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Abstract

Geometric representation learning of molecules is challenging yet essential for
applications in multiple domains. Despite the impressive breakthroughs made
by geometric deep learning in various molecular representation learning tasks,
effectively capturing complicated geometric features across spatial dimensions is
still underexplored due to the significant difficulties in modeling efficient geometric
representations and learning the inherent correlation in 3D structural modeling.
These include computational inefficiency, underutilization of vectorial embeddings,
and limited generalizability to integrate various geometric properties. To address
the raised concerns, we introduce an efficient and effective framework, Scalable
Vector Network (SAVENET), designed to accommodate a range of geometric
requirements without depending on costly embeddings. In addition, the proposed
framework scales effectively with introduced direction noise. Theoretically, we
analyze the desired properties (i.e., invariance and equivariant) and framework
efficiency of the SAVENET. Empirically, we conduct a comprehensive series of
experiments to evaluate the efficiency and expressiveness of the proposed model,
which achieves state-of-the-art performance across various tasks within molecular
representation learning.

1 Introduction

The field of geometric deep learning (GDL) has seen a rapid expansion in recent years, thanks to the
successful application of Graph Neural Networks (GNNs) for modeling graph structures [4]. The
ability to learn complex geometric representations has driven significant breakthroughs across various
disciplines and has proven to be particularly beneficial in diverse areas such as social science [24],
physics [14], and neuroscience [6]. Within the realm of molecular representation learning, the use of
message-passing-based GNNs has demonstrated remarkable outcomes, especially in understanding
the 3D structures of molecules.

Although geometric deep learning has recently seen promising results in various applications in
molecular representation learning, its full potential in the field is still untapped. To begin with, a
notable research gap persists within this field: the trade-off between expressiveness and efficiency
in GNNs. Many studies often resort to the use of multi-hop neighbors [9, 17, 21] or complex
embeddings [19] in their pursuit to augment the expressiveness of message-passing based GNNs
[9, 29, 33]. While these approaches can enhance the expressiveness and predictive power of the
model, they invariably compromise scalability and efficiency due to their computationally intensive
nature. As these networks grow more expressive, they demand more computational resources,
impeding their ability to scale to larger or more complex datasets. Addressing the challenge of
efficiently handling molecular structures to sufficiently capture the complete, multi-level structural
information during learning without compromising the computational efficiency of the network is of
critical importance. Our approach circumvents these issues by avoiding using multi-hop GNNs and
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expensive embeddings. Novel approaches for initializing and processing vector-typed embeddings
have been designed to work with vector representations with the goal of achieving a balance between
maintaining numerical stability, facilitating faster convergence, and enhancing the model’s ability to
generalize to new datasets [25, 33]. Utilizing one-hop vector embeddings work with our proposed
SAVENET significantly enhances the network’s efficiency, demonstrating their effective integration
in this context. Figure 1 provides a visual illustration of the advantages of our proposed SAVENET ,
which compares our method with state-of-the-art methods on the QM9 dataset. The values on the
x-axis show the latency of the model, and the values on the y-axis show the standard mean absolute
error (std. MAE) of the models’ performance. Because lower is better for both latency and std.
MAE, the best model in both efficiency and expressiveness is the one that is closest to the (0,0)
point. In terms of performance, our base model, denoted as SAVENET -B, surpasses the existing
state-of-the-art method Equiformer [19], while concurrently enhancing training duration efficiency
by a factor of 14.6. This substantial improvement underscores the efficacy of our model in achieving
superior results with increased efficiency.
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Figure 1: Comparison of our proposed SAVENET and
the state-of-the art methods: latency vs. std. MAE on
QM9 dataset.

Furthermore, although several prior works
[2, 3, 12, 18, 19, 25, 27, 29, 30] proposed
equivariant neural networks that handle
scalar and vector representations together
for molecular representation learning, one
primary problem with these existing works
is that vector-valued representations show
limited performance or scalability and can-
not equally contribute towards performance
improvements in the network [12, 18, 29].
It remains challenging to scale the models
to improve the expressiveness of the model
further. We propose an efficient framework
to tackle this challenge. Our model’s scala-
bility is exemplified by its capacity to stack
N layers, effectively serving as an encoder
for learning the latent geometric represen-
tations, thereby augmenting the model’s
expressiveness. These superior scaling capabilities enhance the model’s expressiveness and effec-
tively distinguish our work from existing research, which often struggles to scale efficiently [9, 19].
The scalability of our approach is not merely theoretical but is empirically demonstrated in Section
5.1. Figure 1 illustrates one example of the scaled larger version of our model: SAVENET -L, which
exhibits enhanced capability in contrast to our base model and existing baselines. This advancement
substantiates the prospective capacity of our model to scale effectively, thereby indicating potential
for superior performance in future implementations.

Our paper’s main contributions are: (i) Proposed an efficient and effective message-passing framework
coupled with several decoder mechanisms for leveraging the geometric representations within the
3D molecular graphs. (ii) Novel approaches for initializing and processing vector-typed embeddings
have been designed to work with vector representations to ensure numerical stability, speed up model
convergence, and improve the model’s ability to adapt to new datasets. (iii) A thorough evaluation of
the expressiveness, efficiency, and scalability of our models compared with existing benchmarks, as
well as detailed ablation studies, underscore the advantages of our proposed SAVENET .

2 Related work

Equivariant Graph Neural Networks The properties of graph representations can change with
transformations such as translation, rotation, and permutation. By design, GNNs inherently permuta-
tion equivalence [15]. While it is possible to introduce diverse transformations to the network through
data augmentation, this approach can lead to computational inefficiencies.

The concepts of invariance and equivariance have been long acknowledged as critical to the success of
various tasks [2, 13, 35, 36]. Recent research in molecular representation learning has predominantly
addressed this challenge with equivariant network architectures. Within the realm of molecules,
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numerous equivariant models have been proposed for tasks such as chemical property prediction [16],
protein structure prediction [13], and energy prediction [17].

Molecular Property Prediction Over recent years, there have been considerable advancements in
molecular property prediction [9, 16, 19, 28]. These developments have been primarily driven by
the adoption of graph models for molecular representation, coupled with the application of kernel
methods for structural learning. Such kernels operate based on geometric features, such as interatomic
distances, which are encoded using radial basis or Bessel basis functions. Several other studies employ
spherical embeddings to model message-passing [3, 9, 17, 19, 21, 33]. Dimenet++ [9], GemNet
[17] and SphereNet [21] depend on a multi-hop message-passing to model angular properties, which
introduces computational complexity that curtails scalability with respect to the model size of these
approaches. These advanced representations have resulted in more precise property predictions,
including but not limited to dipole moment, HOMO-LUMO gap, energy, and force. However, the
precision of these predictions is accompanied by increased computational complexity due to their
dependence on quadratic or even cubic operations. Recent works have strived to address this issue,
proposing innovative techniques that improve computational efficiency with minimal or no detriment
to prediction accuracy [21, 33]. These novel techniques continue to operate on higher-order features
during feature generation, underscoring the ongoing challenge of balancing computational efficiency
with predictive precision. Both ET [30] and EQGAT [18] incorporate attention mechanisms into
vector representations. However, the complex interactions in these works often limit the scalability
and efficiency of the networks. More recently, networks such as SEGNN [3] and Equiformer [19]
have utilized Clebsch-Gordan tensor products to achieve high performance. However, these tensor
products are empirically found to be significantly slower than the previously discussed methods,
posing a challenge when applying such methods to large, real-world datasets.

Our model utilizes 1-hop geometric representations, offering a balance of expressivity and com-
putational efficiency. This design choice circumvents the need for complex and potentially lossy
conversions often associated with higher-order representations. By harnessing the rich information in
1-hop representations, we maintain data integrity and enhance model performance without substantial
computational overhead.

3 Preliminaries

Notations. We formulate the atomic structure graph representation, where each input molecule is
represented as a graph G = (V, E). V is the set of N nodes in the graph, each node representing
an atom in the molecule, and E ⊆ V × V is the set of edges that connects the nodes. The average
degree of a node, denoted by k, represents the average number of edges per node. The geometric
information of a node for each vi ∈ V is represented by the coordinates ci = (xi, yi, zi) in the
Cartesian coordinate system. The scalar representations s generally include properties like relative
distance r, while the vector representations V include direction vectors d⃗. We use ⊙ to denote the
element-wise (Hadamard) product and || · ||2 to denote the row-wise L2 norm. The cross-product
between two vectors is denoted as ×.

Invariance and Equivariance. A function f : X → Y is said to be equivariant to a transformation
if applying the transformation to the input of the function is the same as applying the transformation
to the output of the function. Formally, for a transformation T , a function f is equivariant if for
all x ∈ X: T (f(x)) = f(T (x)). This means that the function preserves the structure of the
transformation. On the other hand, a function is invariant to a transformation if its output does not
change when the transformation is applied to its input. Formally, for a transformation T , a function
f is invariant if for all x ∈ X: f(T (x)) = f(x). This implies that the function is invariant to the
transformation; the function’s output remains unchanged regardless of the applied transformation.

Euclidian Transformations. In this paper, we frequently use the special orthogonal group SO(3),
comprising all 3x3 rotation matrices R that satisfy RTR = I and det(R) = 1, and the special
Euclidean group SE(3), consisting of all 4× 4 special Euclidean transformation matrices T that can

be written as T =

[
R t
0 1

]
, where R ∈ SO(3), t ∈ R3 is a translation vector, and 0 is a row vector

of zeros. These matrices satisfy T−1T = I and det(T ) = 1. SE(3) forms a manifold, the product of
SO(3) and R3, allowing operations combining rotations and translations in 3D space.
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4 Scalable Vector Network

Our goal is to design a message-passing neural network that is aware of the geometric characteristics
of the molecular graph, with consideration of expressiveness and efficiency, and preserve these
characteristics beneficial for downstream tasks. We first introduce the representations used in
SAVENET and how we handle these geometric representations. Then we describe the overall
message-passing framework to model the geometric properties in the graph and show how to integrate
our proposed framework into the representation learning process on downstream tasks.

4.1 Efficient Representations for 3D graphs

The initial representations fed into the network are instrumental in achieving complete geometric
representations [21, 33]. It is crucial to efficiently represent geometric graphs without the loss of their
properties. Our framework operates by employing embeddings from one-hop neighbors exclusively.
Invariant properties are encoded as scalar values, which enable the network to maintain invariance
without resorting to computationally expensive operations. For equivariant properties, we extract
the inherent directional information from the input graphs and encode these features into vector
representations. The directional information between nodes i and j is represented with β⃗ij and
defined as follows:

β⃗ij =

{
d⃗ij =

(ci − cj)

rij
, t⃗ij = (ci − c)× (cj − c), o⃗ij = d⃗ij × t⃗ij

}
∈ R3×3 (1)

Here, c represents the average of c, and × denotes the cross-product operation. With the geometric
representation defined, the efficacy of our scalar and vector representations is further demonstrated in
the following lemma:
Lemma 1. Consider a known geometric graph with at least one node, and assume that each node
in this graph has at least one connection. Let a new node j be added to this graph, stipulating that
j is connected to at least one existing node. Then, the position pj of node j can be determined in
constant time using the (p0, rij , d⃗ij) properties.

The proof for Lemma 1 is provided in the Appendix A. Lemma 1 can be further generalized, requiring
no positional information by translating the p0 reference point to the origin using a to translation
vector. In light of this, we propose the following theorem, which demonstrates the SAVENET’s ability
to reconstruct the rotation-equivariant geometric structure of an input graph:
Theorem 1. Assuming the input graph is strongly connected, the input space of SAVENET , defined
as (r, d), is capable of reconstructing the rotation-equivariant geometric structure of the input graph.
The reconstructed graph maintains the relative spatial configuration of nodes and edges in the input
graph, the translation transformation is required for exact alignment with the original graph.

X

Y

Z

Figure 2: Direction noise.

The proof for Theorem 1 is provided in Appendix B. The vec-
tor representations are an effective way to model equivariant
networks and are widely used networks [11, 12, 25, 29] on
different challenging tasks. With the proof of Lemma 1 and
Theorem 1, we present a provably efficient and lossless ge-
ometric encoding for the 3D graphs without reliance on the
multi-hop neighborhoods. Despite the vector representation
offering effective encodings, several unresolved challenges hin-
der its successful application towards enhancing the model’s
expressiveness and scalability. In response to this, we propose
the incorporation of direction noise initialization and a vector
activation class within our SAVENET framework, specifically
designed to address this issue.

Direction Noise. Vector representations are typically initialized
using dataset-specific features [12, 25], such as direction vectors between sequential neighbors in a
protein’s amino acid sequence. However, in the absence of such data, existing works [18, 29] often
default to initializing these vectors as null, allowing the network to learn these vector representations
intrinsically. Such initialization can unnecessarily consume computational resources, particularly in
the network’s initial layers. In this work, as illustrated in Figure 2, we propose a novel strategy of
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introducing directional noise utilizing the spherical coordinate system as an initialization measure for
the vector representations generated based on the node type. This approach is designed to mitigate
numerical instability issues and empower the network to explore the latent space we propose through
direction noises. We follow the following convention to generate a direction vector for a given node
type F :

VEN(Fi) =
{
γ(sin θi cosϕi), γ(sin(θi) sin(ϕi)), γ(cos(θi))

∣∣∣ θi ∈ R, ϕi ∈ R
}

(2)

where θi and ϕi are learnable parameters for node type i and γ is a control parameter governing the
magnitude of the direction embeddings. This approach effectively generates direction vectors using
the spherical coordinate system. The value of γ is associated with the progress of the training, similar
to learning rate schedulers. The value of γ is adjusted throughout training, following a decay schedule
that ensures it reaches zero before training concludes. This methodology offers an effective means
for creating direction vectors using a spherical coordinate system while allowing for the adaptive
control of the direction embeddings’ magnitude throughout training.

Vector Activations. Applying similar activation functions used in scalars on vector representations,
where the function operates on each element of the vector independently, can break the model’s
equivariance. This is because these functions are not designed to handle the geometric transformations
that the vectors might undergo. Consequently, SAVENET introduces a vector activation function in
which the activation is computed based on the vector’s L2 norm. For vector representation V , the
vector activation function is written as follows:

VA(V ) =
(
V ⊙ σv(||V ||+ b)

∣∣ V ∈ RC×3, b ∈ RC
)

(3)

where σv is a scalar activation function. To further regulate the activation, the vector activation
function incorporates a bias term b, where b is the same shape as the representation dimension C. Our
experimentation found that vector activation functions significantly enhance the numerical stability
during training, particularly with larger-scale models.

4.2 SAVENET for 3D Graphs

This section describes the overall architecture of SAVENET in detail. The overall SAVENET frame-
work is a SO(3)-equivariant message-passing neural network incorporating the vector initialization
and activation for scalable molecular representation learning. It is based on an encoder-decoder
structure comprising multiple stacked encoder and decoder layers. The encoder layers learn the
latent representation of the geometric features, and the decoder layers decode the learned latent
representations for downstream tasks on either invariant or equivariant targets.

Encoder. The encoder in SAVENET follows the message-passing paradigm and incorporates the
above-defined geometric representations. The main two components of the encoder are inter-atomic
interactions followed by atom-wise blocks.

Vector Updates. Vector updates are employed to compute channel-wise interactions in vector
representations. By conducting identical operations across spatial dimensions, vector updates ensure
that the equivariance property is maintained. More specifically, given a vector representation V ∈
RC×3, the vector update applies a learnable weight matrix W ∈ RC×C′

, where C and C ′ denote the
dimensions of the input and output representations, respectively. Therefore, the output vector V ′ is
computed as V ′ = WV .

Inter-atomic interactions. Our model encapsulates inter-atomic interactions by integrating both
equivariant direction vectors and invariant distance filters, which are encoded using radial basis
functions. We have designed the scalar interaction path to interface with the vector interactions in a
manner that preserves the equivariance property, achieved by appropriately scaling the magnitudes of
the vectors. The overall formulation of the inter-atomic interactions can be expressed as follows:

IA(s, V, r, β⃗) =(si, Vi) +
∑

j∈Ni

e(sj , Vj , rij , β⃗ij) = (s′i, V
′
i )

s′i = si +
∑

j∈Ni

es(sj , Vj , rij , β⃗ij)

V ′
i = Vi +

∑
j∈Ni

ev(sj , Vj , rij , β⃗ij)

(4)
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In this equation, Ni represents the set of neighbors of node i, and e is the interaction function, β⃗
denotes the equivariant vectors. To accommodate a variety of equivariant properties, we fuse these
vectors with vector updates VA. The interaction function is formalized as follows:

es(sj , Vj , rij , β⃗ij) = ϕs(sj)⊙ ηs(rij)

ev(sj , Vj , rij , β⃗ij) = ϕb(β⃗ij)⊙ ϕd(sj)⊙ ηd(rij) + Vj ⊙ ϕv(sj)⊙ ηr(rij)
(5)

where ϕ denotes sequentially stacked perceptron layers and η denotes distance encoding. Specifically,
ϕb serves as a vector update layer as it operates on vector inputs. The distance encoding is calculated
using the formula η(rij) = ϕr(χ(rij) ∗ ω(rij)), where χ(·) denotes a basis function and ω(·) stands
for a cutoff function.

Atom-wise blocks. Following the execution of the interaction block, the workflow proceeds to the
atom-wise blocks, which are responsible for computing interactions between invariant and equivariant
representations, as well as performing channel-wise updates. The formal expression of this process is
defined as:

AW(s, V ) =
{(

ϕm(||ϕvu(V )|| ∪ s)
)
, (VA(ϕvu(V )⊙ ϕv(||ϕvu(V )|| ∪ s)

)}
(6)

where ϕ{m,v} denotes multi-layer perceptron (MLP) and ϕvu denotes vector updates. Here, the vector
representations interact with scalar representations via the L2 norm of updated vector representations.
Moreover, the scalar representations scale the vector representations after applying channel-wise
interactions ϕv . This process presents bi-directional communication between different representations,
thus enhancing the model’s ability to learn and extract meaningful information from data.

Decoder. The framework utilizes decoder variations to accommodate various geometric requirements
of a given task. By taking the latent representation pair (se, Ve) from the output of the encoder, the
decoder can effectively leverage these representations to maximize task performance. For invariant
targets where the tasks do not depend on global rotations, transformations, and permutation, the
decoder takes encoded se representations and processes them with MLP layers. For equivariant
targets where tasks are sensitive to global rotations, the decoder takes the scalar and vector represen-
tations and processes them with stacked AW blocks. The final vector representations are scaled with
scalar representations to generate the predictions. If the task is graph level, final representations are
aggregated with global sum pooling.

Equivariance and Invariance. Addressing the strategic initialization of the model and the design of
operations that uphold invariant and equivariant properties is equally important. SAVENET uphold
such properties, which can be stated more formally as follows:
Theorem 2. The equivariant representation of SAVENET is equivariant to any given rotation matrix
in R ∈ SO(3). The invariant representation of SAVENET is invariant to any given transformation
matrix in SE(3).

The formal proof of Theorem 2 is provided in Appendix C, demonstrating the validity of these
assertions and the robustness of the model under various transformations.

5 Experiments

Table 1: Dataset details. The number of edges are com-
puted with radius graph where d(Å) = 5.0

Datasets QM9 N-Body Molecule3D

Avg. # of Nodes 18.02 20 29.11
Max # of Nodes 29 20 137
Avg. # of Edges 280.72 380 553.00
# of Graphs 130,831 7,000 3,899,647
# of Tasks 12 4 5
Splits 84:8:8 42:29:29 6:2:2
Invariant ✓ ✗ ✓
Equivariant ✗ ✓ ✓

This section evaluates our proposed
SAVENET on three tasks in geometric
representation learning over both syn-
thetic and real-world datasets. We im-
plement the model with PyTorch [26].
All experiments are conducted on an
NVIDIA 3090 GPU with 24 GB mem-
ory. All models use the AdamW op-
timizer [22] for the optimization. De-
tailed descriptions of the datasets are
compared in Table 1, which includes the
average number of nodes, the average
number of edges, and the total number
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Table 2: Performance comparisons on QM9. † denotes using different data partitions.
Task α ∆ε εHOMO εLUMO µ Cν G H R2 U U0 ZPVE std. log
Units a3

0 meV meV meV D cal
mol K meV meV a2

0 meV meV meV % -

NMP† .092 69 43 38 .030 .040 19 17 .180 20 20 1.50 1.78 -5.08
SchNet .235 63 41 34 .0330 .0330 14 14 .073 19 14 1.70 1.76 -5.17
Cormorant† .085 61 34 38 .038 .026 20 21 .961 21 22 2.03 2.14 -4.75
LieConv† .084 49 30 25 .032 .038 22 24 .800 19 19 2.28 1.35 -4.99
PhysNet .061 42.5 32.9 24.7 .0529 .0280 9.4 8.42 .765 8.34 8.15 1.39 1.37 -5.35
DimeNet .047 34.8 27.8 19.7 .029 .0249 8.98 8.11 .331 7.89 8.02 1.29 1.05 -5.57
DimeNet++ .044 32.6 24.6 19.5 .0297 .0230 7.56 6.53 .331 6.28 6.32 1.21 0.98 -5.67
TFN† .223 58 40 38 .064 .101 - - - - - - - -
SE(3)-Tr.† .142 53 35 33 .051 .054 - - - - - - - -
EGNN† .071 48 29 25 .029 .031 12 12 .106 12 11 1.55 1.23 -5.43
PaiNN .045 45.7 27.6 20.4 .0120 .024 7.35 5.98 .066 5.83 5.85 1.28 1.01 -5.85
ET .059 36.1 20.3 17.5 .011 .026 7.62 6.16 .033 6.38 6.15 1.84 0.84 -5.90
SphereNet .046 31.1 22.8 18.9 .0245 .0215 7.78 6.33 .268 6.36 6.26 1.12 0.91 -5.73
ComENet .045 32.4 23.1 19.8 .0245 .0220 7.98 6.86 .259 6.82 6.69 1.20 0.93 -5.69
SEGNN† .060 42 24 21 .023 .031 15 16 .660 13 15 1.62 1.08 -5.27
EQGAT .053 32 20 16 .011 .024 23 24 .382 25 25 2.00 0.86 -5.28
Equiformer .046 30 15.4 14.7 .0117 .0230 7.63 6.63 .251 6.74 6.59 1.26 0.70 -5.82

SAVENET-B .039 24.8 18.4 16.3 .0093 .0227 6.64 5.43 .058 5.48 5.43 1.18 0.69 -6.04
SAVENET-L .035 22.7 16.6 15.1 .0085 .0210 6.10 4.83 .049 4.74 4.83 1.10 0.63 -6.14

of graphs. The three datasets include both invariant and equivariant targets for comprehensive eval-
uation of our proposed model. Further dataset details are provided in Appendix D. The rationale
behind our design decisions and hyperparameters, as well as their specific values, are documented in
Appendix F for reference.

QM9: QM9 dataset was used to evaluate the performance and efficiency of the models across
twelve tasks for invariant target predictions. We present two distinct configurations of the SAVENET
model, distinguished by their respective sizes: The SAVENET-B denotes the base variant, while the
SAVENET-L is the larger model. We report various baseline models, including NMP [10], Schnet
[28], Cormorant [1], LieConv [7], PhysNet [32], Dimenet [16], Dimenet++ [9], TFN [31], SE(3)
Transformer [8], EGNN [27], PaiNN [29], ET [30], SphereNet [21], ComENet [33], SEGNN [3],
EQGAT [18], and Equiformer [19].

N-Body: To assess the effectiveness of SAVENET with equivariant tasks, we conducted experiments
on the extended N-Body dataset with harder targets [5]. The proposed SAVENET is compared with
GNN, Tensor Field Networks [31], SE(3) Transformer [8], Radial Fields, PaiNN [29], EGNN [27],
ClofNet [5], GCPNet [25]. Most of the baseline results are adopted from [5, 25]. The results for
PaiNN are not reported in previous work [25] due to numerical stability. Notably, we incorporated
vector activation functions into PaiNN’s interaction layers to address this issue, allowing us to include
PaiNN in the performance comparison.

Molecule3D: The Molecule3D dataset, possessing over 29× the quantity of graphs as the QM9
dataset and an approximate 1.6× and 1.9× increase in the average number of nodes and edges
respectively, is employed to evaluate the scalability of the model with respect to dataset size. For the
Molecule3D dataset, we adopted the baselines as per [33]. As only the gap target has been reported in
preceding works, we utilized the hyperparameters provided in [33] for evaluating additional targets.
The details of the hyperparameters are described in Appendix F.1 The comparative baseline models
for the Molecule3D include GIN-Virtual [33], Dimenet++ [9], Spherenet [21], and ComENet [33].

Evaluation Metrics. A set of metrics are used to measure the performance of the models. For the
QM9 and Molecule3D datasets, each task is assessed using the Mean Absolute Error (MAE). For
the N-Body dataset, the performance is measured by the Mean Squared Error (MSE) of the future
position predictions. Given that each dataset encompasses multiple tasks, we employ two additional
aggregate measures: standardized (std.) and logarithmic (log) metrics, to assess overall performance.
As the error can be disproportionately influenced by a few outliers, we report the logarithmic error to
prevent these outliers from dominating the evaluation.

Efficiency Analysis. To critically assess the efficiency of the models, we employ a set of metrics
including training speed, model complexity, and memory consumption. All the measurements are
conducted utilizing hyperparameters from the respective model authors, and the reference imple-
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Table 3: Efficiency comparison of the proposed SAVENET with the baselines on QM9.
Model std. log Batch Memory Latency Samples/s FLOPs Param. MACs
Metric MAE ↓ MAE ↓ Size↑ GB ↓ ms ↓ ↑ G ↓ M ↓ G ↓
DimeNet++ 0.98 -5.67 357 4.82 38.9 1646 30.15 1.89 15.08
ComENet 0.93 -5.69 1174 0.96 26.4 2422 14.36 3.81 7.18
SphereNet 0.91 -5.73 238 6.65 51.6 1240 31.80 1.89 15.90
EQGAT 0.86 -5.28 980 1.74 53.3 1200 17.00 0.93 8.49
Equiformer 0.70 -5.83 94 14.04 337.3 190 - 3.53 -

SAVENET-B 0.69 -6.04 1660 0.85 23.1 2767 11.60 1.37 5.76
SAVENET-L 0.63 -6.14 580 2.48 50.6 1237 55.36 7.72 27.51

mentations are based on [18–20, 33]. To ensure consistent comparison, the experimental runs are
executed on the same configurations utilizing an RTX 3090 GPU with 24 GB of graphics memory.
The details of the efficiency analysis procedure are described in Appendix G and the theoretical time
complexity is analyzed in Appendix E.

• Training Speed. To gauge the training speed of each model, we recorded the time consumed by a
single forward/backward pass, expressed in milliseconds. Alongside this latency, we computed the
number of samples that could be processed per second, employing similar measurement techniques.

• Model Complexity. The complexity of the models was evaluated by considering two key parameters:
floating point operations (FLOPs) and multiply-accumulate operations (MACs). These metrics
were computed utilizing the DeepSpeed library [23], with a consistent batch size.

• Memory Consumption. The memory consumption of each model was evaluated by assessing the
amount of memory utilized across multiple batches. After processing each batch, the cache was
cleared to ensure a realistic appraisal of memory usage. However, this practice of cache clearing
significantly impedes the evaluation process, rendering a full dataset evaluation impractical.

5.1 Results

Accuracy results on QM9. Table 2 listed the experimental results of the QM9 dataset. SAVENET-
B demonstrated superior performance on seven out of the twelve targets, surpassing all baseline
models on these measures. While SAVENET-B did not yield the highest performance for certain
parameters—namely, ϵHOMO, ϵLUMO, Cν , R2, and ZPVE—it is noteworthy that it still delivered
competitive results, indicating its robustness across diverse molecular properties. SAVENET-L further
improved on SAVENET-B’s performance, securing the best results on nine out of the twelve targets,
with the exceptions of ϵHOMO, ϵLUMO, and R2. Furthermore, in terms of the overall performance
measures, SAVENET-L outperformed all other models, exhibiting the lowest standardized MAE and
logarithmic MAE, reflecting its superior accuracy across all target properties. These results highlight
the effectiveness of our proposed models, particularly SAVENET-L, in accurately predicting a wide
range of molecular properties in the QM9 dataset.

Table 4: Performance comparisons on N-Body dataset.
Method ES(5) ES(20) G+ES(20) L+ES(20) std.MSE logMSE

GNN 0.0131 0.0720 0.0721 0.0908 0.0151 -4.3876
TFN 0.0236 0.0794 0.0845 0.1243 0.0192 -4.0978
SE(3)-Tr. 0.0329 0.1349 0.1000 0.1438 0.0252 -3.8037
Radial Field 0.0207 0.0377 0.0399 0.0779 0.0110 -4.6212
PaiNN 0.0158 0.09971 0.10291 0.13561 0.0835 -2.5329
ET 0.1653 0.1788 0.2122 0.2989 0.0535 -2.9587
EGNN 0.0079 0.0128 0.0118 0.0368 0.0044 -5.6241
ClofNet 0.0065 0.0073 0.0072 0.0251 0.0029 -6.0324
GCPNET 0.0070 0.0071 0.0073 0.0173 0.0024 -6.1104

SAVENET 0.0062 0.0063 0.0082 0.0123 0.0020 -6.2268
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Efficiency results on QM9. The results of efficiency experiments are presented in Table 3. We select
the top five models based on their std. MAE performance for the efficiency comparison. Regarding
efficiency, SAVENET-B stands out with its superior results, processing the highest number of samples
per second and the lowest memory consumption. This demonstrates an impressive balance between
performance and resource utilization. Additionally, SAVENET-B shows the lowest latency and
number of FLOPs and MACs. The latency of SAVENET-B is 14.5× lower compared to Equiformer,
the previously most performant model with the lowest std. and log MAE. Even with a significant
reduction in compute time, SAVENET-B surpasses the Equiformer in performance, illustrating
efficiency advancements of SAVENET without performance compromise.

SAVENET-L manages to maintain a competitive efficiency despite its larger size. Its memory
consumption is 2.6× and 5.6× times smaller compared to high-performing models such as SphereNet
and Equiformer, respectively. Notably, SAVENET-L processes 1237 samples per second, which is
comparable to the rates of SphereNet and EqGAT. Compared to Equiformer, the baseline model
with the highest accuracy, SAVENET-L exhibits approximately 6× lower latency. This suggests that
SAVENET-L, even with its larger size, can maintain high performance without sacrificing speed.

Results on N-Body dataset. Table 4 presents the results of the N-Body systems. SAVENET
outperformed all baseline methods on the ES(5), ES(20), and L+ES(20) tasks, whilst demonstrating
competitive performance on the G+ES(20) task. Remarkably, SAVENET achieved the lowest average
MSE and logarithmic MSE across all four tasks, illustrating its superior prediction precision for
equivariant targets. These results emphasize the capability of our proposed model to accurately
predict the future positions of particles in N-Body systems, even under challenging conditions where
particles are under the influence of the gravity and force fields.

Table 5: Performance comparisons on Molecule3D dataset.
Symmetry Invariant Equivariant
Task µ εHOMO εLUMO ∆ε std. MAE logMAE µ⃗

GIN-Virtual 0.0882 0.0692 0.0632 0.1036 0.0592 -2.8677 1.5233
SchNet 0.0532 0.0275 0.0265 0.0428 0.0263 -3.6633 1.2082
DimeNet++ 0.0293 0.0240 0.0190 0.0306 0.0188 -4.0139 1.2014
SphereNet 0.0288 0.0239 0.0183 0.0301 0.0184 -4.0327 1.1836
ComENet 0.0345 0.0288 0.0252 0.0326 0.0220 -3.8403 1.3521

SAVENET-B 0.0183 0.0190 0.0173 0.0290 0.0156 -4.2257 0.0108
SAVENET-L 0.0136 0.0159 0.0143 0.0239 0.0128 -4.4408 0.0090

Accuracy results on Molecule3D. Our proposed models, SAVENET-B and SAVENET-L, out-
performed several baseline models on the Molecule3D dataset. In terms of relative performance,
SAVENET-B outperforms all tasks compared to other established models. SAVENET-B showed
improved performance by approximately 37% on the µ task and 92% on the µ⃗ task compared to
the next best model, SphereNet. Our SAVENET-L model, further improved the performance of
SAVENET-B. For the µ task, SAVENET-L showed an improvement of approximately 26% over
SAVENET-B; for the µ⃗ task, it showed an improvement of about 17%. Regarding aggregate measures,
SAVENET-L also outperformed all other models, showing a relative improvement of around 18% in
the std. MAE metric and 5% in the log MAE metric compared to SAVENET-B. These results demon-
strate the superior performance and scalability of our proposed models, especially SAVENET-L, on
the Molecule3D dataset.

Efficiency results on Molecule3D. The results of the efficiency evaluations on the Molecule3D
dataset are illustrated in Table 6. Impressively, SAVENET-B continues to dominate with respect to
efficiency, manifesting the highest sample processing rate and minimal memory consumption. This
shows an exemplary trade-off between accuracy and resource management.

1The results are reported after adding vector activation functions. These results were initially unavailable due
to numerical instability.

9



Table 6: Efficiency comparison of the proposed SAVENET with the baselines on Molecule3D.
Model std. log Batch Memory Latency Samples/s FLOPs Param. MACs
Metric MAE ↓ MAE ↓ Size↑ GB ↓ ms ↓ ↑ G ↓ M ↓ G ↓
DimeNetPP 0.0188 -4.0139 62 12.14 84.2 704 70.53 1.89 35.27
SphereNet 0.0184 -4.0327 43 17.32 134.6 448 92.56 1.90 46.28
ComENet 0.0220 -3.8403 277 3.37 40.7 1536 47.25 7.36 23.63

SAVENET-B 0.0156 -4.2257 329 2.84 27.8 2304 15.33 1.05 7.63
SAVENET-L 0.0128 -4.4408 159 5.37 51.9 1216 38.93 3.01 19.37

5.2 Ablation Study

Table 7: Ablation study of SAVENET

Model L std. ∆std. log

SAVENET - DN - VA 6 0.79 - -5.85
SAVENET - VA 6 0.77 -2.5% -5.95
SAVENET - VA 8 0.71 -10.1% -5.98
SAVENET 8 0.69 -12.7% -6.04
SAVENET 12 0.63 -20.3% -6.14

Table 7 presents the results of our ab-
lation study on the proposed SAVENET
model, where we investigate the impacts
of Direction Noise (DN), Vector Activa-
tions (VA), and varying the number of lay-
ers (L) on the QM9 dataset. In Table 7,
we report standard Mean Absolute Error
(std. MAE), the percentage change in std.
MAE, and the logarithmic Mean Absolute
Error (logMAE), respectively. The importance of DN is illustrated in the first two rows, where the
std. MAE is reduced by 2.5%. Moreover, scaling the model with DA from six to eight layers yields a
7.8% reduction in error. Introducing VA into an eight-layer model further improves the performance
by 2.8%. Lastly, expanding the model to 12 layers offers a substantial performance improvement of
8.7%.

6 Conclusion, Limitations and Future Works

This paper has focused on learning geometric representations of molecular structures. We introduced
SaVeNet, a scalable message-passing neural network designed for learning geometric representations
from 3D graphs. Furthermore, we implemented a unique approach to integrate geometric features,
capturing complex geometric relationships within 3D structures without resorting to computationally
complex operations. The performance of this framework was demonstrated on both synthetic and
real-world datasets. For the latter, SaVeNet was evaluated across various core tasks in molecular
representation learning. When compared with state-of-the-art methods, the effectiveness and ef-
ficiency of our proposed architecture were clearly validated. Our comprehensive examination of
network efficiency and our comprehension of the trade-offs between expressiveness and efficiency
will provide a foundation for future advancements in molecular representation learning. However,
like many studies in this area, our work does have limitations. The primary constraint, shared with the
baseline model discussed in this paper, is the dependency on known geometric structures of molecules
at their equilibrium state. In practice, obtaining accurate 3D confirmations can be costly. An in-
triguing direction for future research is to explore an end-to-end framework that employs sequential
representations of molecules, such as SMILES strings [34], to generate their 3D geometry, where
the predicted 3D geometry could then be used to model molecular properties. Another promising
avenue is to investigate the performance of larger variations of SaVeNet. Furthermore, assessing the
impacts of efficiency improvements on larger models, potentially achieved through shared parameters
in various configurations, is a worthwhile endeavor. We anticipate that our findings will pave the
way for future investigations in this domain, potentially leading to even more efficient and effective
modeling techniques.
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Appendix
A Proof of Lemma 1

Lemma 1: Consider a known geometric graph with at least one node, and assume that each node in
this graph has at least one connection. Let a new node j be added to this graph, stipulating that j is
connected to at least one existing node. Then, the position pj of node j can be determined in constant
time using the (p0, rij , di⃗j) properties.

Proof of Lemma 1: In our context, we are dealing with a geometric graph whose node properties are
known a priori. When a new node j is appended to the graph, such that it is connected to at least one
node, we can select any node i ∈ Nj from the neighbors of j to establish the position cj of node j.

Proceeding by contradiction, assume that multiple feasible positions pj could satisfy the conditions
||ci − cj || = rij and d⃗ij for a given position pi. In multi-dimensional spaces, including 3D, there
exist multiple positions satisfying the distance constraint ||ci − cj || = rij . Specifically, any point
lying on a sphere in 3D space, with ci as the center and rij as the radius, could satisfy this condition.
Yet, there is only one such position that can satisfy the direction vector d⃗ij from ci to cj . This fact
contradicts our assumption, and hence concludes the proof.

B Proof of Theorem 1

Theorem 1: Assuming the input graph is strongly connected, the input space of SAVENET , defined
as (r, d), is capable of reconstructing the rotation-equivariant geometric structure of the input graph.
The reconstructed graph maintains the relative spatial configuration of nodes and edges in the input
graph, the translation transformation is required for exact alignment with the original graph.

Proof of Theorem 1: By the definition of a strongly connected graph, for any given node i, there
exists a path Πj

i to every other node j. Hence, we can arbitrarily choose any node from the graph as
a reference for reconstructing the rotation-equivariant geometric structure of the input graph. Let’s
select node i for this purpose. Since ci is arbitrary, we can conveniently set it at the origin without
loss of generality.

Utilizing Lemma 1, we can identify the relative position of every other node j ∈ V by traversing
each edge on the path Πj

i from i to j. In essence, the relative position of a node j with respect to
node i can be computed by the accumulation of relative positions along the path Πj

i .

Assuming, by way of contradiction, that multiple relative positions of node j with respect to node i

exist. However, this is counter to Lemma 1, which affirms that for given ci, rij , d⃗ij , there exists a
unique location. This principle can be extrapolated to any number of nodes in the graph. Further,
as we can ascertain the position of a node after it’s added to the reference graph, we can similarly
determine the position of any subsequent node k relative to V ∪ {j}.

Thus, we conclude that the input graph’s rotation-equivariant geometric structure can be reconstructed
using (d, r) properties, thereby completing our proof.

C Proof of Theorem 2

Theorem 2: The equivariant representation of SAVENET is equivariant to any given rotation matrix
in R ∈ SO(3). The invariant representation of SAVENET is invariant to any given transformation
matrix in SE(3).

Proof of Theorem 2: Our proof unfolds in two stages: first, we discuss the symmetrical properties of
SAVENET in the input space. Second, we extend these properties to the entire network.

Inputs. The input to SAVENET consists of direction vectors, denoted β⃗. It’s clear that these
vectors, representing direction, maintain their properties under any global rotation. Formally, if fb(G)
represents the function that extracts β⃗ from an input graph G, we have that Rfb(G) = fb(RG) for all
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R ∈ SO(3). Moreover, any noise introduced during initialization decays over time until reaches zero
before the end of the training phase. Therefore, having no effect on the inference process.

The invariant input vectors of SAVENET, which represent atomic numbers and interatomic distances,
are clearly invariant under any transformation in SE(3) because these properties do not depend on
the geometrical information of the system. Hence, atomic numbers remain constant under global
rotations and translations. Similarly, the distances between atoms, being local properties, remain
unchanged under global transformations.

Network Propagation: Having established the symmetries at the input level, we extend our analysis
to the entire network of SAVENET. Two critical components are Inter-atomic Interactions and
Atom-wise Blocks, which we shall now scrutinize.

Inter-atomic interactions. The interaction function e can be dissected to analyze its operations on
the equivariant and invariant branches. Here, ϕb, ϕd, and ϕv denote the vector update layer, the
linear transformation, and the multiplication of v representation with the linear transformation of sj ,
respectively. In the equivariant branch, operations can be expressed as:

ev(sj , Vj , rij , β⃗ij) = ϕb(β⃗ij)⊙ ϕd(sj)⊙ ηd(rij) + Vj ⊙ ϕv(sj)⊙ ηr(rij) (7)

Each component in the above expression preserves symmetry properties. More specifically, the
first term ϕb(β⃗ij) preserves equivariance because the same transformation is applied across spatial
dimensions. The second term, ϕd(sj), is a linear transformation applied to an invariant, and therefore,
remains invariant under any transformation in T . The third term, ηd(rij), which multiplies a basis
function and a cutoff function for the distance rij , does not change under transformations in T .
Thus, it is also invariant under T .The fourth term, ϕv(sj), involves a multiplication operation of v
representation with a linear transformation of sj , hence, it produces an equivariant vector since the
linear transformation does not affect the spatial dimensions. Finally, the term ηr(rij) represents an
invariant scalar, remaining unchanged under transformation.

The first part ϕb(β⃗ij) ⊙ ϕd(sj) ⊙ ηd(rij) involves the Hadamard product of an equivariant vector
(ϕb(β⃗ij) ∈ RC×3) with invariant scalar values (ϕd(sj), ηd(rij) ∈ RC). Hadamard product operates
element-wise and does not alter the spatial dimensions, hence the resulting vector preserves the
equivariant properties. The second part Vj ⊙ ϕv(sj)⊙ ηr(rij) involves the Hadamard product of an
equivariant vector (Vj ∈ RC×3) with an invariant scalar representations. Again, the resulting vector
is equivariant since the same values are multiplied across spatial dimensions. Finally, the addition
operation in ev combines two equivariant vectors. As the addition of equivariant vectors preserves
equivariance, the result will be equivariant under any rotation matrix R ∈ SO(3). This concludes
our examination of the equivariance of the interaction function ev under any rotation R ∈ SO(3).
Similarly, the operations in the invariant update branch can be captured as:

es(sj , vj , rij , β⃗ij) = ϕs(sj)⊙ ηs(rij) (8)

where ϕs denotes a linear transformation, and ηs represents a transformation applied using basis and
cutoff functions. Both these functions are invariant under any transformation in T .

The updated s and V representations, determined for each adjacent node, are subsequently aggre-
gated through summation. Given that summation inherently upholds symmetry characteristics, the
procedures employed in the Inter-atomic interactions layer maintain the equivariant nature of V for
all rotations R in SO(3), as well as the invariant nature of s under any transformation T in SE(3).

Atom-wise Blocks. Assuming that the inputs to this block are invariant for scalar representations and
equivariant for vector representations, we can extend our proof to the operations within this block.
The operations in the invariant update branch can be encapsulated as follows:

ϕm(||ϕvu(V )|| ∪ s) (9)

In this equation, ϕvu denotes the vector update function which is, as previously established, equivari-
ant under any rotation matrix R. The norm operation || · || applied to V is invariant, as the magnitude
of the vector does not change with rotation. Consequently, the composition ||ϕvu(V )|| is invariant
to global rotations. Furthermore, applying the linear transformation ϕm to the concatenation of two
invariants, in this case ||ϕvu(V )|| and s, remains invariant under any transformation in SE(3). The
operations in the equivariant branch of the Atom-wise blocks can be described as:

VA(ϕvu(V )⊙ ϕv(||ϕvu(V )|| ∪ si)) (10)
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This equation is similar to the one describing the invariant update branch, with a difference lying
in the linear transformation ϕv that uses different learnable parameters. Hence, the second term is
invariant. The first term, ϕvu(V ), is equivariant as it is a vector update function applied to V . The
Hadamard product of this equivariant representation with the invariant term preserves its equivariance
under any rotation R ∈ SO(3). In conclusion, the Atom-wise blocks preserve the symmetrical
properties for both (s, V ) representations. The proof for Theorem 2 is thus complete.

D Datasets

The three datasets used in this study evaluate our proposed SAVENET on three tasks in geometric
representation learning over both synthetic and real-world datasets. In addition to their diversity
in their real-world use cases, these tasks demonstrate a rich diversity not just in their practical
implications, but also in their requisite output specifications. In other words, they demand the
prediction of both invariant and equivariant targets, each necessitating different computational
considerations. This multi-faceted evaluation strategy, which includes varying input data types
and output requirements, provides a comprehensive view of the model’s capabilities, and furthers
the understanding of its strengths and potential areas for refinement. By analysing the model’s
performance across these distinct scenarios, we aim to exhibit SAVENET ’s adaptability and potential
as a valuable tool in advancing the field of geometric representation learning.

QM9. Widely adopted small molecule property prediction dataset. It consists of 131,831 stable
molecules with nine heavy atoms. We utilize the established split from [16], a standard in subsequent
works [9, 21, 33]. QM9 contains twelve tasks that involve various aspects of molecular properties.
The multi-task nature of the dataset demonstrates the effectiveness of the evaluated models.

Newtonian many-body system. Newtonian many-body system is a synthetic dataset that is generated
based on particle simulations. The task is to predict the future positions of the particles based on
the initial location and velocity. The performance was measured with the mean square error (MSE)
metric between predicted and ground truth. Recently the existing work by [27] extended by increasing
the particle size and introducing various force fields. By introducing the force fields, the existing
task became more difficult. The initial work evaluated the models’ performance based on the future
position on 5-body (ES(5)). More challenging tasks to predict future locations of the 20-body (ES(20))
task is introduced in [5]. Furthermore, complex conditions integrated with gravity field (G+ES(20))
and Lorentz-like force field (L+ES(20)). The performances of the models were evaluated under
challenging conditions. The hyper-parameters of our work SAVENET were chosen based on the
best-performing hyper-parameters on ES(5) based on the best validation score.

Molecule3D. This dataset comprises 3,899,647 molecules, making it approximately 29.5 times
larger than the QM9 dataset, providing a significant platform to assess the scalability of our model.
Predefined splits are utilized, based on random sampling as detailed in [37]. Though Molecule3D
has fewer targets than QM9, with only four targets including dipole moment vector (µ⃗), energies of
the highest occupied and lowest unoccupied molecular orbitals (ϵHOMO, ϵLUMO), and orbital energy
gap (∆ϵ), it offers an essential testbed for model evaluation. The dipole magnitude (µ) can be easily
derived from µ⃗, highlighting the significance of equivariance in models due to the influence of global
rotations on µ⃗. For a fair comparison, we have reported standardized MAE for invariant properties.

E Theoretical complexity analysis

Table 8: Complexity analysis.
Complexity Dimenet++ SphereNet ComENet SAVENET

Initialization n3 n4 n2 n2

Encoder len
3d2 len

3d2 len
2d2 len

2d2

Decoder ldnd
2 ldnd

2 ldnd
2 ldnd

2

Overall n3d2 n3d2 n2d2 n2d2

In the following section, we present a de-
tailed theoretical complexity analysis of
our proposed model and baselines, which
is summarized in a comprehensive table
for understanding the model’s computa-
tional efficiency. In the table, we provide
a breakdown of the computational com-
plexities associated with the main components of the model’s architecture. This includes complexities
during the graph embedding phase, the encoder, and the decoder phase. By presenting this theoretical
complexity analysis, we aim to provide an in-depth understanding of the operational demands of our
model and highlight its computational advantages.

16



F Implementation details

The reference implementation can be found in https://github.com/EfficientGraphs/SaVeNet.

F.1 Hyperparameters

The hyperparameter search space of SAVENET-B on QM9 and Molecule3D is shown in Table 9.
The final hyperparameters are chosen based on the hyperparameters with the best performance on
the validation set of each dataset. The hyperparameters of SAVENET-L is determined based on the
best hyperparameters found for SAVENET-B on the validation set. Then the hidden dimensions and
the number of layers are scaled on SAVENET-L. On the QM9 dataset, SAVENET-L has two times
more hidden dimensions and decoder hidden dimensions compared to SAVENET-B. SAVENET-L
utilized 256 hidden dimensions compared to 128 dimensions, and SAVENET-L has 1.5 more layers
increasing from eight layers to twelve layers. On the other hand for the Molecule3D dataset, hidden
dimensions are increased 1.5 times from 128 to 192 and the number of layers increased to eight layers
from six layers. The hyperparameter search space of SAVENET on N-Body is shown in Table 10.

Table 9: Hyperparameter search space of SAVENET-B on QM9 and Molecule3D.
Hyperparameters QM9 Molecule3D

Epochs 1000 300
Batch size 32, 64, 128 64, 128, 256
Number of layers 6, 8 4, 6
Hidden dimensions 64, 128 128, 192
Decoder dimensions 128, 256 256, 384
Number of RBF 12, 16, 24 12, 16, 24
Base Learning Rate 1e-3, 5e-4, 2e-4 1e-3, 5e-4, 2e-4
Learning rate decay 0.6, 0.8, 0.9 0.6, 0.8, 0.9
Learning rate patience 10, 15, 20 10, 15, 20
Vector dropout 0.0, 0.1, 0.25 0.0, 0.1, 0.25
Direction noise decay 150, 250 150, 250

Table 10: Hyperparameter search space of SAVENET-B on N-Body.
Hyperparameters N-Body

Epochs 500
Number of layers 4
Hidden dimensions 128
Decoder dimensions 128, 256
Number of RBF 12, 16, 24
Base Learning Rate 1e-3, 5e-4, 2e-4
Learning rate decay 0.6, 0.8, 0.9
Learning rate patience 10, 15, 20
Vector dropout 0.0, 0.1, 0.25
Direction noise decay 150, 250

G Efficiency evaluation

In this section, we conduct a rigorous evaluation of our proposed model, employing a set of care-
fully devised efficiency metrics. These metrics are instrumental in providing a comprehensive
understanding of the model’s operational efficacy and practical viability.

The key metrics used include:

Training Speed: This metric is crucial in assessing the efficiency of the model from a computational
perspective. It gauges the rate at which the model processes data and adjusts parameters during train-
ing, which is particularly pertinent in large-scale applications. For the purpose of deriving accurate
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results, each model underwent a warm-up phase of 5,000 steps before we timed the forward/backward
passes across the entire training dataset. The training dataset was deliberately left unshuffled to
maintain consistent batches, thereby facilitating efficient and comparable measurements. The final
result was then determined by calculating the average time spent on these passes.

Model Complexity: A model’s complexity often directly correlates with its performance. However,
a balance between complexity and computational efficiency is desirable. Hence, we consider this
metric to quantify the intricacy of our model’s architecture and algorithms, which also informs us
about its interpretability and potential for scaling. Mirroring the approach adopted during the training
speed experiment, we maintained uniform batches throughout the entire training dataset, and the
resultant metrics were averaged upon the conclusion of an epoch. The metrics were computed with a
consistent batch size of 64 to accommodate memory-demanding models.

Memory Consumption: The amount of memory consumed during the model’s operation is a
significant factor, especially for deployment in resource-constrained environments. This metric
provides insights into the model’s memory requirements, both during the training phase. Since
evaluating the complete dataset evaluation was impractical, we employed an effective measurement
strategy. To accommodate the impact of various sample sizes on memory usage, we constructed a
worst-case scenario, selecting batches containing the largest samples in a given dataset. An efficient
strategy for identifying these substantial samples involved considering the number of nodes in each
sample. Consequently, we extracted the n largest samples from the dataset, where n is equivalent to
the batch size. The memory consumption was then repeatedly measured for this batch, and the results
were averaged to yield the final value.
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