
Bayesian Optimisation of Functions on Graphs

Xingchen Wan∗, Pierre Osselin∗, Henry Kenlay
Binxin Ru, Michael A. Osborne, Xiaowen Dong

Department of Engineering Science, University of Oxford
{xwan,osselinp,kenlay,robin,mosb,xdong}@robots.ox.ac.uk

Abstract

The increasing availability of graph-structured data motivates the task of optimising
over functions defined on the node set of graphs. Traditional graph search algo-
rithms can be applied in this case, but they may be sample-inefficient and do not
make use of information about the function values; on the other hand, Bayesian op-
timisation is a class of promising black-box solvers with superior sample efficiency,
but it has scarcely been applied to such novel setups. To fill this gap, we propose
a novel Bayesian optimisation framework that optimises over functions defined
on generic, large-scale and potentially unknown graphs. Through the learning of
suitable kernels on graphs, our framework has the advantage of adapting to the be-
haviour of the target function. The local modelling approach further guarantees the
efficiency of our method. Extensive experiments on both synthetic and real-world
graphs demonstrate the effectiveness of the proposed optimisation framework.

1 Introduction

Data collected in a network environment, such as transportation, financial, social, and biological
networks, have become pervasive in modern data analysis and processing tasks. Mathematically, such
data can be modelled as functions defined on the node set of graphs that represent the networks. This
then poses a new type of optimisation problem over functions on graphs, i.e. searching for the node
that possesses the most extreme value of the function. Real-world examples of such optimisation
tasks are abundant. For instance, if the function measures the amount of delay at different locations
in an infrastructure network, one may think about identifying network bottlenecks; if it measures
the amount of influencing power users have in a social network platform, one may be interested
in finding the most influential users; if it measures the time when individuals were infected in an
epidemiological contact network, an important task would be to identify “patient zero” of the disease.

Optimisation of functions on graphs is challenging. Graphs are an example of discrete domains, and
conventional algorithms, which are mainly designed for continuous spaces, do not apply straightfor-
wardly. Real-world graphs are often extremely large and sometimes may not even be fully observable.
Finally, the target function, such as in the examples given above, is often a black-box function that is
expensive to evaluate at the node level and may exhibit complex behaviour on the graph.

Traditional methods to traverse the graph, such as breadth-first search (BFS) or depth-first search
(DFS) [14], are heuristics that may be adopted in this setting for small-scale graphs, but inefficient to
deal with large-scale real-world graphs and complex functions. Furthermore, these search methods
only rely on the graph topology and ignore the function on the graph, which can be exploited to make
the search more efficient. On the other hand, Bayesian optimisation (BO) [16] is a sample-efficient
sequential optimisation technique with proven successes in various domains and is suitable for solving
black-box, expensive-to-evaluate optimisation problems. However, while BO has been combined
with graph-related settings, e.g. optimising for graph structures (i.e. the individual configurations

∗Equal contribution.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Current
local

subgraph

New
local

subgraph

Current
subgraph

centre

Next query
location

New
subgraph

centre

(a) (b) (c)

Figure 1: Illustration of one iteration of BayesOptG on an example graph. (a) At iteration t, we
construct a local subgraph G̃t centred around v∗t whose nodes are marked in orange-red, with darker
shade denoting a shorter distance to v∗t , the best node seen so far (marked in black), and nodes outside
G̃t are marked in grey. The readers are referred to §3.2 for the details; (b) we place a GP surrogate
with the covariance function defined in §3.1 on G̃t and pick the maximiser of the acquisition function
(the acquisition function values are marked in shades of blue, with a darker shade denoting a higher
acquisition value) as the node to query for iteration t+ 1 (vt+1) (§3.2) and (c) if querying vt+1 leads
to a better objective function value (f(vt+1) < f(v∗t), assuming minimisation), the neighbourhood
around it is selected as the new subgraph G̃t+1. The process continues until convergence or a pre-set
number of evaluations is reached.

that we optimise for are graphs) in the context of neural architecture search [20, 34], graph adversarial
examples [42] or molecule design [23], it has not been applied to the problem of optimising over
functions on graphs (i.e. the search space is a graph and the configurations we optimise for are nodes
in the graph). The closest attempt was COMBO [27], which is a framework designed for a specific
purpose, i.e. combinatorial optimisation, where the search space is modelled as a synthetic graph
restricted to one that can be expressed as a Cartesian product of subgraphs. It also assumes that the
graph structure is available and that the function values are smooth in the graph space to facilitate
using a diffusion kernel. All these assumptions may not hold in the case of optimisation over generic
functions on real-world graphs.

We address these limitations in our work, and our main contributions are as follows: we consider the
problem setting of optimising functions that are supported by the node set of a potentially generic,
large-scale, and potentially unknown graph – a setup that is by itself novel to the best of our knowledge
in the BO literature. We then propose a novel BO framework that effectively optimises in such a
problem domain with 1) appropriate kernels to handle the aforementioned graph search space derived
by spectral learning on the local subgraph structure and is therefore flexible in terms of adapting to
the behaviour of the target function, and 2) efficient local modelling to handle the challenges that the
graphs in question can be large and/or not completely known a-priori. Finally, we deploy our method
in various novel optimisation tasks on both synthetic and real-world graphs and demonstrate that it
achieves very competitive results against baselines.

2 Preliminaries
BO is a zeroth-order (i.e. gradient-free) and sample-efficient sequential optimisation algorithm
that aims to find the global optimum x∗ of a black-box function defined over search space X :
x∗ = argminx∈X f(x) (we consider a minimisation problem without loss of generality). BO uses a
statistical surrogate model to approximate the objective function and an acquisition function α(x)
to balance exploitation and exploration under the principle of optimism in the face of uncertainty.
At the t-th iteration of BO, the objective function is queried with a configuration xt and returns
an output yt, a potentially noisy estimator of the objective function yt = f(xt) + ϵ, ϵ ∼ N (0, σ2

n)
where σ2

n is the noise variance. The statistical surrogate is trained on the observed data up to
t-th observation Dt = {(xi, yi)}ti=1 to approximate the objective function. In this work, we use
a Gaussian process (GP) surrogate, which is query-efficient and gives analytic posterior mean
and variance estimates on the unknown configurations. Formally, a GP is denoted as f(x) ∼
GP (m (x) , k (x, x′)), where m (x) and k (x, x′) are the mean function and the covariance function
(or the kernel), respectively. While the mean function is often set to zero or a simple function, the
covariance function encodes our belief on the property of the function we would like to model,
the choice of which is a crucial design decision when using GP. The covariance function typically
has some kernel hyperparameters θ and are typically optimised by maximising the log-marginal

2

likelihood (the readers are referred to detailed derivations in Rasmussen [31]). With m(·) and
k(·, ·) defined, at iteration t, with Xt = [x1, ..., xt]

⊤ and the corresponding output vector y1:t =
[y1, ..., yt]

⊤, a GP gives analytic posterior mean µ(xt+1|Dt) = k(xt+1,X1:t)K
−1
1:ty1:t and variance

k(xt+1, x
′
t+1|Dt) = k(xt+1, x

′
t+1) − k(xt+1,X1:t)K

−1
1:tk(X1:t, x

′
t+1)) estimates on an unseen

configuration xt+1, where [K1:t]i,j = k(xi, xj) is the (i, j)-th element of the Gram matrix induced on
the (i, j)-th training samples by k(·, ·), the covariance function. With the posterior mean and variance
predictions, the acquisition function is optimised at each iteration to recommend the configuration
(or a batch of configurations for the case of batch BO) to be evaluated for the t+ 1-th iteration. For
additional details of BO, the readers are referred to Frazier [15].

3 Bayesian Optimisation on Graphs

Problem setting. Formally, we consider a novel setup with a graph G defined by (V, E), where
V = {vi}ni=1 are the nodes and E = {ek}mk=1 are the edges where each edge ek = {vi′ , vj′}
connects nodes vi′ and vj′ . The topology G may be succinctly represented by an adjacency matrix
A ∈ {0, 1}n×n; in our case, m and n are potentially large, and the overall topology is not necessarily
fully revealed to the search algorithm at running time. It is worth noting that, for simplicity, we
focus on the setup of undirected, unweighted graph where elements of A are binary and symmetrical
(i.e. Aij = Aji)2. Specifically, we aim to optimise the black-box, typically expensive objective
function that is defined over the nodes, i.e. it assigns a scalar value to each node in the graph. In
other words, the search space (i.e. X in §2) in our setup is the set of nodes V and the goal of the
optimisation problem is to find the configuration(s) (i.e. x in §2) that minimise the objective function
v∗ = argminv∈V f(v).

Promises and challenges of BO on graphs. We argue that BO is particularly appealing under the
described setup as (1) it is known to be query-efficient, making it suitable for optimising expensive
functions, and (2) it is fully black-box and gradient-free; indeed, we often can only observe inputs and
outputs of many real-world functions, and gradients may not even exist in a practical setup. However,
there exist various challenges in our setup that make the adaptation of BO highly non-trivial, and
despite the prevalence of problems that may be modelled as such and the successes of BO, it has not
been extended to the optimisation of functions on graphs. Some examples of such challenges are:

(i) Exotic search space. BO is conventionally applied in continuous Euclidean spaces, whereas we
focus on discrete graph search spaces. The differences in search space imply that key notions to BO,
such as the similarity between two configurations and expected smoothness of objective functions
(the latter is often used as a key criterion in selecting the covariance function to use), could differ
significantly. For example, while comparing the similarity between two points in a Euclidean space
requires only the computation of simple distance metrics (like ℓ2 distance), careful thinking is
required to achieve the same in comparing two nodes in a graph that additionally accounts for the
topological properties of the graph.

(ii) Scalability. Real-world graphs such as citation and social networks can often feature a very large
number of nodes while not presenting convenient properties such as the graph Cartesian product
assumption in Oh et al. [27] to accelerate computations. Therefore, it is a technical challenge to
adapt BO in this setting while still retaining computational tractability.

(iii) Imperfect knowledge on the graph structure. Related to the previous point, it may also be
prohibitively expensive or even impossible to obtain perfect, complete knowledge on real-world
graphs beforehand or at any point during optimisation (e.g. obtaining the full contact tracing graph
for epidemiology modelling); as such, any prospective method should be able to handle the situation
where the graph structure is only revealed incrementally, on-the-fly.

Overview of BayesOptG. To effectively address these challenges while retaining the desirable
properties of BO, we propose to extend BO to this novel setup and are, to the best of our knowledge,
the first to do so. To achieve that, we propose Bayesian Optimisation on Graphs, or BayesOptG in
short, and an illustration of the overall procedure is shown in Fig. 1, and an algorithmic description
is available in Algorithm 1. For the rest of this section, we discuss in detail the key components of
BayesOptG and how the method specifically addresses the challenges identified above.

2We note that it is possible to extend the proposed method to more complex cases by using the corresponding
definitions of Laplacian matrix. We defer thorough analysis to future work.

3

3.1 Kernels for BO on Graphs

Algorithm 1 Bayesian Optimisation on
Graphs (BayesOptG)
1: Inputs: Number of random points at initialisa-

tion/restart N0, total number of iterations T , subgraph
size Q, graph G = {V, E} (whose topology is not
necessarily fully known a-priori).

2: Objective: The node v∗T that minimises the objective
function f(v), v ∈ V .

3: Initialise restart_flag ← True, visited nodes
S ← ∅, train data D0 = ∅, h← 1.

4: for t = 1, ..., T do
5: if restart_flag then
6: Initialise the GP surrogate Dt with randomly se-

lected N0 points from V\S and their observations
Dt ← {vi, yi}N0

i=1.
7: end if
8: Construct subgraph G̃t = {Ṽt, Ẽt} around v∗t (best

node seen from the last restart) (See Algorithm 2 &
§3.2).

9: Fit a GP with kernel defined in Table 1 on G̃t with
Dt by optimising log-marginal likelihood.

10: Select next query point vt+1 by optimising the ac-
quisition function.

11: Query objective function f(·) at vt+1 to obtain a
(potentially noisy) estimate yt+1; update train data
Dt+1 ← Dt ∪ (vt+1, yt+1); seen nodes S ← S ∪
vt+1; determine the state of restart_flag with
the criteria described in §3.2.

12: end for
13: return node that minimises f(·) from all restarts.

Kernel design. Covariance functions are
crucial to GP-based BO. To use BO in our
setup, a covariance function that gives a prin-
cipled similarity measure between two nodes
{vi, vj} ⊆ V is required to interpolate sig-
nals on the graph effectively. In this paper,
we study several kernels, including both those
proposed in the literature (e.g. the diffusion
kernel on graphs and the graph Matérn ker-
nel [4]) and two novel kernels designed by
us. Following Smola & Kondor [37], all the
kernels investigated can be considered in a
general formulation. Formally, for a generic
graph G̃ = (Ṽ, Ẽ) with ñ nodes and m̃ edges,
we define L̃ := 1

2

(
I−D̃− 1

2 ÃD̃− 1
2

)
, where I

is the identity matrix of order ñ, Ã and D̃ are
the adjacency matrix and the degree matrix of
G̃, respectively (the term after 1

2 is known as
the normalised Laplacian matrix with eigen-
values in the range of [0, 2]; we scale it such
that the eigenvalues are in the range of [0, 1]).
It is worth emphasising that here we use nota-
tions with the tilde (e.g., G̃, ñ and m̃) to make
the distinction that this graph is, in general,
different from, and is typically a subgraph of,
the overall graph G discussed at the start of
this section, which might be too large or not be
fully available at the start of the optimisation;
we defer a full discussion on this in §3.2. We further note that L̃ = UΛU⊤ with Λ = diag(λ1, ..., λñ)
and U = [u1, ...,uñ], where {λ1, ..., λñ} are the eigenvalues of Λ sorted in an ascending order and
{u1, ...,uñ} are the corresponding (unit) eigenvectors.

Let p, q ∈ {1, ..., ñ} be two indices over the nodes of G̃, we may express our covariance function to
compute the covariance between an arbitrary pair of nodes vp, vq in terms of a regularisation function
of eigenvalues r(λi)∀ i ∈ {1, ..., ñ}, as described in Smola & Kondor [37]:

k(vp, vq) =

ñ∑
i=1

r−1(λi)ui[p]ui[q], (1)

where ui[p] and ui[q] are the p-th and q-th elements of the i-th eigenvector ui. The specific functional
form of r(λi) depends on the kernel choice, and the kernels considered in this work are listed in
Table 1. We note that all kernels encode the smoothness of the function on the local subgraph G̃.
In particular, the diffusion kernel has been adopted in Oh et al. [27]; the polynomial and Matérn
kernels are inspired by recent work in the literature of graph signal processing [11, 46, 3]; finally,
the sum-of-inverse polynomials kernel is designed as a variant of the polynomial kernel: in terms
of the regularisation function, it can be interpreted as (while ignoring ϵ) a scaled harmonic mean of
the different degree components of the polynomial kernel. We next discuss the behaviours of these
kernels from the perspective of kernel hyperparameters.

Kernel hyperparameters. β := [β0, ..., βη−1]
⊤ ∈ Rη

≥0 (for polynomial and sum-of-inverse
polynomials) or [β1, ..., βñ]

⊤ ∈ Rñ
≥0 (for the diffusion kernel) define the characteristics of the kernel.

We constrain β in both kernels to be non-negative to ensure the positive semi-definiteness of the
resulting covariance matrix and are learned jointly via GP log-marginal likelihood optimisation. The
parameter ν controls the mean-square differentiability in the classical GP literature with the Matérn
kernel. The polynomial and the sum-of-inverse polynomials kernels in Table 1 feature an additional
hyperparameter of kernel order η ∈ Z≥0. We set it to be min{5, diameter} where diameter is the

4

Table 1: Kernels considered in terms of the regularisation function r(λi). We derive the semi-
definiteness of polynomial and sum-of-inverse polynomial kernels in App. A.

Kernel Regularisation function r(λi) Kernel function K(V,V)
Diffusion† [37, 27] exp(βiλi)

∑ñ
i=1 exp(−βiλi)uiu

⊤
i

Polynomial∗
∑η−1

α=0 βαλ
α
i + ϵ

∑ñ
i=1

(∑η−1
α=0 βαλ

α
i + ϵ

)−1

uiu
⊤
i

Sum-of-inverse
polynomials∗

(∑η−1
α=0

1
βαλα

i +ϵ

)−1 ∑ñ
i=1

(∑η−1
α=0

1
βαλα

i +ϵ

)
uiu

⊤
i

Matérn [4]
(
βν + λi

)ν ∑ñ
i=1

(
βν + λi

)−ν

uiu
⊤
i

†Can be ARD or non-ARD: for ARD, {βi}ñ
i=1 coefficients are learned; for non-ARD, a single, scalar β is learned.

∗{βα}η−1
α=0 coefficients to be learned. ϵ: small positive constant (e.g. 10−8). η: order of kernel.

length of the shortest path between the most distanced pair of nodes in G̃ (a thorough ablation study
on η is presented in App. D.). We argue that this allows both kernels to strike a balance between
expressiveness, as all eigenvalues contained in the graphs are used in full without truncation, and
regularity, as fewer kernel hyperparameters need to be learned. This is in contrast to, for example,
diffusion kernels on graphs in Table 1, which typically has to learn ñ hyperparameters for a graph of
size ñ, whose optimisation can be prone to overfitting. To address this issue, previous works often had
to resort to strong sparsity priors (e.g. horseshoe priors [6]) and approximately marginalising with
Monte Carlo samplers that significantly increase the computational costs and reduce the scalability
of the algorithm [27]. In contrast, by constraining the order of the polynomials to a smaller value,
the resulting kernels may adapt to the behaviour of the target function and can be better regularised
against overfitting in certain problems, as we will validate in §5.

3.2 Tractable Optimisation via Local Modelling

Local
subgraph

Local
subgraphSubgraph

centre
Subgraph

centre

Figure 2: Subgraphs G̃t determined by Algo-
rithm 2, marked in red, with a darker shade de-
noting a closer distance to the central node v∗t =
argminv∈{vt}t

t′=1
f(v) in the figure, marked in

black), for a high-degree node (Left) and a node
far from high-degree node (Right). Note for the
latter case, the local subgraph can include nodes
that are much further away.

As discussed previously, it is a technical chal-
lenge to develop high-performing yet efficient
methods in 1) large, real-world graphs (e.g. so-
cial network graphs) and 2) graphs for which it
is expensive, or even impossible, to obtain com-
plete topological information beforehand (e.g. if
we model the interactions between individuals
as a graph, the complete topology of the graph
may only be obtained after exhaustive interviews
and contact tracing with all people involved).
The previous work in Oh et al. [27] cannot han-
dle the second scenario and only addresses the
first issue by assuming a certain structure of the
graph (e.g. the Cartesian product of subgraphs),
but these techniques are not applicable when we
are dealing with a general graph G.

To address the dual challenges, and inspired by trust region-based BO methods [7, 13, 43, 10, 44],
we adapt and simplify the techniques to our use case: we propose to leverage local modelling by
focusing on a subset of nodes that evolves as the optimisation progresses. At iteration t ∈ {1, ..., T},
assuming the collection of our observed configurations and outputs is Dt = {vt′ , yt′}tt′=1, we first
find the node that leads to the best objective function so far v∗t = argminv∈{vt}t

t′=1
f(v). We then

use Algorithm 2 to select a neighbourhood around v∗t that is a subgraph of the overall graph G:
G̃t ⊆ G with Q number of nodes (we will discuss how to choose Q in the next paragraph), in a
procedure similar to the neighbourhood sampling in the GraphSAGE framework [18] as illustrated in
Fig. 2: in particular, during sampling, the closer nodes to v∗t takes precedence over further nodes
– we only sample the latter if the subgraph consisting of v∗t and the closer nodes has fewer than Q
nodes; hence the local subgraph is a form of an ego-network of the central node v∗t . We then only
impose the GP and compute the covariance matrix over this subgraph only: First, this effectively
limits the computational cost – note that the time complexity in our case depends on both the number
of training examples N and the size of the graph ñ we impose the GP on (O(ñ3 +N3)), assuming
a naïve eigen-decomposition algorithm. Second, it also effectively addresses the setup where the

5

entire G is not available a-priori, as we only need to query and reveal the topological structure of the
subgraph G̃t on the fly.

Algorithm 2 Selecting a local subgraph
1: Inputs: Best input up to iteration t

since the last restart: v∗t , subgraph size
Q.

2: Output: local subgraph G̃t with Q
nodes.

3: Initialise: Ṽt ← {v∗t }, h← 1.
4: while |Ṽt| < Q do
5: Find Nh, the h-hop neighbours of

v∗t .
6: if |Ṽt|+ |Nh| ≤ Q then
7: Add all h-hop neighbours to Ṽt:

Ṽt ← Ṽt ∪Nh.
8: Increment h: h← h+ 1
9: else

10: Randomly sample Q− |Ṽ|t nodes
fromNh and add to Ṽt

11: end if
12: end while
13: return the subgraph G̃t induced by Ṽt

(i.e. the ego-network).

Determining the local subgraph size. The local sub-
graph size at iteration t (Qt) is a hyperparameter of the
algorithm. We adapt the idea of trust regions from trust
region-based optimisation algorithms [7, 13, 43] to adap-
tively set the size of Qt as the optimisation progresses:
specifically, we initialise Q0 (initial neighbourhood size),
succ_tol (success tolerance), fail_tol (failure toler-
ance) and γ > 1 (multiplier) as hyperparameters3, and
count “successes” as occasions where BayesOptG suc-
ceeds in improving the function values (i.e., at iteration
t, f(v∗t) < f(v∗t−1)) and “failures” otherwise. Upon con-
secutive succ_tol successes, we expand the neighbour-
hood size Qt ← min(round(γQt−1), n) to increase ex-
ploration, and upon consecutive fail_tol failures, we
shrink QT ← max(round(Qt−1/γ,Qmin)) to increase ex-
ploitation. The notation round(·) denotes rounding to the
nearest integer, and Qmin denotes some minimum value of
neighbourhood size (typically set to 1 to include a single
node v∗t for simplicity, although alternative values may be
used). When Qt ≤ Qmin, we restart the BO by fitting the
surrogate with randomly initialised nodes whose objective
function values have not been evaluated.

Remarks on the relation to trust-region BO methods.
It is worth noting that while conceptually influenced by previous trust region-BO methods, the local
graph construction we use differs from these methods in several crucial aspects. First, we use a
bespoke distance metric in the graph space. Second, whereas the purpose of trust regions in previous
works is to alleviate over-exploration in high-dimensional spaces, local subgraphs in our case also
uniquely serve the crucial purpose of allowing BayesOptG to handle imperfect knowledge about the
graphs, as we only need to reveal the topology of the subgraph (as opposed to the entire graph) at any
given iteration. Lastly, we discussed, that using trust regions also improves scalability – this can be
concretely exemplified by the massive speed-up shown in Fig. 3.

1000 2000 3000 4000
Graph size

101

102

W
al

l-c
lo

ck
 ti

m
e

(s
)

Poly TR
Poly Full
SumInverse TR
SumInverse Full
Diff TR
Diff Full

Figure 3: Trust regions enable efficient optimisa-
tion on large graphs: Wall-clock time with and
without trust regions in BayesOptG with different
kernels over graphs of different sizes.

Optimisation of the acquisition function.
With the local subgraph obtained, we then fit
a GP surrogate with the covariance function de-
fined in §3.1 and optimise log-marginal like-
lihood. Given that the local search space in
our case is finite (of size Q), we simply enu-
merate all nodes within G̃t to compute their
acquisition function acq(·) values (which is
computed from the predictive mean and vari-
ance of the GP surrogate) and pick the max-
imiser as the recommended location to query
the objective function f(·) for iteration t+ 1 as
vt+1 = argmaxv∈Ṽt

acq(v). Any off-the-shelf acquisition function may be used, and we adopt
expected improvement (EI) [16] in our experiments. It is worth noting that BayesOptG is also fully
compatible with existing approaches such as Kriging believer fantasisation [17] for batch BO.

4 Related Work
The setup we consider is by itself novel and largely under-explored. One of the few existing methods
that can be used for optimisation over a graph search space is COMBO [27], where the search
space is modelled as a graph that captures the relationship between different values for a group of

3We provide an ablation study in App. D to show the robustness of BayesOptG to hyperparameters.

6

−0.2

−0.1

0.0

0.1

0.2

−0.2

−0.1

0.0

0.1

0.2

(a)

(b)

−2 0 2

Validation ground truth

−2

0

2

V
al

id
at

io
n

pr
ed

ic
ti

on

ρ : 1.0

Polynomial

−2 0 2

Validation ground truth

−2

0

2 ρ : 1.0

Sum of inverse polynomial

−2 0 2

Validation ground truth

−2

0

2 ρ : 1.0

Diffusion

−2 0 2

Validation ground truth

−2

0

2 ρ : 1.0

Diffusion with ARD

0.00 0.25 0.50 0.75 1.00

λ

100

103

r−
1
(λ

)

0.00 0.25 0.50 0.75 1.00

λ

10−3

100

0.00 0.25 0.50 0.75 1.00

λ

10−7

10−3

101

0.00 0.25 0.50 0.75 1.00

λ

10−7

10−4

10−1

−2 0 2

Validation ground truth

−2

0

2

V
al

id
at

io
n

pr
ed

ic
ti

on

ρ : 0.76

Polynomial

−2 0 2

Validation ground truth

−2

0

2 ρ : 0.77

Sum of inverse polynomial

−2 0 2

Validation ground truth

−2

0

2 ρ : 0.72

Diffusion

−2 0 2

Validation ground truth

−2

0

2 ρ : 0.42

Diffusion with ARD

0.00 0.25 0.50 0.75 1.00

λ

100

101

r−
1
(λ

)

0.00 0.25 0.50 0.75 1.00

λ

100

101

0.00 0.25 0.50 0.75 1.00

λ

100

0.00 0.25 0.50 0.75 1.00

λ

10−6

10−3

100

Figure 4: Validation of predictive powers of kernels considered on a BA graph of size n = 200
nodes and parameter m = 1, with (a) function values on the nodes corresponding to elements of the
eigenvector corresponding to the second smallest eigenvalue and (b) same as above, but corrupted
with noise standard deviation σ = 0.05. The leftmost column shows the visualisation of the ground
truth, and the right columns show the GP posterior mean and standard deviation (error bars) learned
by the different kernels against ground truth with Spearman correlation ρ and learned r−1(λ) (Eq. 1).

categorical variables. It is, therefore, designed explicitly for combinatorial optimisation. Several
studies modified COMBO in various ways but followed essentially the same framework for similar
tasks, e.g., optimisation over categorical variables [12, 19, 24]. Similarly, Ramachandram et al. [30]
propose a specific graph construction to optimise multimodal fusion architectures. Our work differs
from these studies in that: 1) we focus on optimisation over generic, large-scale and potentially
unknown graphs; 2) the nodes of the graph are not limited to combinations of values for categorical
variables and can represent any entities; 3) the kernel we propose is not limited to diffusion-based
ones and can adapt to the behaviour of the function to be optimised. Finally, the graph bandit setting
([5, 39, 38]) can be seen to be similar to ours in the sense that it also aims at finding extreme values
associated with nodes in a graph. However, the bandit problem considers a stochastic setting where
nodes are influenced in a probabilistic fashion, and the objective function is actively shaped by this
process; in comparison, in our case, we consider an underlying deterministic and black-box function,
which is more aligned with the classical BO setting. Moreover, both Valko et al. [39] and Thaker
et al. [38] require full graph access and require prohibitive operation on the full graph Laplacian
(decomposition/inversion), whereas BayesOptG may work on-the-fly with initially unknown graphs
and is much more scalable thanks to the designs in §3.2. Several works also leverage kernels on
graphs to build Gaussian processes for graph-structured data [26, 41, 40, 46, 28, 4, 29]. While the
kernels proposed in these approaches can, in theory, be used in a BO framework, these studies do not
address the optimisation problem we consider.

Another line of work focuses on optimisation over graph inputs (in contrast to a graph search space)
where each input configuration itself is a graph. In contrast, in our case, each input configuration is a
node. Examples of the former include Ru et al. [34] who model neural architectures as graphs and
use Weisfeiler-Lehman kernels [36] to perform BO, and Wan et al. [42], who devise a BO agent for
adversarial attack on graph classification models. Other representative examples include Kandasamy
et al. [20], Korovina et al. [23] and Cui et al. [8, 9]. We emphasise that, while related, these works
deal with a different setup and thus require a different method compared to the present work. For
example, the kernels over graphs used in these methods typically aim to find vector embedding
of graphs that account for their topologies. However, once the embedding is computed, standard
Euclidean covariance functions (e.g., the dot product or squared-exponential kernel) are applied. On
the other hand, in the present work, we aim to compute similarities over nodes, where topological
information is crucial during the covariance computation itself.

5 Experiments

We first validate the predictive power of the GPs with the adopted kernels on graphs and then
demonstrate the optimisation performance of BayesOptG in both synthetic and real-world tasks. We
compare BayesOptG against baselines, including random and local search optimisation algorithms as

7

0 25 50 75 100
0.0

0.1

0.2

Re
gr

et

(a) Betweenness; m = 2

0 25 50 75 100
0.00

0.05

0.10

0.15

(b) Betweenness; m = 3

0 25 50 75 100
0.00

0.05

0.10

(c) Betweenness; m = 4

0 25 50 75 100
#Iters

0.0

0.2

0.4

Re
gr

et
(d) Eigenvector; m = 2

0 25 50 75 100
#Iters

0.0

0.2

(e) Eigenvector; m = 3

0 25 50 75 100
#Iters

0.0

0.1

0.2

0.3 (f) Eigenvector; m = 4

BFS
BayesOptG_Diff
BayesOptG_Diff_ARD

BayesOptG_Matern
BayesOptG_Poly

BayesOptG_SumInverse
DFS

Local
Random

Figure 5: Maximising centrality scores with the BA random graph model and n = 1000 nodes.
Different graphs show different values of the BA hyperparameter m ∈ {2, 3, 4} and centrality metrics
{betweenness/eigenvector centrality}.

0 50 100

0.002

0.004

0.006

Re
gr

et

(a) Betweenness
(k, p) = (10, 0.1)

0 50 100

0.002

0.004
(b) Betweenness
(k, p) = (10, 0.2)

0 50 100

0.001

0.002
(c) Betweenness
(k, p) = (30, 0.1)

0 50 100

0.0005

0.0010

(d) Betweenness
(k, p) = (30, 0.2)

0 50 100
#Iters

0.005

0.010

0.015

Re
gr

et

(d) Eigenvector
(k, p) = (10, 0.1)

0 50 100
#Iters

0.005

0.010

0.015
(e) Eigenvector
(k, p) = (10, 0.2)

0 50 100
#Iters

0.002

0.004

0.006
(f) Eigenvector
(k, p) = (30, 0.1)

0 50 100
#Iters

0.002

0.004

0.006
(g) Eigenvector
(k, p) = (30, 0.2)

Figure 6: Maximising centrality scores with the WS random graph model and n = 2000 nodes. Refer
to Fig. 5 for legend and additional explanations.

well as BFS and DFS. The description of these baselines is given in the App. B.2. In all figures, lines,
and shades denote mean and standard error, respectively, across ten trials.

5.1 Validating Predictive Power of Kernels

We first validate the predictive power of the adopted kernels in controlled regression experiments. To
do so, we generate functions that are simply the eigenvectors of the graph Laplacian and compare the
predictive performance of the kernels using three graph types: 2D grid, Barabási–Albert (BA) [1]
and Watts–Strogatz (WS) [45]. We compare the performance in terms of validation error and
show the results in Fig. 4 (results for other graph types are shown in App. C.1). We find that in
the noiseless case, all kernels learn the underlying function effectively (except that the diffusion
with ARD kernel learns a non-smooth transform on the spectrum due to its over-parameterisation,
resulting in underestimations of the uncertainty in the noisy case). Still, the better-regularised kernels
(described in §3.1) are considerably more robust to noise corruption.

0 50 100
#Iters

0

1

2

Re
gr

et

(a) Ackley; = 0.5

0 50 100
#Iters

0

1

2

(b) Ackley; = 1

0 50 100
#Iters

100

101 (c) Rosenbrock; = 0.5

0 50 100
#Iters

100

101 (d) Rosenbrock; = 1

Figure 7: Synthetic test functions task with Ackley/Rosenbrock functions with noise standard
deviation σ ∈ {0.5, 1}. Regrets shown in log-scale for Rosenbrock; refer to Fig. 5 for legend.

8

0 50 100
#Iters

0.01

0.02

0.03

0.04

Re
gr

et

(a); (,) = (0.1, 0.015)

0 50 100
#Iters

0.01

0.02

0.03

0.04 (b) (,) = (0.1, 0.15)

0 50 100
#Iters

0.01

0.02

0.03

0.04 (c) (,) = (0.2, 0.015)

0 50 100
#Iters

0.01

0.02

0.03

0.04 (d) (,) = (0.2, 0.15)

BayesOptG_Matern
Local

BFS
BayesOptG_SumInverse

BayesOptG_Diff_ARD
DFS

BayesOptG_Poly
Random

BayesOptG_Diff

Figure 8: Identifying the patient zero task with different SIR model hyperparameters β ∈ {0.1, 0.2}
and γ ∈ {0.015, 0.15} and probability of recovery ϵ of 0. Refer to Fig. 20 – 23 for experiments with
other hyperparameter combinations.

0 25 50 75 100
#Iters

0.01

0.02

0.03

0.04

Re
gr

et

(a) Enron Mail

0 25 50 75 100
#Iters

0.01

0.02

0.03

(b) Facebook pages

0 25 50 75 100
#Iters

0.025

0.050

0.075

0.100
(c) Twitch user social

Figure 9: Identifying influential users in a social network task on different real-life social networks
(Enron/Facebook page/Twitch). Refer to Fig. 8 for legend.

0 50 100
#Iters

0.1

0.2

Re
gr

et

(a) #skills = 2 and = 1

0 50 100
#Iters

0.00

0.02

(b) #skills = 2 and = 1

0 50 100
#Iters

0.0

0.1

(c) #skills = 4 and = 10

0 50 100
#Iters

0.01

0.02(d) #skills = 4 and = 10

Figure 10: Team optimisation task with s (number of skills) ∈ {2, 4} and α ∈ {1, 10} with Jaccard
index threshold of 0.3 (refer to App. B.4.3 for explanations). Refer to Fig. 8 for legend and Fig. 24 –
26 for experiments with other hyperparameter combinations.

5.2 Optimisation Tasks

We conduct experiments on a number of synthetic and real-life tasks that involve or imitate expensive
optimisation, and we show all results in terms of simple regret (i.e., the difference between the
objective function value and the ground-truth optimum). We consider the following synthetic tasks:

• Maximising centrality scores (Fig. 5 and 6; Fig. 18 in App. C.2): we aim to find the node with
maximum centrality measure, from a graph sampled from a random graph model. We consider both
eigenvector centrality and betweenness centrality as the centrality metrics, and use BA and WS with
different hyperparameters as the random graph-generating models. We consider graphs with sizes in
the range of 103 in Fig. 5 and 6. In Fig. 18, we further scale the size of graphs considered to 106

nodes to demonstrate the scalability of our method in a large-scale setup.
• Synthetic test functions (Fig. 7): we optimise a suite of discretised versions of commonly used

synthetic test functions (Ackley and Rosenbrock) on graphs defined as a 2D-grid in both noiseless
and noisy setups. The readers are referred to App. B.3.2 for additional implementation details.

We consider the following real-life tasks:

• Identifying the patient zero (Fig. 8; Fig. 20 to 23 in App. C.3): we aim to find the “patient
zero” of an epidemic in a contact network, who is to the person identified as the first carrier of a
communicable disease in an epidemic outbreak. We use a real-world contact network based on
Bluetooth proximity [2], and on top of simulating the epidemic process using the SIR model, the
canonical compartmental model in epidemiology [22]. The function values are the time instants
when an individual is infected; the readers are referred to App. B.4.1 for more details of this task.

• Identifying influential users in a social network (Fig. 9): we aim to find the most influential user
in a social network. There are multiple ways of defining the influence power of a user, and for
simplicity, we follow the common practice of taking node degree as a proxy of influence [21]. We

9

use three real-world networks, namely the Enron email network [25], Facebook page network [33],
and Twitch social network [32]. The readers are referred to App. B.4.2 for more details.

• Team optimisation (Fig. 10; Fig. 24 to 26 in App. C.4): we design a task of optimising team
structure, where the objective is to find a team that contains members who are experts in different
skills, and their collective expertise represents a diverse skill set. In this case, the teams are modelled
as nodes, and edges represent the a priori similarity between teams. While there are various possible
ways to model these similarities, in our experiment, we consider that an edge exists between two
nodes if the Jaccard index between the two sets of team members is greater than a certain threshold.
We include additional details and a formal description of the objective function in the App. B.4.3.

We designed these tasks to imitate expensive but realistic black-box optimisation problems on which
the use of Bayesian optimisation is ideal. For example, the identifying patient zero task imitates
real-life contact tracing. If executed in real life, each function evaluation requires expensive and
potentially disruptive procedures like interviews about the individuals’ travel history and the people
they were in contact with. On the other hand, the centrality maximisation & identifying influential
social network users problems mirror common online advertising tasks to identify the influential
users without access to the full social network information (which would be near-impossible to obtain
given the number of users). Real-life social media often limits how much one may interact with their
platform through pay-per-use APIs or hard limits (e.g. upper limit of views). In either case, there is a
strong reason to identify the influential users in the most query-efficient manner.

0 20 40 60 80 100
#Iters

4

5

6

7

Ra
nk

BFS
BayesOptG_Diff
BayesOptG_Diff_ARD
BayesOptG_Matern
BayesOptG_Poly

BayesOptG_SumInverse
DFS
Local
Random

Figure 11: Aggregated ranks of the methods
(lower is better) vs. the number of evaluations
averaged across all experiments.

Discussions. In addition to the task-specific results,
we further aggregate the performance of the different
methods over all tasks in terms of relative ranking in
Fig. 11. We find that within individual tasks and ag-
gregated across the different tasks, BayesOptG with
any kernel choice generally outperforms all baselines
in terms of efficiency, final converged values, or both.
Specifically, Random is simple but typically weak for
larger graphs, except for very rough/noisy functions
(like Ackley), or the variation in function values is
generally small; DFS and BFS are relatively weak
as they consider graph topology information only
but not the node information (on which the objective
function is defined) and can be sensitive to initial-
isation; Local search is, on balance, the strongest
baseline, and it does particularly well on smoother
functions with fewer local minima.

As is the case for any GP-based method, the kernel choice impacts the performance, and the
performance is stronger when the underlying assumptions of the kernel match the actual objective
function. For example, diffusion kernels work well for patient zero identification (Fig. 8) and team
optimisation (Fig. 10), as the underlying generative functions for both problems, are indeed smooth
(in fact, the SIR model in disease propagation is heavily connected to diffusion processes). Diffusion
without ARD further enforces isotropy, assuming the diffusion coefficient in all directions is the same,
and thus typically underperforms except for team optimisation, where the generated graph is well
structured and Ackley, which is indeed isotropic and symmetric. We recommend only if we know
that the underlying function satisfies its rather stringent assumptions. Finally, the SumInverse and
DiffARD kernels are generally better, as they offer more flexibility in learning from the data; we
recommend using one of these as default without prior knowledge suggesting otherwise.

6 Conclusion
We address the problem of optimising over functions on graphs, a hitherto under-investigated
problem. We demonstrate that BO, combined with learned kernels on graphs and efficient local
modelling, provides an effective solution. The proposed framework works with generic, large-scale
and potentially unknown graphs, a setting that existing BO methods cannot handle. Results on a
diverse range of tasks support the effectiveness of the proposed method. The current work, however,
only considers the case where the optimisation is over nodes; possible future works include extensions
to related settings, such as optimising over functions defined on edges and/or on hypergraphs.

10

Acknowledgement

The authors would like to acknowledge the following sources of funding in direct support of this
work: X.W. is supported by the Clarendon Scholarship at University of Oxford; P.O. is supported
by the EPSRC Centre for Doctoral Training in Autonomous Intelligent Machines and Systems
EP/L015897/1; X.D. acknowledges support from the Oxford-Man Institute of Quantitative Finance
and the EPSRC (EP/T023333/1). The authors declare no conflict of interest.

References
[1] Barabási, A.-L. and Albert, R. Emergence of scaling in random networks. science, 286(5439):

509–512, 1999.

[2] Barrat, A., Cattuto, C., Kivelä, M., Lehmann, S., and Saramäki, J. Effect of manual and digital
contact tracing on covid-19 outbreaks: a study on empirical contact data. Journal of the Royal
Society Interface, 18(178):20201000, 2021.

[3] Borovitskiy, V., Azangulov, I., Terenin, A., Mostowsky, P., Deisenroth, M., and Durrande, N.
Matérn gaussian processes on graphs. In International Conference on Artificial Intelligence and
Statistics, pp. 2593–2601. PMLR, 2021.

[4] Borovitskiy, V., Azangulov, I., Terenin, A., Mostowsky, P., Deisenroth, M. P., and Durrande, N.
Matern Gaussian processes on graphs. In International Conference on Artificial Intelligence
and Statistics, 2021.

[5] Carpentier, A. and Valko, M. Revealing graph bandits for maximizing local influence. In
International Conference on Artificial Intelligence and Statistics, 2016.

[6] Carvalho, C. M., Polson, N. G., and Scott, J. G. Handling sparsity via the horseshoe. In Artificial
Intelligence and Statistics, pp. 73–80. PMLR, 2009.

[7] Conn, A. R., Gould, N. I., and Toint, P. L. Trust region methods. SIAM, 2000.

[8] Cui, J., Yang, B., and Hu, X. Deep bayesian optimization on attributed graphs. In Proceedings
of the AAAI Conference on Artificial Intelligence, 2019.

[9] Cui, J., Tan, Q., Zhang, C., and Yang, B. A novel framework of graph bayesian optimization
and its applications to real-world network analysis. Expert Systems with Applications, 170
(114524), 2021.

[10] Daulton, S., Eriksson, D., Balandat, M., and Bakshy, E. Multi-objective bayesian optimization
over high-dimensional search spaces. In Uncertainty in Artificial Intelligence, pp. 507–517.
PMLR, 2022.

[11] Defferrard, M., Bresson, X., and Vandergheynst, P. Convolutional neural networks on graphs
with fast localized spectral filtering. Advances in neural information processing systems, 29,
2016.

[12] Deshwal, A., Belakaria, S., and Doppa, J. R. Mercer Features for Efficient Combinatorial
Bayesian Optimization. In AAAI Conference on Artificial Intelligence, 2021.

[13] Eriksson, D., Pearce, M., Gardner, J., Turner, R. D., and Poloczek, M. Scalable global
optimization via local bayesian optimization. Advances in neural information processing
systems, 32, 2019.

[14] Even, S. Graph algorithms. Cambridge University Press, 2011.

[15] Frazier, P. I. A tutorial on bayesian optimization. arXiv preprint arXiv:1807.02811, 2018.

[16] Garnett, R. Bayesian Optimization. Cambridge University Press, 2023.

[17] Ginsbourger, D., Le Riche, R., and Carraro, L. Kriging is well-suited to parallelize optimization.
Computational intelligence in expensive optimization problems, pp. 131–162, 2010.

11

[18] Hamilton, W., Ying, Z., and Leskovec, J. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

[19] Imani, M. and Ghoreishi, S. F. Graph-based bayesian optimization for large-scale objective-
based experimental design. IEEE Transactions on Neural Networks and Learning Systems, 33
(10):5913–5925, 2022.

[20] Kandasamy, K., Neiswanger, W., Schneider, J., Poczos, B., and Xing, E. P. Neural architecture
search with Bayesian optimisation and optimal transport. In Advances in Neural Information
Processing Systems (NIPS), pp. 2016–2025, 2018.

[21] Kempe, D., Kleinberg, J., and Tardos, É. Maximizing the spread of influence through a social
network. In Proceedings of the ninth ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 137–146, 2003.

[22] Kermack, W. O. and McKendrick, A. G. A contribution to the mathematical theory of epidemics.
Proceedings of the royal society of london. Series A, Containing papers of a mathematical and
physical character, 115(772):700–721, 1927.

[23] Korovina, K., Xu, S., Kandasamy, K., Neiswanger, W., Poczos, B., Schneider, J., and Xing, E. P.
Chembo: Bayesian optimization of small organic molecules with synthesizable recommenda-
tions. In Artificial Intelligence and Statistics, 2020.

[24] Krummenauer, J., Kammoun, N., Stein, B., and Goetze, J. Encoding categorical variables in
physics-informed graphs for Bayesian Optimization. In International Conference on Omni-layer
Intelligent Systems, 2022.

[25] Leskovec, J., Lang, K. J., Dasgupta, A., and Mahoney, M. W. Community structure in large net-
works: Natural cluster sizes and the absence of large well-defined clusters. Internet Mathematics,
6(1):29–123, 2009.

[26] Ng, Y. C., Colombo, N., and Silva, R. Bayesian semi-supervised learning with graph Gaussian
processes. In Conference on Neural Information Processing Systems, 2018.

[27] Oh, C., Tomczak, J. M., Gavves, E., and Welling, M. Combinatorial Bayesian Optimization
using the Graph Cartesian Product. In Conference on Neural Information Processing Systems,
2019.

[28] Opolka, F. L. and Liò, P. Graph convolutional Gaussian processes for link prediction. In ICML
Workshop on Graph Representation Learning and Beyond, 2020.

[29] Opolka, F. L., Zhi, Y.-C., Lió, P., and Dong, X. Adaptive gaussian processes on graphs via
spectral graph wavelets. In International Conference on Artificial Intelligence and Statistics,
2022.

[30] Ramachandram, D., Lisicki, M., Shields, T. J., Amer, M. R., and Taylor, G. W. Bayesian opti-
mization on graph-structured search spaces: Optimizing deep multimodal fusion architectures.
Neurocomputing, 298:80–89, 2018.

[31] Rasmussen, C. E. Gaussian processes in machine learning. Springer, 2004.

[32] Rozemberczki, B., Allen, C., and Sarkar, R. Multi-scale attributed node embedding, 2019.

[33] Rozemberczki, B., Davies, R., Sarkar, R., and Sutton, C. Gemsec: Graph embedding with self
clustering. In Proceedings of the 2019 IEEE/ACM International Conference on Advances in
Social Networks Analysis and Mining 2019, pp. 65–72. ACM, 2019.

[34] Ru, B., Wan, X., Dong, X., and Osborne, M. Interpretable neural architecture search via
bayesian optimisation with weisfeiler-lehman kernels. International Conference on Learning
Representations (ICLR), 2021.

[35] Sapiezynski, P., Stopczynski, A., Lassen, D. D., and Lehmann, S. Interaction data from the
copenhagen networks study. Scientific Data, 6(1):1–10, 2019.

12

[36] Shervashidze, N., Schweitzer, P., Van Leeuwen, E. J., Mehlhorn, K., and Borgwardt, K. M.
Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(9), 2011.

[37] Smola, A. J. and Kondor, R. Kernels and regularization on graphs. In Learning theory and
kernel machines, pp. 144–158. Springer, 2003.

[38] Thaker, P., Malu, M., Rao, N., and Dasarathy, G. Maximizing and satisficing in multi-armed
bandits with graph information. Advances in Neural Information Processing Systems, 35:
2019–2032, 2022.

[39] Valko, M., Munos, R., Kveton, B., and Kocák, T. Spectral bandits for smooth graph functions.
In International Conference on Machine Learning, pp. 46–54. PMLR, 2014.

[40] Venkitaraman, A., Chatterjee, S., and Handel, P. Gaussian processes over graphs. In IEEE
International Conference on Acoustics, Speech and Signal Processing, 2020.

[41] Walker, I. and Glocker, B. Graph convolutional Gaussian processes. In International Conference
on Machine Learning, 2019.

[42] Wan, X., Kenlay, H., Ru, B., Blaas, A., Osborne, M. A., and Dong, X. Adversarial attacks
on graph classifiers via bayesian optimisation. Conference on Neural Information Processing
Systems, 2021.

[43] Wan, X., Nguyen, V., Ha, H., Ru, B., Lu, C., and Osborne, M. A. Think global and act local:
Bayesian optimisation over high-dimensional categorical and mixed search spaces. International
Conference on Machine Learning (ICML), 2021.

[44] Wan, X., Lu, C., Parker-Holder, J., Ball, P. J., Nguyen, V., Ru, B., and Osborne, M. Bayesian
generational population-based training. In First Conference on Automated Machine Learning
(Main Track), 2022.

[45] Watts, D. J. and Strogatz, S. H. Collective dynamics of ‘small-world’ networks. Nature, 393
(6684):440–442, 1998.

[46] Zhi, Y.-C., Ng, Y. C., and Dong, X. Gaussian processes on graphs via spectral kernel learning.
IEEE Transactions on Signal and Information Processing over Networks, 2023.

13

A Proof of Semi-Definiteness

In this section, we show that all kernels considered in this paper are positive semi-definite (p.s.d).
Specifically, we note that using the terminology defined in Eq. 1, any map r → R→ [0,+∞] defines
a valid covariance kernel. Indeed,

∀X ⊂ V, k(X,X) =

ñ∑
i=1

r−1(λi)ui[X]ui[X]⊤, (2)

where ui[X] =
[
ui[x1], ui[x2], ..., ui[xl]

]⊤
with l = |X|. The matrix ui[X]ui[X]⊤ is symmetric

p.s.d as the outer product of one non-zero vector: ∀x ∈ Rl,x⊤ui[X]ui[X]⊤x = ∥ui[X]⊤x∥22 ≥ 0.
As a result, our covariance matrix is symmetric p.s.d as the weighted sum of symmetric positive
semidefinite matrices with positive coefficients. The kernels we presented in this paper correspond to
a positive r; hence, they are all p.s.d.

B Experimental Details

B.1 Random Graph Models

Barabási–Albert model (BA). The network begins with an initial connected network of m0 nodes.
New nodes are added to the network one at a time. Each new node is connected to m ≤ m0 existing
nodes with a probability that is proportional to the number of links that the existing nodes already
have. The probability pi that the new node is connected to node i is:

pi =
ki∑
j kj

where kj is the degree of node j.

Watts–Strogatz model (WS). The WS model was introduced to explain the "small-world" phenomena
in a variety of networks. It achieves this by interpolating between a randomized structure close to ER
graphs and a regular ring lattice. Given a mean degree K and a parameter β ∈ [0, 1]. An undirected
graph is constructed with N nodes and NK/2 edges as follows:

1. Constructs a regular one-dimensional network with only local connections of range K,
meaning each node is connected to its K/2 nearest neighbours on each side.

2. For every node i = 0, ..., N−1 take every edge connecting i to its K/2 rightmost neighbours.
Rewire each of these edges with probability β to random nodes while avoiding self-loop
and link duplicates.

B.2 Baseline Algorithms

Breadth first search (BFS) and depth-first search (DFS). These algorithms aim to explore the
whole graph data structure. It starts with a root node and explores according to the depth or breadth
of the graph. In the former, the algorithm explores as far as possible along each branch before
backtracking. In the latter, the algorithm explores all nodes at the present depth prior to moving on to
the nodes at the next depth level.

Random search. In this algorithm, at each time step, a random node is selected for evaluation of our
objective function.

Local search. In this algorithm, at each time step, we sample and query a random node from a
neighbour of the node of the maximum value encountered so far, and we move to a neighbour node if
the queried value is better than the incumbent best. When the algorithm reaches a local optimum (i.e.,
all neighbours have worse values than the current optimum), we allow our algorithm to restart at a
random, unvisited node in the graph.

14

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.05

0.10

0.15

0.20

0.25

0.30

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

Figure 12: Betweeness/Eigenvector Centrality on BA/WS graphs.

B.3 Synthetic Optimisation Tasks

B.3.1 Maximising network centrality

Centrality measures were introduced in network analysis to study the importance of certain vertices
with respect to desired characteristics. In this paper, we used two centrality measures: betweenness
centrality and eigenvalue centrality. We show examples of these functions on sample BA/WS graphs
in Fig. 12.

Betweenness centrality. This centrality focuses not just on overall connectedness but on the
occupying positions that are pivotal to the network’s connectivity. The following formula gives the
betweenness of node v:

g(v) =
∑

s,t∈V\{v}
s̸=t

σst(v)

σst
,

where σst is the total number of shortest paths from node s to node t and σst(v) is the number of
those paths that pass through v. V\{v} denotes the set of neighbouring nodes of v except the node v
itself.

Eigenvector centrality. This centrality measure accounts for the influence of a particular node within
the network. The centrality score for the whole set of vertices, represented as a vector x, is a solution
to the equation:

Ax = λx,

where the matrix A represents the adjacency matrix and λ represents the largest eigenvalue of the
adjacency matrix.

B.3.2 Synthetic test functions

In this subsection, we describe the Rosenbrock and Ackley test functions used for our task, both
of which are discretised versions of their original, continuous function forms. The mathematical
definitions of the test functions are listed below and are visualized in Fig. 13.

Rosenbrock function.

f(x, y) = 100(y − x2)2 + (x− 1)2

Ackley function.

f(x, y) = −20 exp
(
− 0.2

√
0.5(x2 + y2)

)
− exp

(
− 0.5(cos 2πx+ cos 2πy)

)
+ 20 + exp(1)

Additive noise. In order to alter the smoothness property of our graph signal defined over the grid,
we add random noise governed by noise standard deviation σn to be added to the loss function
f̂(x, y) = f(x, y) + ϵ with ϵ ∼ N (0, σ2

n). In our experiment, we vary the noise standard deviation
σn ∈ {0, 0.1, 1, 5} for the Ackley function and σn ∈ {0, 0.1, 0.5, 1} for the Rosenbrock function.

15

Figure 13: Test function values taken on a regular graph corresponding to the input space: Rosenbrock
(left); Ackley (right).

0.75

0.80

0.85

0.90

0.95

0.75

0.80

0.85

0.90

0.95

Figure 14: Simulation of the SIR process on BA/WS graphs. It is worth noting that some local optima
are visible due to the ϵ parameter.

B.4 Real-World Optimisation Tasks

B.4.1 Finding patient zero in a contact network

In this task, we simulate the diffusion processes over a graph via epidemics SIR models Kermack
& McKendrick [22]. We slightly modify this model to allow for a parameter ϵ representing the
probability of spontaneous infection from unknown factors.

More formally, given a graph G = {V, E}, our model has three parameters. Parameter β encodes
the probability of infection, β the probability of recovery ϵ the probability of spontaneous infection,
and T the time spent since the beginning of the outbreak. Let time t = 1, ...T be the current time,
xv,t ∈ {I, S,R} the node status (Infected, Susceptible, Recovered) and SI,t,SS,t,SR,t the set of
nodes in each category at time t. We have:

∀v ∈ SI,t,
{
P[xv,t+1 = R] = γ

P[xv,t+1 = I] = 1− γ.
(3)

∀v ∈ SS,t,
{
P[xv,t+1 = I] = 1− (1− ϵ)× (1− β)|N(v)∩SI,t|

P[xv,t+1 = S] = (1− ϵ)× (1− β)|N(v)∩SI,t|.
(4)

∀v ∈ SR,t,P[xv,t+1 = R] = 1. (5)

Given such a process, we construct an objective function indicating how close a certain node is to
the source of the infection as follows. At time T , where we consider the diffusion to have ended (or
corresponding to the present moment when looking for patient zero), for every node in SR,T ∪ SI,T
we denote by τv the first time of infection. The objective function is then defined as:

∀v ∈ V, f(v) =
{
0 if v ∈ SS,T
(1− τv

T)2 if v ∈ SI,T ∪ SR,T
(6)

This function takes value in [0, 1] and is maximised when the node corresponds to the patient zero.
We expect local methods to perform well in this setting as local behaviour can trace the source of the
infection through diffusion, and the variation of the functions on the graph is relatively smooth. The
introduction of parameter ϵ nevertheless adds some sources of "local" minima in the graph objective
function – we show some examples of such phenomenon in Fig. 14, where we give exemplary graph
signals induced by the generative process we described in this section.

16

B.4.2 Finding influential users in a social network

In this task, we consider a common problem in identifying the most influential person within a
social network. Influence, in this context, is often quantified approximately using degree centrality,
which may account for, for example, the number of followers or connections an individual possesses.
However, the enormity of social network graphs often restricts our access to complete graph infor-
mation, necessitating alternative search approaches. To validate our methodology, we conduct tests
on various real-world graphs derived from diverse social networks. These include the Enron email
network, which represents email communication between members of a corporation; the Facebook
page network, which is a network of interconnected Facebook pages; and the Twitch social network,
which provides insight into the relationships among users on the Twitch platform.

B.4.3 Team optimisation

Figure 15: An exemplary graph in-
duced from the team optimisation
problem.

In this task, we aim to tackle the problem of optimising the
performance of a team of individuals with different skills. We
will assume that a team would perform most effectively when 1)
all skills are covered by combining individual skills and 2) some
individuals master every skill. More formally, we will consider
a pool of N individuals. Each individual can be represented by
a vector of skills xi ∈ [0, 1]K where K is the number of skills.
This setup fits our framework well in the scenario where the skills
of individuals are unknown, and the pool of potential candidates
is also unknown in advance. A sample graph generated from
this problem is shown in Fig. 15.

Skill generative process. In each experiment, we will assume
individual skills to be generated according to a Dirichlet distri-
bution with parameter α:

xi ∼ Dir(α),α = [α1, ..., αD]⊤

The parameter α encodes the sparsity of skill expertise in the general population. Small α generates
individuals with specialised skills with more probability than large α where all skill levels concentrate
to a score of 0.5.

Graph construction. To solve this task and allow flexible exploration of teams with a varying
number of individuals, we construct a graph where nodes represent teams and edges are based on the
Jaccard index between each pair of team member sets. More specifically, given two teams s1 ⊂ N
and s2 ⊂ N the similarity between them is computed as w(s1, s2) = s1∩s2

s1∪s2
. Given N teams, we can

then construct an undirected graph with edges:

∀s1, s2 ⊂ [N], (s1, s2) ∈ E ⇐⇒ w(s1, s2) > Median({w(s1, s2) : s1, s2 ⊂ [N]})

Objective function. To model the two desirable properties in terms of team composition, we choose
the following objective function:

∀s ⊂ [N] : f(s) = Hk[En[x]]− En[Hk[x]]

Intuitively, the first term of the objective corresponds to the entropy of the skill distribution of the
whole team, which is maximised when the skill distribution is close to the uniform distribution. The
second term corresponds to the expected entropy of the distribution of skills of each individual, which
is minimised (and the objective maximised) when each individual specialises in one skill. As a result,
we can expect this objective to be well suited for modelling an ideal composition of a team.

C Additional Experiments

C.1 Kernel Validation

Complementary to Fig. 4 in the main text, we conduct further regression analyses to confirm the
expressive power of the investigated kernels. The results are shown in Fig. 16 and Fig. 17.

17

−0.2

−0.1

0.0

0.1

0.2

−0.2

−0.1

0.0

0.1

0.2

(a)

(b)

−1 0 1

Validation ground truth

−2

0

2

V
al

id
at

io
n

pr
ed

ic
ti

on

ρ : 1.0

Polynomial

−1 0 1

Validation ground truth

−2

0

2 ρ : 1.0

Sum of inverse polynomial

−1 0 1

Validation ground truth

−2

0

2 ρ : 1.0

Diffusion

−1 0 1

Validation ground truth

−2

0

2 ρ : 1.0

Diffusion with ARD

0.00 0.25 0.50 0.75 1.00

λ

100

103

r−
1
(λ

)

0.00 0.25 0.50 0.75 1.00

λ

10−3

100

0.00 0.25 0.50 0.75 1.00

λ

10−13

10−7

10−1

0.00 0.25 0.50 0.75 1.00

λ

10−6

10−3

100

−2 −1 0 1

Validation ground truth

−2

0

2

V
al

id
at

io
n

pr
ed

ic
ti

on

ρ : 0.86

Polynomial

−2 −1 0 1

Validation ground truth

−2

0

2 ρ : 0.86

Sum of inverse polynomial

−2 −1 0 1

Validation ground truth

−2

0

2 ρ : 0.8

Diffusion

−2 −1 0 1

Validation ground truth

−2

0

2 ρ : 0.59

Diffusion with ARD

0.00 0.25 0.50 0.75 1.00

λ

100

101

r−
1
(λ

)
0.00 0.25 0.50 0.75 1.00

λ

100

101

0.00 0.25 0.50 0.75 1.00

λ

10−1

100

0.00 0.25 0.50 0.75 1.00

λ

10−7

10−4

10−1

Figure 16: Expressiveness of kernels on a grid graph of size n = 200 nodes. Refer to Fig. 4 for more
explanations.

−0.2

−0.1

0.0

0.1

0.2

−0.2

−0.1

0.0

0.1

0.2

(a)

(b)

−1 0 1

Validation ground truth

−2

0

2

V
al

id
at

io
n

pr
ed

ic
ti

on

ρ : 1.0

Polynomial

−1 0 1

Validation ground truth

−2

0

2ρ : 1.0

Sum of inverse polynomial

−1 0 1

Validation ground truth

−2

0

2ρ : 1.0

Diffusion

−1 0 1

Validation ground truth

−2

0

2ρ : 1.0

Diffusion with ARD

0.0 0.2 0.4 0.6

λ

101

103

r−
1
(λ

)

0.0 0.2 0.4 0.6

λ

10−1

101

0.0 0.2 0.4 0.6

λ

10−8

10−4

100

0.0 0.2 0.4 0.6

λ

10−6

10−3

100

−2 0 2

Validation ground truth

−2

0

2

V
al

id
at

io
n

pr
ed

ic
ti

on

ρ : 0.8

Polynomial

−2 0 2

Validation ground truth

−2

0

2 ρ : 0.8

Sum of inverse polynomial

−2 0 2

Validation ground truth

−2

0

2 ρ : 0.79

Diffusion

−2 0 2

Validation ground truth

−2

0

2 ρ : 0.39

Diffusion with ARD

0.0 0.2 0.4 0.6

λ

100

101

102

r−
1
(λ

)

0.0 0.2 0.4 0.6

λ

100

102

0.0 0.2 0.4 0.6

λ

10−1

100

101

0.0 0.2 0.4 0.6

λ

10−5

10−2

101

Figure 17: Expressiveness of kernels on a WS graph of size n = 200 nodes. Refer to Fig. 4 for more
explanations.

C.2 Centrality Maximisation on Large Graphs

In this section, we consider a similar problem of centrality maximisation as described in App. B.3.1,
but on significantly larger graphs: we use BA and WS random graph generators similar to the
experiments in Fig. 5 and Fig. 6 in the main text, but we generate graphs with 106 nodes instead
and increase the query budget. We show the results in Fig. 18, and we find that the superiority of
BayesOptG methods persists in this setting over the baseline methods.

C.3 Finding Patient Zero Task in Real-World Graphs

Setup. In this section, we consider several SIR diffusion problems as described in App. B.4.1 where
we aim to find the patient zero on a real-world interaction network from the Copenhagen Networks
Study [35]. This network represents physical proximity among participants (estimated via Bluetooth
signal strength) in a population of more than 700 university students and thus is a good testbed to
examine the diffusion process of a hypothetical epidemic outbreak. The visualization of the function
on this graph is given by Fig. 19.

18

0 1000 2000 3000

10 5

10 2

101

Re
gr

et

(a) Ackley; = 0

0 2000 4000

10 5

10 3

10 1

(b) Ackley; = 0.1

0 2000 4000 600010 7

10 4

10 1

102
(c) Rosenbrock; = 0

0 2000 4000

100

102

(d) Rosenbrock; = 0.1

0 1000 2000
#Iters

10 5

10 3

Re
gr

et

(e) BA
Degree centrality:

m = 2

0 1000 2000
#Iters

10 5

10 3

(f) BA
Degree centrality:

m = 3

0 2000 4000
#Iters

3 × 10 6

4 × 10 6

6 × 10 6

(g) WS
Degree centrality:
 (k, p) = (30, 0.1)

0 2000 4000
#Iters

10 6

10 5

(h) WS
Degree centrality:
 (k, p) = (30, 0.2)

BFS
BayesOptG_Diff

BayesOptG_Diff_ARD
BayesOptG_Poly

BayesOptG_SumInverse
DFS

Local
Random

Figure 18: Maximising centrality scores with the BA/WS random graph model and n = 106 nodes.

Figure 19: Diffusion objective function on the real-world interaction network.

Results. The performance of each algorithm is presented in Fig. 20 – 23 where we use different
values of initially infected population fraction and probability of recovery – it is clear that due to the
increased complexity as revealed in Fig. 19, there is some performance degradation in all algorithms
considered. However, we can see that in most cases, our method performs at least as well as the local
search baseline.

C.4 Team Optimisation

We show additional results for the team optimisation tasks in Fig. 24 to 26. We can observe that the
key findings from the main text on this problem (Fig. 10) largely hold true for these tasks induced by
different parameters.

D Ablation and Sensitivity Studies

In this section, we perform a thorough ablation and sensitivity study on how much the additionally
introduced hyperparameters affect the algorithm’s performance. We report sensitivity analyses
to the most important hyperparameters below, namely Q0 (initial trust region size), fail_tol, η

19

0 50 100

0.02

0.04

0.06

Re
gr

et

(a) (,) = (0.1, 0.005)

0 50 100

0.02

0.04

0.06

(b) (,) = (0.1, 0.015)

0 50 100

0.1

0.2

(c) (,) = (0.1, 0.15)

0 50 100

0.02

0.04

0.06

Re
gr

et

(d) (,) = (0.2, 0.005)

0 50 100

0.02

0.04

0.06
(e) (,) = (0.2, 0.015)

0 50 100

0.1

0.2

(f) (,) = (0.2, 0.15)

0 50 100
#Iters

0.05

0.10

Re
gr

et

(g) (,) = (0.3, 0.005)

0 50 100
#Iters

0.02

0.04

(h) (,) = (0.3, 0.015)

0 50 100
#Iters

0.05

0.10
(i) (,) = (0.3, 0.15)

BFS
BayesOptG_Diff
BayesOptG_Diff_ARD

BayesOptG_Matern
BayesOptG_Poly

BayesOptG_SumInverse
DFS

Local
Random

Figure 20: Identifying the patient zero task with different SIR model hyperparameters β ∈
{0.1, 0.2, 0.3} and γ ∈ {0.005, 0.015, 0.15}. A fraction of 0.0003 of the initial population was
infected initially. The probability of recovery ϵ is set to 0.

(order of the kernels) and γ (the trust region multiplier in case of successive successes or failures).
We also additionally study the effect of introducing the trust region in this section. We perform
ablation experiments in the setting with BA graphs and synthetic function optimization. We show the
sensitivity analysis in Fig. 27 to 29 – it is evident that our algorithm is largely robust to the choice of
hyperparameters as long as a value within a sensible range is chosen.

Use of trust regions. We compared, on some relatively small graphs (1000 nodes) in Fig. 31 – as
observed, while there is a small drop in performance because of the use of local modelling compared
to constructing a surrogate model on the whole graph, it is worth noting that, as shown in Fig. 3 in the
main text, the full Bayesian optimisation procedure with kernels defined on the whole graph becomes
too prohibitive, even for a relatively small graph of size 1000, and that when the graph is unknown, it
is impossible in the first place to construct a whole-graph GP. This verifies that the trust region strikes
a promising balance between efficiency and performance.

20

0 50 100

10 2Re
gr

et

(a) (,) = (0.1, 0.005)

0 50 100

10 2

(b) (,) = (0.1, 0.015)

0 50 100
10 2

10 1

(c) (,) = (0.1, 0.15)

0 50 100

10 2Re
gr

et

(d) (,) = (0.2, 0.005)

0 50 100

10 2

(e) (,) = (0.2, 0.015)

0 50 100

10 2

(f) (,) = (0.2, 0.15)

0 50 100
#Iters

10 2

10 1

Re
gr

et

(g) (,) = (0.3, 0.005)

0 50 100
#Iters

10 2

(h) (,) = (0.3, 0.015)

0 50 100
#Iters

10 2

10 1

(i) (,) = (0.3, 0.15)

BFS
BayesOptG_Diff
BayesOptG_Diff_ARD

BayesOptG_Matern
BayesOptG_Poly

BayesOptG_SumInverse
DFS

Local
Random

Figure 21: Identifying the patient zero task with different SIR model hyperparameters β ∈
{0.1, 0.2, 0.3} and γ ∈ {0.005, 0.015, 0.15}. A fraction of 0.0003 of the initial population was
infected initially. The probability of recovery ϵ is set to 0.005.

21

0 50 100

10 2

Re
gr

et

(a) (,) = (0.1, 0.005)

0 50 100

10 2

(b) (,) = (0.1, 0.015)

0 50 100

10 2

10 1 (c) (,) = (0.1, 0.15)

0 50 100

10 2

6 × 10 3

2 × 10 2
3 × 10 2

Re
gr

et

(d) (,) = (0.2, 0.005)

0 50 100

10 2

6 × 10 3

2 × 10 2
3 × 10 2

(e) (,) = (0.2, 0.015)

0 50 100
2 × 10 2

3 × 10 2
4 × 10 2

6 × 10 2

(f) (,) = (0.2, 0.15)

0 50 100
#Iters

10 2

Re
gr

et

(g) (,) = (0.3, 0.005)

0 50 100
#Iters

10 2

(h) (,) = (0.3, 0.015)

0 50 100
#Iters

10 2

(i) (,) = (0.3, 0.15)

BFS
BayesOptG_Diff
BayesOptG_Diff_ARD

BayesOptG_Matern
BayesOptG_Poly

BayesOptG_SumInverse
DFS

Local
Random

Figure 22: Identifying the patient zero task with different SIR model hyperparameters β ∈
{0.1, 0.2, 0.3} and γ ∈ {0.005, 0.015, 0.15}. A fraction of 0.003 of the initial population was
infected initially. The probability of recovery ϵ is set to 0.

22

0 50 100

10 2

Re
gr

et

(a) (,) = (0.1, 0.005)

0 50 100

10 2

(b) (,) = (0.1, 0.015)

0 50 100

10 2

6 × 10 3

2 × 10 2

3 × 10 2
4 × 10 2

(c) (,) = (0.1, 0.15)

0 50 100

10 2Re
gr

et

(d) (,) = (0.2, 0.005)

0 50 100

10 2

(e) (,) = (0.2, 0.015)

0 50 100

10 2

(f) (,) = (0.2, 0.15)

0 50 100
#Iters

10 2

Re
gr

et

(g) (,) = (0.3, 0.005)

0 50 100
#Iters

10 6

10 4

10 2

(h) (,) = (0.3, 0.015)

0 50 100
#Iters

10 2

(i) (,) = (0.3, 0.15)

BFS
BayesOptG_Diff
BayesOptG_Diff_ARD

BayesOptG_Matern
BayesOptG_Poly

BayesOptG_SumInverse
DFS

Local
Random

Figure 23: Identifying the patient zero task with different SIR model hyperparameters β ∈
{0.1, 0.2, 0.3} and γ ∈ {0.005, 0.015, 0.15}. A fraction of 0.003 of the initial population was
infected initially. The probability of recovery ϵ is set to 0.005.

23

0 50 100
0.00

0.05
Re

gr
et

(a) #skills = 2 and = 0.1

0 50 100
0.0

0.1

(b) #skills = 4 and = 0.1

0 50 100

0.05

0.10

0.15
(c) #skills = 8 and = 0.1

0 50 100
0.05

0.10

0.15

Re
gr

et

(d) #skills = 2 and = 1

0 50 100

0.05

0.10(e) #skills = 4 and = 1

0 50 100
0.025

0.050

0.075
(f) #skills = 8 and = 1

0 50 100
#Iters

0.02

0.04

Re
gr

et

(g) #skills = 2 and = 10

0 50 100
#Iters

0.01

0.02(h) #skills = 4 and = 10

0 50 100
#Iters

0.005

0.010

0.015(i) #skills = 8 and = 10

BFS
BayesOptG_Diff
BayesOptG_Diff_ARD

BayesOptG_Matern
BayesOptG_Poly

BayesOptG_SumInverse
DFS

Local
Random

Figure 24: Team optimisation task with s ∈ {2, 4} and α ∈ {1, 10} with Jaccard index threshold of
0.1 (refer to App. B.4.3 for explanations)

0 50 100
0.00

0.05

Re
gr

et

(a) #skills = 2 and = 0.1

0 50 100
0.0

0.1

(b) #skills = 4 and = 0.1

0 50 1000.0

0.1

(c) #skills = 8 and = 0.1

0 50 100

0.05
0.10
0.15

Re
gr

et

(d) #skills = 2 and = 1

0 50 100
0.00

0.05

0.10(e) #skills = 4 and = 1

0 50 1000.00

0.05

(f) #skills = 8 and = 1

0 50 100
#Iters

0.00

0.02

0.04

Re
gr

et

(g) #skills = 2 and = 10

0 50 100
#Iters

0.01

0.02(h) #skills = 4 and = 10

0 50 100
#Iters

0.00

0.01

(i) #skills = 8 and = 10

BFS
BayesOptG_Diff
BayesOptG_Diff_ARD

BayesOptG_Matern
BayesOptG_Poly

BayesOptG_SumInverse
DFS

Local
Random

Figure 25: Team optimisation task with s ∈ {2, 4} and α ∈ {1, 10} with Jaccard index threshold of
0.2 (refer to App. B.4.3 for explanations)

24

0 50 100
0.00

0.05

Re
gr

et

(a) #skills = 2 and = 0.1

0 50 100
0.0

0.1

(b) #skills = 4 and = 0.1

0 50 100
0.0

0.1

(c) #skills = 8 and = 0.1

0 50 100
0.0

0.1

Re
gr

et

(d) #skills = 2 and = 1

0 50 100
0.00

0.05

0.10(e) #skills = 4 and = 1

0 50 100
0.00

0.05

(f) #skills = 8 and = 1

0 50 100
#Iters

0.00

0.02

0.04

Re
gr

et

(g) #skills = 2 and = 10

0 50 100
#Iters

0.00

0.01

0.02(h) #skills = 4 and = 10

0 50 100
#Iters

0.00

0.01

(i) #skills = 8 and = 10

BFS
BayesOptG_Diff
BayesOptG_Diff_ARD

BayesOptG_Matern
BayesOptG_Poly

BayesOptG_SumInverse
DFS

Local
Random

Figure 26: Team optimisation task with s ∈ {2, 4} and α ∈ {1, 10} with Jaccard index threshold of
0.3 (refer to App. B.4.3 for explanations)

25

0 25 50 75 100
0.01

0.02

0.03

0.04

Re
gr

et
Po

ly

Enron

0 25 50 75 100

0.02

0.03

Facebook

0 25 50 75 100
0.025

0.050

0.075

0.100
Twitch

0 25 50 75 100
0.01

0.02

0.03

0.04

Re
gr

et
Su

m
In

ve
rs

e

0 25 50 75 100
0.01

0.02

0.03

0 25 50 75 100
0.025

0.050

0.075

0.100

0 25 50 75 100

0.02

0.04

Re
gr

et
Di

ff_
AR

D

0 25 50 75 100

0.01

0.02

0.03

0 25 50 75 100
0.025

0.050

0.075

0.100

0 25 50 75 100
0.01

0.02

0.03

0.04

Re
gr

et
Di

ff

0 25 50 75 100

0.02

0.03

0 25 50 75 100
0.04

0.06

0.08

0.10

0 25 50 75 100
#Iters

0.01

0.02

0.03

0.04

Re
gr

et
M

at
er

n

0 25 50 75 100
#Iters

0.01

0.02

0.03

0 25 50 75 100
#Iters

0.04

0.06

0.08

0.10

Q0 : 5 Q0 : 20 Q0 : 50 Q0 : 100 Q0 : 200

Figure 27: Sensitivity of performance to Q0 on different tasks and kernels. From left to right:
Centrality maximisation on Enron, Facebook and Twitch networks. Kernels from top to bottom:
polynomial, sum-of-inverse polynomials, diffusion (with ARD), diffusion (without ARD), and graph
Matérn.

26

0 25 50 75 100

0.02

0.04

Re
gr

et
Po

ly

Enron

0 25 50 75 100
0.01

0.02

0.03
Facebook

0 25 50 75 100
0.025

0.050

0.075

0.100
Twitch

0 25 50 75 100
0.01

0.02

0.03

0.04

Re
gr

et
Su

m
In

ve
rs

e

0 25 50 75 100
0.01

0.02

0.03

0 25 50 75 100
0.025

0.050

0.075

0.100

0 25 50 75 100

0.02

0.04

Re
gr

et
Di

ff_
AR

D

0 25 50 75 100
0.01

0.02

0.03

0 25 50 75 100

0.025
0.050
0.075
0.100

0 25 50 75 100
0.01

0.02

0.03

0.04

Re
gr

et
Di

ff

0 25 50 75 100
0.01

0.02

0.03

0 25 50 75 1000.04

0.06

0.08

0.10

0 25 50 75 100
#Iters

0.01

0.02

0.03

0.04

Re
gr

et
M

at
er

n

0 25 50 75 100
#Iters

0.01

0.02

0.03

0 25 50 75 100
#Iters

0.06

0.08

0.10

fail_tol:5 fail_tol:10 fail_tol:20 fail_tol:30 fail_tol:40 fail_tol:50

Figure 28: Sensitivity of performance to fail_tol on different tasks and kernels. Refer to Fig. 27
for additional explanations.

27

0 25 50 75 100
0.01

0.02

0.03

0.04

Re
gr

et
Po

ly

Enron

0 25 50 75 100

0.02

0.03

Facebook

0 25 50 75 100
0.04

0.06

0.08

0.10
Twitch

0 25 50 75 100
0.01

0.02

0.03

0.04

Re
gr

et
Su

m
In

ve
rs

e

0 25 50 75 100
0.01

0.02

0.03

0 25 50 75 100
0.025

0.050

0.075

0.100

0 25 50 75 100

0.02

0.04

Re
gr

et
Di

ff_
AR

D

0 25 50 75 100
0.01

0.02

0.03

0 25 50 75 100
0.04

0.06

0.08

0.10

0 25 50 75 100
0.01

0.02

0.03

0.04

Re
gr

et
Di

ff

0 25 50 75 100

0.02

0.03

0 25 50 75 1000.04

0.06

0.08

0.10

0 25 50 75 100
#Iters

0.01

0.02

0.03

0.04

Re
gr

et
M

at
er

n

0 25 50 75 100
#Iters

0.01

0.02

0.03

0 25 50 75 100
#Iters

0.06

0.08

0.10

: 1.1 : 1.5 : 2.0 : 3.0 : 5.0

Figure 29: Sensitivity of performance to γ on different tasks and kernels. Refer to Fig. 27 for
additional explanations.

0 25 50 75 100

0.02

0.04

Re
gr

et
Po

ly

Enron

0 25 50 75 100

0.01

0.02

0.03
Facebook

0 25 50 75 100

0.050

0.075

0.100
Twitch

0 25 50 75 100

0.02

0.04

Re
gr

et
Su

m
In

ve
rs

e

0 25 50 75 100
0.01

0.02

0.03

0 25 50 75 100

0.05

0.10

: 3 : 5 : 10 : 25 : 50 : 100

Figure 30: Sensitivity of performance to η on different tasks and kernels. Refer to Fig. 27 for
additional explanations. Note that only Polynomial and Sum-of-inverse-polynomial kernels requiring
non-trivial η selection are included.

28

Figure 31: Influence of trust region method performance compared to full graph knowledge in a WS
graph of 400 (Left) and 1000 (right) nodes. It is worth noting that while the use of trust regions leads
to some trade-off in terms of optimisation performance, without trust regions, the algorithms are
significantly more computationally prohibitive. In the graph of 1000 nodes (right), the computational
cost is more than 20× the cost of a local algorithm (shown by Fig. 3 in the main text which focuses
on wall-clock time comparison).

29

	Introduction
	Preliminaries
	Bayesian Optimisation on Graphs
	Kernels for BO on Graphs
	Tractable Optimisation via Local Modelling

	Related Work
	Experiments
	Validating Predictive Power of Kernels
	Optimisation Tasks

	Conclusion
	Proof of Semi-Definiteness
	Experimental Details
	Random Graph Models
	Baseline Algorithms
	Synthetic Optimisation Tasks
	Maximising network centrality
	Synthetic test functions

	Real-World Optimisation Tasks
	Finding patient zero in a contact network
	Finding influential users in a social network
	Team optimisation

	Additional Experiments
	Kernel Validation
	Centrality Maximisation on Large Graphs
	Finding Patient Zero Task in Real-World Graphs
	Team Optimisation

	Ablation and Sensitivity Studies

