
Appendix: Training Transitive and Commutative
Multimodal Transformers with LoReTTa

Manuel Tran1,3,4 Yashin Dicente Cid2 Amal Lahiani1 Fabian J. Theis3,4

Tingying Peng4,∗ Eldad Klaiman1,∗

1Roche Diagnostics GmbH, 2Roche Diagnostics S.L.
3Technical University of Munich, 4Helmholtz Munich

A Pre-training

Models pre-trained with a language learning paradigm share a similar set of hyperparameters. This is
consistent with current best practices for state-of-the-art (multimodal) foundation models based on
transformers. More on this topic can be found in the literature [2, 3]. Specifically, we use the AdamW
optimizer with betas of (0.9, 0.95), epsilon of 1e-8, weight decay of 0.1, and gradient clipping at 1.0.
The learning rate starts at 1e-7, increases linearly to 6e-4, and gradually decays to 6e-5 according to a
cosine schedule. To ensure that the model sees batches containing different modalities and modality
combinations during training, we accumulate batches across different dataloaders. For CLIP, we
use betas of (0.9, 0.98), epsilon of 1e-6, and weight decay of 0.2. The maximum learning rate starts
at 5e-4 and ends at 5e-5. The list of batch sizes, warm-up steps, and total training steps for each
experiment can be found in Table A1 and Table A2. The above setting applies to our SVL-MNIST and
TCGA-OMICS experiments. The MUGEN-GAME experiments follow the exact hyperparameters as
the reference [1] – except that we train for 142,000 steps.

Table A1: The batch size, number of warm-up steps, and number of total training steps for each
model in the SVL-MNIST experiment.

Method Batch Size Warm-up Steps Total Steps
CM2(I) 64 1,000 23,500
CM2(T) 64 1,000 16,300
CM2(A) 64 1,000 13,400
C2M3(I,T) 64 200 18,800
C2M3(I,A) 64 200 18,800
C2M3(T,A) 64 200 18,800
C2M3(I,T), (I,A) 16 400 37,500
C2M3(T,I), (T,A) 16 400 37,500
C2M3(A,I), (A,T) 16 400 37,500
LoReTTa(I,T), (I,A) 16 400 9,400
LoReTTa(T,I), (T,A) 16 400 9,400
LoReTTa(A,I), (A,T) 16 400 9,400
C2M3(I, T, A) 16 400 92,000

∗Equal contribution.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Table A2: The batch size, number of warm-up steps, and number of total training steps for each
model in the TCGA-OMICS experiment.

Method Batch Size Warm-up Steps Total Steps
BERT 16 400 5,500
T-BERT 16 400 1,100
GPT 16 400 5,500
T-GPT 16 400 1,100
CLIP 16 400 1,200
L-CLIP 80 400 3,800
C2M3 16 400 5,500
LoReTTa 16 400 1,300
C2M3(M, I, R) 16 400 9,900

B Linear probing

In our SVL-MNIST experiments, we freeze the backbone and train a linear classifier on top. SGD is
used as the optimizer with the Nesterov momentum set to 0.9. The initial learning rate is 0.1, but it
gradually decreases to zero during training by cosine annealing. We do not use weight decay. The
batch size is 16, and the number of epochs (based on the validation sets) is listed in Table A3. For
the TCGA experiments, we fit a Cox proportional hazards model with an elastic net penalty to the
extracted features. The weights for the regularization terms L1 and L2 are both set to 0.5. Training
is stopped when one of the following criteria is met: tol=1e-7 or iter=100000. The underlying
optimization algorithm is based on coordinate descent, which successively minimizes the objective
function along one direction at a time. It is particularly effective for problems with many features.

Table A3: Number of training epochs to fit the linear classifier on the SVL-MNIST dataset for each
dataset containing different modalities and modality combinations.

Training Testing
I T A (I, T) (I, A) (T, A) (I, T, A)

CM2(I) 100 - - - - - -
CM2(T) - 100 - - - - -
CM2(A) - - 100 - - - -
C2M3(I,T) 100 100 - 100 - - -
C2M3(I,A) 100 - 100 - 100 - -
C2M3(T,A) - 100 100 - - 100 -
C2M3(I,T), (I,A) 500 100 100 500 500 500 500
C2M3(T,I), (T,A) 500 100 100 500 500 500 500
C2M3(A,I), (A,T) 500 100 100 500 500 500 500
LoReTTa(I,T), (I,A) 500 100 100 500 500 500 500
LoReTTa(T,I), (T,A) 500 100 100 500 500 500 500
LoReTTa(A,I), (A,T) 500 100 100 500 500 500 500
C2M3 (3-modal) 500 100 500 500 500 500 500

C Datasets

We divide the SVL-MNIST dataset into training, validation, and test sets (Figure A1). The validation
set is merged with the training set after hyperparameter search. To obtain the multimodal dataset with
completely missing modality combinations, we consider the three datasets (I, T), (T, A), and (A, I).
The first dataset (I, T) consists of 12,000 paired samples from MNIST and WineReviews. The second
dataset (T, A) is similarly constructed and contains 12,000 paired samples from WineReviews and
AudioMNIST. We take another 12,000 from AudioMNIST and combine them with 12,000 samples
from MNIST to get (A, I). All remaining samples are part of the unimodal datasets I, T, and A. There
is no dataset with three modalities (I, T, A) – except for testing. Note that none of the samples in the
datasets overlap. That is, all datasets have the same relationship as in Figure 1c of the main paper.

2

The TCGA-OMICS dataset contains 11,069 mRNA, 10,824 miRNA, and 7,790 RPPA samples. We
align the dataset at the patient level and obtain 7,030 data points with three modalities (Figure A2).
1,030 of these are used for testing. The remaining samples are part of the training and validation set
(again, the validation set is merged with the training set after hyperparameter tuning). In particular,
the training set consists of the (mRNA, miRNA) and (mRNA, RPPA) datasets, each consisting of
3,000 paired samples. We choose mRNA as the linking modality because it is usually the most
abundant and common modality available in medical datasets.

MUGEN-GAME consists of 375,368 fully aligned samples. It is divided into a training, validation,
and test set of sizes 349, 666, 12,851, and 12,851, respectively. We randomly pair video and audio as
well as video and text files. This results in two disjoint datasets of size 174,833 each for training.

For a fair comparison, we use only the fully aligned subset of the test set to report the final results,
since the other sets contain different samples and are of different sizes. However, we keep the data
split with the individual unaligned modalities (right side of Figure A1 and Figure A2) to make the
dataset more flexible for future experiments.

Figure A1: SVL-MNIST data split used for training and testing.

Figure A2: TCGA-OMICS data split used for training and testing.

3

D Pseudocode

The pseudocode below gives more insight into how LoReTTa pre-training is implemented. It outlines
the main ideas and algorithmic steps to train a model using commutative and transitive modeling.
Most importantly, the code shows how both are integrated into the causal modeling framework.

class LoReTTa:
"""
Pseudo-code for commutative and transitive modeling
"""
def forward(self, tokens, modes=['commutative','transitive']):

"""
tokens ... tokenized inputs, e.g., [x_0,...x_n, y_0,...,y_m]
x_0, y_0 modality-specific tokens, 'a', 'b', or 'c'
"""

if 'commutative' in modes: #shuffle modalities
tokens = self.shuffle_modalities(tokens)

if 'transitive' in modes: #generate missing modality
existing_modalities = self.extract_modality_tokens(tokens)

if ['a', 'b'] in existing_modalities: #case 1
modality_a, modality_b = self.split_tokens(tokens)
modality_c = self.model.generate([modality_b, 'c'])
tokens = [modality_c, modality_a]

if ['b', 'c'] in existing_modalities: #case 2
modality_b, modality_c = self.split_tokens(tokens)
modality_a = self.model.generate([modality_b, 'a'])
tokens = [modality_a, modality_c]

if ['a'] in existing_modalities \ #case 3
and len(existing_modalities) == 1: #edge case with one modality
modality_b = self.model.generate([modality_a, 'b'])
modality_c = self.model.generate([modality_b, 'c'])
tokens = [modality_c, modality_a]

if ['b'] in existing_modalities \ #case 4
and len(existing_modalities) == 1: #edge case with one modality
modality_a = self.model.generate([modality_b, 'a'])
modality_c = self.model.generate([modality_b, 'c'])
tokens = self.shuffle_modalities([modality_a, modality_c])

if ['c'] in existing_modalities \ #case 5
and len(existing_modalities) == 1: #edge case with one modality
modality_b = self.model.generate([modality_c, 'b'])
modality_a = self.model.generate([modality_b, 'a'])
tokens = [modality_a, modality_c]

if self.prob_use_all_modalities < rand(1): #occcasionally use all modalities
tokens = self.shuffle_modalities([modality_a, modality_b, modality_c])

logits = self.model(tokens[:, :-1]) #get predictions
targets = tokens[:, +1:] #shift targets

loss = self.criterion(logits, targets) #calculate cce-loss
return self.split_loss(loss) #return individual loss for each modality

4

References
[1] Thomas Hayes, Songyang Zhang, Xi Yin, Guan Pang, Sasha Sheng, Harry Yang, Songwei Ge, Qiyuan Hu,

and Devi Parikh. Mugen: A playground for video-audio-text multimodal understanding and generation. In
17th European Conference on Computer Vision (ECCV), pages 431–449. Springer, 2022.

[2] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. An empirical analysis of
compute-optimal large language model training. In Advances in Neural Information Processing Systems
(NeurIPS), volume 35, pages 30016–30030, 2022.

[3] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models. arXiv preprint
arXiv:2001.08361, 2020.

5

	Pre-training
	Linear probing
	Datasets
	Pseudocode

