for features scaled to unit length, |k| < 0.5 corresponds to frequency modes that fit less than half
a period in any given dimension of the feature space. This corresponds to long-distance (i.e., global)
fluctuations and so the high-frequency regime should be considered for |k| larger than this value.
The second motivation comes from the behavior of the normalized sinc function, which describes

14



the Fourier transform of the unit rectangle function. Say we had a dataset with all points having
the same label distributed uniformly in the unit interval. The NUDFT would then approximate the
normalized sinc function, which begins to decay when its argument is around 0.5. For larger |k|, the
envelope of the squared NUDFT amplitudes will decay as 1/|k|2, consistent with the fact that the
corresponding target function does not have high-frequency components. Of course we are also free
to choose values larger than 0.5. We have verified that the other choices of k0 ∼ 1 do not affect our
conclusions.

As pointed out in Appendix A.2, at high frequencies the behavior of our methods relying on discrete
points fail to reproduce the correct decaying high-frequency behavior of the continuous Fourier
amplitudes. Care must therefore be taken to properly select k∗, especially for computing SK : for
Sk̂ the high-frequency f2/N behavior adds a constant, but this behavior leads to SK ∝ (2k∗)

n,
which would dominate the result numerically if we did not account for this behavior. As a result we
implement the following procedure in computing SK to compare between datasets: for each dataset,
we first compute SK for several different values of k∗, and choose a value near where the integral
begins to scale as (2k∗)n. We then manually enforce that the contributions to SK above this value
vanish. The corresponding integral then has the expected behavior, and we can directly compare SK

between datasets at arbitrarily large k∗, since the integral will saturate once it comes close to scaling
as (2k∗)n. Finally, for computing Sk̂, we simply cut off the sum in Equation (2) at a given value near
where Sk̂ approaches the f2/N . In practice, we take k∗ = 20 when computing Sk̂, but have verified
that the results do not significantly change when varying this value.

A.5 Evaluating Fourier transforms along principal components

In several of our analyses, we evaluate the NUDFT f̃X(k) along specific directions, such as those
defined by the principal components (PCs) of the data. This approach was also used in [27] and we
provide further details about this procedure here for evaluating along general directions in Rn

The principal component decomposition (i.e., PCA) typically takes one point x in the original
feature space and yields a transformed vector xPC with entries corresponding to the projection of the
mean-centered features onto the PC directions. Focusing on one PC direction, we have

xPC = êPC · (x−m) , (22)

where m is the vector defined by the mean of each n dimensions of the feature space over the dataset,
and êPC is a unit vector pointing along the PC of interest in the original feature space. To take the
Fourier transform along the direction êPC, we can define kPC ≡ kPCk̂PC, where kPC = k · êPC and
k̂PC = êPC, and plug this value of kPC into Equation 1. Using Equation 22, we have

N∑
j=1

f(xj)e
−2πikPC·xj = e−2πikPC·m

N∑
j=1

f(xj)e
−2πikPCxPC,j . (23)

The phase factor in front of the RHS will drop out when we take amplitudes. The above expression
tells us that to obtain the FT along the direction êPC defined by a given principal component, we can
simply plug in the values of xPC corresponding to a given datapoint and treat the Fourier transform
as one-dimensional with frequency kPC (up to an overall phase factor). However, this is not a
one-dimensional Fourier transform: it is the full (approximate) n-dimensional Fourier transform,
evaluated along a given one-dimensional subset of Rn.

The above method applies when evaluating a dataset along one of its own PCs. In computing Sk̂, e.g.,
in Table 1, we typically average over the PCs defined for different transformations. In this case, one
should directly substitute the corresponding k̂PC := êPC into the LHS of Equation (23).

A.6 Spectra of binary classification datasets and correlation between Sk̂ and SK

Here, we provide supplementary details related to our spectral analysis of the various binary classifi-
cation datasets considered in our experiments.

In Figure 5 we show squared NUDFT amplitudes for the binary classification datasets of interest.
The squared amplitudes Py(k) are evaluated for unit-scale, ranked and scaled data, with rank
implemented as a quantile transform and scale as standardization. The amplitudes are evaluated
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Figure 5: Spectra for binary classification training datasets determined by Equation (1) for the
rank and scale transformations, compared to the datasets with unit length features. Results are
marginalized over 10 different random seeds for the train-test split, and over k̂PC corresponding to
the 1st PC after each transformation is applied. The solid lines are the resulting mean values, with
shaded regions representing the 95% confidence intervals. Different transformations significantly
affect target function frequency spectra.

along the first PC after each transformation and for 10 different random training splits of the data.
Solid curves represent the mean and shaded regions the corresponding 95% confidence intervals after
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Figure 6: Comparison of different methods for quantifying the spectral energy at high frequencies.
The horizontal axis corresponds to Equation (21), and the vertical axis to Equation (2). Squares,
circles, and diamonds correspond to unit-scaled, rank, and scale features, and the different colors
correspond to different datasets. The two methods are highly correlated.

marginalizing over all random seeds and different k̂PC directions. From the figure, it can be observed
that the various transformations affect the high-frequency composition of these datasets in different
ways, and in some more than others.

The corresponding values of Sk̂ for several of these datasets are presented in Table 1. These are
computed in the same way as the results in Figure 5 (i.e.,averaged over random seeds and PCs),
however still correspond to examining the spectrum along one dimension at a time. To assess the
extent to which the one-dimensional results represent the full spectral properties in Rn, in Figure 6,
we compare the resulting values of Sk̂ against the quantity SK of Appendix A.3. Results are shown
for all binary classification datasasets except for albert, which features k∗ below k0 for some methods
when computed using the full Fourier integral. In order to compare the different datasets at similar
scales, we compute S

1/n
K , since the dimensions of the volume integral over k will be different for

datasets with different feature space dimension. In computing SK , due to the O(N2) computational
complexity, we subsample each dataset to 10000 records if larger than this size. As seen in Figure 6,
the two methods are strongly correlated: each dataset individually has a Spearman rank correlation
coefficient of 1 when comparing Sk̂ and SK . From the figure, we also see the general behavior
demonstrated in the spectral plots previously: the unit-scaled representation tends to imply the most
high-frequency target functions, followed by rank, implemented as a quantile transform, and scale,
implemented as standardization.

B Spectral Analysis of Neural Networks on Synthetic Data

In this section, we provide additional details and experimental results related to the synthetic data
experiments reflected on the RHS of Figure 1 (reproduced in Figure 7 for convenience).

We consider binary classification on a synthetic dataset consisting of a single numerical feature, x, for
simplicity. Heterogeneous tabular datasets used for classification tend to feature rapid variations of
the class labels over short distances in feature space. To simulate this scenario, consider a normally-
distributed feature x, and an oscillatory target function that depends on a function g(x) of the feature
x, generating the class label as

y(x) =
⌊ 1

2n

n∑
i=1

(1 +Ai sin (kig(x) + φi)) +
1

2

⌋
. (24)

When sufficiently high frequency components ki are considered, a simple multilayer perceptron
(MLP) will have difficulty learning the target function, as expected from the spectral bias phenomenon.
This is illustrated in the top panel of Figure 7. For this example, we take x ∼ N (0.5, 0.01),
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Figure 7: (Top) Data with labels varying over small distances are difficult for neural networks to learn,
but easy for tree-based methods. (Bottom) Transformations that redistribute the data can increase the
scales over which the feature labels vary, effectively lowering the frequency of the target function and
making it easier for a neural network to learn.

ki ∈ {1, 5, 10, 20} × 2π and randomly sample the corresponding amplitudes Ai and phases φi/2π
from the continuous uniform distribution on [0, 1]. We also take g(x) as the rank transformation
of Equation (9), for illustration. In order to compare NN’s with features at a common scale, we
first min-max normalize the features to have unit length. The corresponding target function has
Sk̂ ≈ 0.02. A 2-hidden-layer MLP with width 256 is then trained to classify 5,000 points using binary
cross-entropy loss for 10000 epochs after an initial 250 epoch tuning stage to select the best learning
rate. The resulting predictions are shown in black on the top panel of Figure 7, and do not match the
training data very well, particularly in regions where the tag varies more rapidly (i.e., the spectral
bias phenomenon). The NN evaluated on a validation set of 1000 points distributed in the same way
as the training set yields an AUROC of 0.935. On the other hand, we also train an XGBoost classifier
using default hyperparameters for 100 boosting iterations (the performance converges quickly so
boosting for additional iterations does not improve performance). The corresponding predictions
are shown in orange. This tree-based classifier performs well and is able to reproduce the rapid
variations of the target function, since, as long as the algorithm’s histogram binning is fine enough, it
is straightforward to recursively split this one-dimensional feature space into regions with y = 0 and
1. The corresponding AUROC is 0.998.

There can be several approaches taken to overcome this performance gap. One approach is to focus
primarily on the underlying model: perhaps tuning the hyperparameters extensively or incorporating a
more sophisticated architecture could lead to a better-performing configuration. However, this process
quickly becomes computationally intensive and is dataset-dependent. An alternative approach, and the
one we study in this work, is to focus on the representation of the data. The frequency characteristics
of a function defined on a dataset are inherently tied to the representation of the data itself. Stretching
or warping the feature space while maintaining the label values will in general change the length
scales over which the function varies.

To investigate this effect, consider the impact of re-arranging the datapoints such that rather than
following their original distribution, they are now spaced as far apart from each other as possible
within a fixed interval, which we take to be [0, 1]. This is a familiar transformation: mapping
the original distribution to a uniform distribution along the x feature direction, as in the rank
transformation of Equation (9). However, the resulting effect on the example in Figure 7 is dramatic:
this re-distribution of points reduces the frequency of the target function, as clearly seen in the bottom
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panel (the rank-transformed target function has Sk̂ ≈ 0.01). We train the same two models (MLP
and XGBoost) with the same hyperparameters as before on the transformed data. The tree-based
model performance does not change significantly, but the MLP’s performance improved dramatically,
with the AUROC evaluated on the transformed validation set increasing from 0.935 to 0.989.

For this synthetic example, the simple inductive bias of seeking a representation of the data that
“smooths out” the target function in a way that does not negatively effect optimization significantly
boosts neural network performance and reduces the performance gap with respect to the GBDT-based
model. Our analyses utilizing realistic heterogeneous tabular datasets yield similar results.

B.1 Connection to computable spectral bias

Since we know the underlying density of the synthetic datapoints, we can directly compute the
spectral bias of the MLPs trained on the pre- and post-transformed data following the computable
definition of spectral bias proposed by [16]. In particular, a quantitative definition of the spectral bias,
SB, can be provided in terms of the fraction of variance unexplained (FVU) compared between a
predefined low- and high-frequency region. A value of SB > 0 indicates a larger fraction of FVU in
the high-frequency region, hence a spectrally-biased NN, since the NN fits the data worse at high
frequencies. To compare our two NNs, we consider an epoch for which the performance of the two
NNs is comparable: the epoch with largest validation AUC for the unit length NN and the epoch
with the closest corresponding performance for the ranked NN. The FVUs are approximately equal
for both networks, however the spectral bias of the ranked NN, computed as in [16], is lower than
that of the NN trained on unit-length features: SB = 0.58 for unit length, SB = 0.42 for rank.
This indicates that for NNs achieving similar performance, the rank transformation has produced
a network with a lower fraction of its error in high frequencies, and therefore has reduced the
negative impact of spectral bias on NN training, since the relatively larger low-frequency errors can
be effectively reduced by further epochs of training, in contrast to high-frequency errors, which are
more difficult for the NN to reduce. This allows for significantly better performance overall for the
rank-transformed data. Similar effects are suggested by our analysis of realistic multidimensional
tabular datasets: transformations resulting in lower-frequency NNs for a fixed performance metric can
typically be further trained to reduce their correspondingly lower-frequency errors, hence mitigating
the impact of spectral bias in learning the corresponding target function. Notably, this analysis is an
attempt to establish the initial connection between our approach and [16]. A more extensive analysis
of the computable spectral bias of all the methods we consider in this paper will be included in future
work.

C Frequency of Target Functions in Tabular and Image Datasets

In this section, we provide details related to the results on the LHS of Figure 1, contrasting the target
function spectra of image vs tabular datasets.

Our study focuses on mitigating the effects of spectral bias in the context of tabular deep learning.
One of the empirical motivations for our approach is the observation that target function spectra of
tabular datasets tend to be of higher-frequency than similar examples from popular image datasets.
To compare frequencies across datasets, the features should be normalized in a consistent way. We
take unit length normalization as the baseline for our comparisons. We consider several popular
benchmark datasets from computer vision applications: cifar-10-small (https://openml.org/
d/40926), fashion-mnist (https://openml.org/d/40996), mnist-784 (https://openml.org/
d/554), svhn (https://openml.org/d/41081), and scene (https://openml.org/d/41471).
After min-max normalizing, we treat these image datasets in the same way as our tabular multi-class
datasets: for each of 10 random seeds, we consider a training set sampled from the full dataset,
and compute the NUDFT along the first PC direction, assigning binary labels for all 1-vs-rest class
assignments, and computing the mean over all seeds and binary label assignments. The resulting
squared NUDFT amplitudes, Py(k), are plotted in color on the LHS of Figure 1. To compare
against tabular dataset spectra, we use the same procedure. The envelope containing all such spectra
computed for our 14 tabular benchmarks is shaded in blue on the LHS of Figure 1. In this figure, all
amplitudes shown are normalized with an implicit 1/f

2
, to account for the different levels of class

imbalance across the datasets.
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From these results, we immediately see that, using our definitions, the image datasets considered have
significantly smaller high-frequency Fourier amplitudes when all features are normalized to the same
scale. While in our study we simply use this observation as an empirical motivation for addressing
the high-frequency nature of tabular dataset target functions, it would be interesting to extend this
analysis to more examples and to study the underlying causes of these differences in future work.

D Illustration: frequency reduction and the effects of spectral bias

In this appendix, we provide informal analytic arguments, based on the results of [22], illustrating
how frequency reduction can improve NN performance given their inherent spectral bias. Theorem
1 of [22] provides the analytic form of the Fourier amplitudes of a general ReLU network, f(x).
The authors also show that along each direction of k space, these amplitudes are upper bounded
as |f̃θ(k)| ≤ NfLf (θ)k

−∆−1. Here, Lf is the Lipschitz constant of the NN for a given set of
parameters θ, Nf is the number of linear regions, and 1 ≤ ∆ ≤ d depends on the orientation
of k with respect to the polytope faces represented by the NN. In any realistic setting, there is a
maximum NfLf that can be achieved through training, and therefore the amplitude of the NN Fourier
coefficient for a fixed k is bounded from above. Along each k direction, assume that the target
function behavior at high frequencies falls off more slowly than k−∆−1. Then, for large enough k the
target function Fourier amplitudes, ỹ(k), cannot be fit by the neural network with fixed architecture
and parameters. Let Ω denote the corresponding high-frequency region of Rn. Reducing the L2

norm of the target function Fourier amplitude over Ω,
∫
Ω
|ỹ(k)|2dk, relative to the corresponding

integral over Rn (assuming the target function Fourier amplitudes are square-integrable) will tend to
reduce the corresponding error arising from this spectral bias when evaluated on a particular set of
data points. Our definition of frequency reduction in terms of the NUDFT amplitudes can be viewed
as a proxy for reducing this L2 norm.

Applying the scale transformation with scale factor a > 1 can lead to the aforementioned reduction
of relative spectral energy over Ω. The Fourier amplitudes for a function g(x) are related to those for
the corresponding function, gscaled(x) acting on scaled inputs as g̃(k) = 1/a× g̃scaled(k/a). This
relationship shows directly that scale with a > 1 maps a given Fourier component of the original
function to a component at reduced frequency (and reduced overall magnitude) after applying the
scaling transformation. Thus, denoting the corresponding high-frequency domain of the scaled
target function as Ωscaled, in general Ωscaled ⊂ Ω (again assuming a > 1 and that the original
target function decays more slowly at large k than the spectral bias bound). The smaller domain of
integration, together with the relationship between ỹ and ỹscaled, can reduce the relative amplitude
of the spectral integral. The corresponding argument for rank further depends on the underlying
distribution of the feature. Consider the simple example of a uniformly-distributed feature x over
an interval [x1, x2]. Then rank(x) acts in precisely the same way as scale with a = 1/(x2 − x1),
and the same effect is seen (assuming x2 − x1 < 1). Similar arguments can be made with other
assumptions about the underlying distribution.

These arguments suggest how the transformations we consider can mitigate the impact of NN spectral
bias, however they do not account for the other potentially adverse effects of rank and scale on
the optimization process. In practice, these effects are important and motivate the learnable convex
combination of rank and scale we propose, as it is implicitly regularized by the loss function itself.
We plan to analyze the corresponding training dynamics analytically, and further formalize the
illustrations above, in future work.

E Experiment Details

Datasets and Training. We train and evaluate all models across 10 random seeds, and report mean
metrics with their 95% confidence intervals. We use 70% of each dataset for training, 15% for
validation and 15% for testing. We report evaluation metrics on the test set that correspond to the
lowest validation set loss for each model. We use simple target-encoding [21] to convert categori-
cal variables to numerics, in order to avoid introducing potential interactions between categorical
embedding techniques and our metrics of interest.

Hyperparameter Spaces. We conduct hyperparameter tuning for every model across 100 configura-
tions using the validation set. We use HyperOpt [4] to tune the hyperparameters of all approaches
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Parameter Distribution
depth UniformInt[2, 4, 8]
width UniformInt[128, 256, 512]

learning rate LogUniform[10−6, 10−2]

Table 3: Hyperparameter space for MLPs. Batch size is set to 128 and is not tuned. PyTorch’s [20]
implementation of Adam [17] with its default parameters is used for optimization.

Parameter Distribution
max depth UniformInt[5, 10, 20]

num. estimators UniformInt[100, 500, 1000]
learning rate LogUniform[10−5, 10−1]

Table 4: Hyperparameter space for XGBoost. The rest of the XGBoost parameters are set to the
defaults of the DMLC XGBoost package [7].

Parameter Distribution
nd = na UniformInt[56, 60, 64]
nsteps UniformInt[1, 2, 3]

learning rate LogUniform[10−5, 10−2]

Table 5: Hyperparameter space for TabNet. Following the suggestion of the authors, we use the same
value for nd and na, and set the batch size to 1024. PyTorch’s [20] implementation of Adam [17]
with its default parameters is used for optimization.

considered. Since our main objective is to surface the impact of a frequency-reducing inductive bias
and not to perform extensive benchmarking, we focus on tuning the parameters that control the model
complexity and learning rates. Specifically, the parameter space considered for each model are shown
in Tables 3, 4, and 5.

Baselines. As a baseline, we evaluate the impact of common normalization techniques on our metrics
of interest and present our results in Figure 2. Specifically, we study MLPs with standardization,
robust scaling and quantile normalization [21]. We choose these transformations to compare our
methods against for two reasons. First, these are the most common transformations used in the
tabular deep learning domain. Second, these transformations are instantiations of rank and scale.
Therefore, besides normalization, they impact the frequency spectra. We use scikit-learn [21]
implementations of these transformations with their default hyperparameters. In our experiments we
observe that, among these baselines, there is not a single transformation that consistently performs
the best across all datasets. This observation is consistent with the existing tabular deep learning
literature, where studies that use different datasets find different transformations working the best.
In these studies, the quantile transform, standardization and min-max scaling methods are the most
commonly used.

Frequency Reduction and XGBoost. In addition to our various MLP experiments, we also study the
impact of frequency reduction on XGBoost performance. We first train an MLP until convergence,
then use the weights θg to transform input data to a lower-frequency form. We then train an XGBoost
model using the transformed data. From Table 6, it can be observed that reduction does not improve
XGBoost performance. However, it improves simple MLPs to provide better performance than XGB
on 3 datasets, and comparable performance on 2 datasets. The proposed method does not improve
upon simple MLPs if the baseline performance is already high (i.e., > 99%), which is expected as
these datasets do not feature high-frequency information that cannot be learned by MLPs with unit
scale.

E.1 Weights learned by the proposed approach on 14 datasets

We investigate the weights θg learned by our proposed approach on the 14 datasets. Since these
weights get updated jointly with the neural network weights θf , this investigation is essential to
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dataset XGB XGB* MLP*

MagicTelescope 93.74 ± 0.14 93.74 ± 0.14 93.67 ± 0.15
MiniBooNE 98.7 ± 0.02 98.7 ± 0.02 98.79 ± 0.02
bankMarketing 93.58 ± 0.12 93.58 ± 0.12 92.66 ± 0.17
california_housing 97.22 ± 0.1 97.22 ± 0.1 96.01 ± 0.1
electricity-normalized 98.81 ± 0.04 98.81 ± 0.04 94.51 ± 0.1
house_16H 95.62 ± 0.15 95.62 ± 0.15 95.68 ± 0.12
kdd-small 99.28 ± 0.05 99.28 ± 0.05 99.17 ± 0.08
Diabetes 71.02 ± 0.09 71.03 ± 0.09 68.88 ± 0.13
albert 76.47 ± 0.06 76.47 ± 0.06 72.8 ± 0.04
credit-card-clients 78.12 ± 0.21 78.11 ± 0.21 78.16 ± 0.23
eye_movements 91.38 ± 0.25 91.38 ± 0.25 80.34 ± 0.3
jannis 88.14 ± 0.13 88.08 ± 0.15 87.77 ± 0.11
phoneme 96.74 ± 0.15 96.73 ± 0.16 94.84 ± 0.12
pol 99.94 ± 0.01 99.94 ± 0.01 99.94 ± 0.01

Table 6: Un-normalized AUROCs for XGBoost (XGB), XGBoost with low-frequency embeddings
(XGB*) and MLP with low-frequency embeddings (MLP*).

understand whether or not θg merely works as a set of additional trainable parameters that adapt to
the changes in the rest of the network parameters. If theta θg depends on θf , then the low-frequency
mappings produced using θg may not be useful as general purpose representations. Figures 8 and 9
depict the weights learned by our proposed approach. Shaded areas represent the 95% confidence
intervals across 10 random seeds. Notably, neural network weights θf get initialized differently across
the seeds, while θg gets initialized to the same values. Specifically, we initialize all scaling weights
as 1, and all ranking weights to 0.5. More advanced initialization techniques may be explored to
further improve performance. From the figures, we observe that θg converges to similar values across
different random seeds on all the datasets considered. Additionally, we observe that for the datasets
bank-marketing (bank) and diabetes, some of the scaling weights converge to zero, eliminating the
use of the corresponding features and causing the combining weights to not get updates (i.e., staying
at 0.5). This behavior may be interpreted as a frequency-reducing feature selection mechanism: if
a feature’s contribution to the performance is not sufficiently high, compared to its contribution to
the frequency of the decision boundary, the neural network may choose to drop it. This behavior
should be further investigated and compared to methods that were designed to select informative
features. Overall, the results in Figures 8 and 9, along with Figure 2, suggest that our proposed
method is indeed enabling the network to learn useful representations of the data biased towards
lower-frequency target functions.

E.2 Un-normalized AUROCs on all dataset and approaches considered

We provide un-normalized AUROCs of all approaches considered in Table 7. The methods unit,
standard, robust, quantile and selective-quantile are applied to MLPs. Based on our experimental
results, we observe that the best performing baseline varies across different datasets. As a result, in
order to produce a comparison of the overall performance, we provide average normalized metrics in
Figure 2.

F Computational Complexity

Our proposed method introduces the additional parameters θg : {θsg, θrg, θcg}. The scaling and
combining weights, θsg and θcg are learned together with the neural network weights θf . The parameters
θrg are set by fitting the ranking transformer to the training set as a preprocessing step (i.e., only once),
and extracting a mapping from reference points in the training sets to their ranks. We sample 1000
points to extract this mapping.

In all experiments, we allocate two scaling weights (for raw and ranked features), and one combining
weight for each feature. Therefore, the additional parameter complexity introduced to a neural
network with input size N is O(N). In comparison, an additional fully connected layer introduces
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dataset XGB XGB* TabNet TabNet* MLP*

MagicTelescope 93.74 ± 0.14 93.74 ± 0.14 90.08 ± 1.54 91.56 ± 0.59 93.67 ± 0.15
MiniBooNE 98.7 ± 0.02 98.7 ± 0.02 89.47 ± 0.65 98.59 ± 0.03 98.79 ± 0.02
bankMarketing 93.58 ± 0.12 93.58 ± 0.12 91.74 ± 0.19 89.22 ± 0.51 92.66 ± 0.17
california_housing 97.22 ± 0.1 97.22 ± 0.1 NA NA 96.01 ± 0.1
electricity-normalized 98.81 ± 0.04 98.81 ± 0.04 84.45 ± 2.58 84.72 ± 1.97 94.51 ± 0.1
house_16H 95.62 ± 0.15 95.62 ± 0.15 89.24 ± 1.17 94.54 ± 0.13 95.68 ± 0.12
kdd-small 99.28 ± 0.05 99.28 ± 0.05 96.62 ± 0.73 98.72 ± 0.15 99.17 ± 0.08
Diabetes 71.02 ± 0.09 71.03 ± 0.09 NA NA 68.88 ± 0.13
albert 76.47 ± 0.06 76.47 ± 0.06 NA NA 72.8 ± 0.04
credit-card-clients 78.12 ± 0.21 78.11 ± 0.21 NA NA 78.16 ± 0.23
eye_movements 91.38 ± 0.25 91.38 ± 0.25 NA NA 80.34 ± 0.3
jannis 88.14 ± 0.13 88.08 ± 0.15 NA NA 87.77 ± 0.11
phoneme 96.74 ± 0.15 96.73 ± 0.16 89.14 ± 0.28 81.28 ± 2.9 94.84 ± 0.12
pol 99.94 ± 0.01 99.94 ± 0.01 77.18 ± 6.46 94.41 ± 2.45 99.94 ± 0.01

dataset unit standard robust quantile selective-quantile

MagicTelescope 93.32 ± 0.16 93.27 ± 0.18 93.52 ± 0.17 93.27 ± 0.18 93.37 ± 0.18
MiniBooNE 96.47 ± 0.02 98.29 ± 0.02 98.77 ± 0.02 98.74 ± 0.02 98.72 ± 0.02
bankMarketing 92.71 ± 0.14 92.26 ± 0.15 91.82 ± 0.16 92.11 ± 0.15 92.4 ± 0.14
california_housing 95.56 ± 0.1 95.75 ± 0.09 95.66 ± 0.09 95.65 ± 0.12 95.63 ± 0.09
electricity-normalized 93.04 ± 0.12 92.99 ± 0.12 92.65 ± 0.16 93.85 ± 0.12 94.64 ± 0.11
house_16H 94.68 ± 0.13 95.23 ± 0.13 95.53 ± 0.14 95.25 ± 0.14 95.5 ± 0.16
kdd-small 99.32 ± 0.05 99.16 ± 0.06 99.21 ± 0.07 99.28 ± 0.05 99.34 ± 0.05
Diabetes 69.65 ± 0.09 69.29 ± 0.09 69.57 ± 0.11 67.96 ± 0.11 69.54 ± 0.09
albert 72.16 ± 0.06 72.39 ± 0.06 71.99 ± 0.04 72.27 ± 0.04 72.27 ± 0.05
credit-card-clients 77.14 ± 0.25 77.67 ± 0.24 77.73 ± 0.2 77.39 ± 0.21 77.56 ± 0.27
eye_movements 79.86 ± 0.29 80.62 ± 0.34 79.53 ± 0.28 75.77 ± 0.3 76.98 ± 0.29
jannis 86.67 ± 0.11 87.32 ± 0.11 87.39 ± 0.11 86.84 ± 0.12 86.99 ± 0.13
phoneme 94.13 ± 0.25 94.71 ± 0.13 94.18 ± 0.23 94.11 ± 0.26 94.12 ± 0.22
pol 99.96 ± 0.0 99.96 ± 0.0 99.94 ± 0.01 99.32 ± 0.03 99.94 ± 0.01

Table 7: Un-normalized AUROCs of all approaches considered. An asterisk (*) indicates that
the corresponding model uses the proposed low-frequency transformations. Note that our TabNet
experiments only consider binary classification datasets.

O(dhN), where dh is the width of the subsequent layer. Notably, our approach can be extended to a
high-dimensional setting similar to [11] to map each feature to a k-dimensional vector that scales and
combines the same feature with its ranked counterpart in different ratios. Although this extension is
out of the scope of this work, the complexity of this approach would be O(kN), where our current
approach sets k := 1.

G Limitations

In this paper, we focus on building the connection between the spectral bias of neural networks and
its impact on tabular deep learning performance. We show that heterogeneous tabular datasets tend to
feature high-frequency target functions as defined by the Fourier analysis methods presented. We
also observe that with frequency-reducing transformations, these target functions can be smoothed to
alleviate the negative impact of spectral bias. Consequently, we propose using frequency reduction
as inductive bias while learning with neural networks. We discuss some of the limitations of our
methods and analysis below.

Limitations of the proposed method. We implement the proposed inductive bias as a neural
network layer that learns to scale and map points along a linear trajectory between (scaled) input
features and their ranked counterparts. This implementation is motivated by our empirical analyses
of commonly-used transformations in tabular deep learning, and is an attempt to generalize them
while retaining their frequency-reducing properties. However, our implementation only covers a
subset of such transformations. Indeed, one may carefully design transformations that guarantee
frequency reduction with fewer negative side effects on the other training dynamics. Also, we limit
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our experiments to independently transform each feature. More beneficial transformations might be
found by instead first grouping features with informative interactions (i.e., subsets that are compatible
to form informative higher-order features), then attempting to transform them to a low-frequency
form. As tabular datasets feature heterogeneous feature spaces, identification of such compatible
feature sets may be a challenge. It is possible that, for example, a pair of features may meaningfully
interact in certain subregions (i.e., subdomains). Then, one may choose to identify these regions
and represent them in different dimensions of the feature space. Such a mapping of features onto
high-dimensional spaces to may help reduce target function frequency by transforming the feature
space to be more homogeneous. We do not consider such approaches in this work. Finally, our
methods only transform the inputs to the network, while more generally one may apply our frequency
reduction inductive bias to all network activations to ensure that learned representations also have
low-frequency form.

Limitations of the experiments. Our experiments mainly focus on observing the dataset-dependent
effects of existing transformations that reduce target function frequency, and demonstrating how this
dependency can be alleviated by using frequency reduction as an inductive bias during learning. In
doing so, we limited our analysis to classification problems, although our methods can be applied
in regression settings as well. Also, although our experimental setup enables a fair performance
comparison between MLPs with different transformations, the corresponding results may not reflect
the best performance achievable by MLPs. This is because we do not use techniques such as batch
normalization, residual connections and weight decay regularizers that are shown to improve MLP
performance on tabular data. This scope will be extended in future work. Our experiments with
other neural network architectures are also limited to TabNet on binary classification datasets. Future
work will also include extensive experiments with additional tabular data-specific deep learning
architectures in order to explore the relationship between the improvements they offer and the
frequency spectra of the functions they learn. Finally, although we qualitatively observe that our
proposed methods alleviate the negative effects of spectral bias through our analysis of Fourier
spectra and the corresponding impact on performance for all datasets considered, our quantification of
spectral bias (see Appendix B.1) is limited to synthetic datasets due to its computational complexity.
Such quantification can be extended beyond synthetic data experiments in the future.

H Implementation

In this section, we demonstrate how to implement the key components of our analyses and proposed
method using PyTorch [20].

H.1 Proposed method as a network layer

The module CustomLayer implements our frequency-reducing transformation. In our implemen-
tation, in addition to scaling and combining, we also incorporate shifting factors in order to
center features when necessary. We empirically observed that addition of the shifting factors did not
change the performance of the neural network significantly. Notably, this implementation assumes
that the input is in the form x = [xsrc,xtrg] = [xraw,xranked], where ranked is generated using
scikit-learn’s quantile transform. Also, for the “raw” features, our implementation uses their
scaled version as an input to support training stability.

class CustomLayer(nn.Module): # proposed layer
def __init__(self, size):

self.size = size
weights = torch.Tensor(torch.ones((1, size)) * 0.5)
scaling_factors_src = torch.Tensor(torch.ones((1, size)))
shifting_factors_src = torch.Tensor(torch.zeros((1, size)))
scaling_factors_trg = torch.Tensor(torch.ones((1, size)))
shifting_factors_trg = torch.Tensor(torch.zeros((1, size)))

self.weights = nn.Parameter(weights)
self.scaling_weights_src = nn.Parameter(scaling_factors_src)
self.shifting_weights_src = nn.Parameter(shifting_factors_src)
self.scaling_weights_trg = nn.Parameter(scaling_factors_trg)
self.shifting_weights_trg = nn.Parameter(shifting_factors_trg)
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def forward(self, x):
x_src = x[:, :x.size()[1]//2] # raw input
x_trg = x[:, x.size()[1]//2:] # ranked input

w = self.weights
c_src = self.scaling_weights_src
u_src = self.shifting_weights_src
c_trg = self.scaling_weights_trg
u_trg = self.shifting_weights_trg

x = (((x_src + u_src) * c_src) * w) + (((x_trg + u_trg) * c_trg) * (1 - w))
return x

class MLP(nn.Module):
def __init__(self, layers, activation_layer, p_dropout, bias, num_classes):

layer_list = [nn.Linear(layers[i], layers[i+1], bias=bias) for i in
range(len(layers)-1)]

self.layers = nn.ModuleList(layer_list)
self.classifier = nn.Linear(layers[-1], num_classes)
self.dropout = nn.Dropout(p=p_dropout)
self.activation_layer = activation_layer
self.customLayer = CustomLayer(layers[0])

def forward(self, x):
x = self.customLayer(x)

for i in range(len(self.layers)):
x = self.layers[i](x)
x = self.activation_layer(x)
x = self.dropout(x)

yhat = self.classifier(x)

return yhat

H.2 Functions to calculate spectra

To efficiently compute NUDFT amplitudes, we utilize the nfft_adjoint function from the third
party package nfft (https://github.com/jakevdp/nfft). The implementation is as follows:

# !pip install nfft
from nfft import nfft_adjoint

def NUDFT(x, y, kmax, nk):
return (1/len(x)) * nfft_adjoint(-(x*kmax/nk), y, 2*(nk+1))[nk+1:]

def spectrum_NUDFT(x, y, kmax=50, nk=1000):
kvals = np.linspace(0, kmax, nk+1)
nufft = NUDFT(x, y, kmax, nk)
return [kvals, np.array(nufft, dtype="complex_")]

H.3 Selective-rank

In our experiments with selective rank, we set transformer to scikit-learn’s quantile transform.

def get_features_with_reduced_frequency(X_tr, y_tr, transformer, threshold=0.75):

features = []
no_transform_features = []
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X_tr_quantile = transformer.fit_transform(X_tr)

for i in range(X_tr.shape[1]):
v_raw = spectrum(X_tr[:, i], y_tr)[lower_bound:]
v_qnt = spectrum(X_tr_quantile[:, i], y_tr)[lower_bound:]
metric = np.mean(abs(v_qnt) ** 2)/np.mean(abs(v_raw) ** 2)

if metric <= threshold:
features.append(i)

else:
no_transform_features.append(i)

return features

def selective_transform(dataset, scaler, config, transformer):
X_tr, y_tr = dataset[’tr’][’X’], dataset[’tr’][’y’]
X_va, y_va = dataset[’va’][’X’], dataset[’va’][’y’]
X_te, y_te = dataset[’te’][’X’], dataset[’te’][’y’]

transform_cols = get_features_with_reduced_frequency(X_tr, y_tr, transformer,
threshold=config[’f_threshold’])

ct = ColumnTransformer([("sel-rank", transformer, transform_cols)])
ct.fit(X_tr, y_tr)

X_tr[:, transform_cols] = ct.transform(X_tr)
X_va[:, transform_cols] = ct.transform(X_va)
X_te[:, transform_cols] = ct.transform(X_te)

return X_tr, X_va, X_te
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Figure 8: Weights learned by the proposed approach on all 14 datasets, part 1.
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Figure 9: Weights learned by the proposed approach on all 14 datasets, part 2.
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