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A Proof of theorem 2.13

Proof. For some basis {ϕjk}
Kj

k=1 that spans the low dimensional causal embedded space Dj , αj in (5)
of the main manuscript can be further expanded by

αj(tju) =

Kj∑
k=1

α̃jkϕjk(tju)

Using the above , (5) can then be expressed as,4

Xju =

Kj∑
k=1

α̃jkϕjk(tju) + βj(tju) + eju,∀j ∈ [p], u ∈ [mj ] (1)

More compactly, the above (1) can be rewritten as,5

X = Φ(t)α̃+ β(t) + e (2)

where X = (X⊤
1 , . . . ,X⊤

p )⊤, α̃ = (α̃⊤
1 , . . . , α̃

⊤
p )

⊤,β(t) = (β1(t1)
⊤, . . . ,βp(tp)

⊤)⊤, e =

(e⊤1 , . . . , e
⊤
p )

⊤ and Φ(t) = diag(Φ1(t1), . . . ,Φp(tp)) with Xj = (Xj1, . . . , Xjmj )
⊤, α̃j =

(α̃j1, . . . , α̃jKj
)⊤,βj(tj) = (βj(tj1), . . . , βj(tjmj

))⊤, ej = (ej1, . . . , ejmj
)⊤ and

Φj(tj) =


ϕj1(tj1) ϕj2(tj1) · · · ϕjKj

(tj1)
ϕj1(tj2) ϕj2(tj2) · · · ϕjKj

(tj2)
...

...
. . .

...
ϕj1(tjmj

) ϕj2(tjmj
) . . . ϕjKj

(tjmj
)


The structural equation model is then defined on α̃ as,6

α̃ = Bα̃+ ϵ̃

⇒ α̃ = Ωϵ̃, [by Assumption 3] (3)

where Ω = (I −B)−1.7

Referring to Assumption 5 of section 2.3 in the main manuscript, we write β(t) = C(t)γ where

γjk ∼
Mjk∑
m=1

π′
jkmN(µ′

jkm, τ ′jkm) with

C =


C11(t1) 0 · · · 0

0 C22(t2) · · · 0
...

...
. . .

...
0 0 · · · Cpp(tp)


Using this representation for β(t) and (3), (2) boils down to,8

X = Φ(t)Ωϵ̃+C(t)γ + e (4)

From here on let us define N =
∑p

j=1 mj and K =
∑p

j=1 Kj . We define two class variables ξ9

and η such that ϵjk|ξjk = m ∼ N(µjkm, τjkm) and P(ξjk = m) = πjkm and γjk|ηjk = m ∼10

N(µ′
jkm, τ ′jkm) and P(ηjk = m) = π′

jkm. Conditioning on these class variables ξ and η,11

X|ξ,η ∼ N(µX ,ΣX) (5)

where,12

µX = Φ(t)Ωµξ +C(t)µη

ΣX = Φ(t)ΩTξΩ
⊤Φ(t)⊤ +C(t)TηC(t)⊤ +Σ
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with µξ = (µ⊤
ξ1
, . . . ,µ⊤

ξp
)⊤ and µη = (µ⊤

η1
, . . . ,µ⊤

ηp
)⊤ are the collection of means and Tξ =13

diag(Tξ1 , . . . ,Tξp) and Tη = diag(Tξ1 , . . . ,Tξp) are diagonal matrices with variances as diagonal14

entries corresponding to the class variable ξ and η. Here, µξj = (µξj1 , . . . , µξjKj
)⊤,µηj =15

(µηj1
, . . . , µηjKj

)⊤,Tξj = diag(Tξj1 , . . . , TξjKj
) and Tηj = diag(Tηj1

, . . . , Tηju
, . . . ) with µξjk =16

µjkm if ξjk = m and Tξjk = τjkm if ξjk = m and µηjk
= µ′

jkm if ηjk = m and Tηjk
= τ ′jkm if17

ηjk = m. ΣN×N = diag(σ1, . . . , σ1, . . . , σp, . . . , σp).18

Our causal identifiability proof necessarily involves two steps - First, we shall prove that the19

hypergraph like structure which is formed under the assumption of existence of disjoint cycles20

(Refer Assumption 2 of the main manuscript) is identifiable. Second, the disjoint cycles inside every21

hypernode are identifiable. Please refer to Figure 1 in the main paper for an artistic exposition of the22

proof structure.23

Step 1. Now we shall prove the identifiability of our model under the assumption that the SEM24

involving α̃ has an underlying graph in which the cycles are disjoint (Assumption 2). Under this25

assumption, we will have cycles of variable length which are connected by directed edges such that26

no two cycles in the graph have two nodes that are common to both. This induces a hypergraph like27

structure with each disjoint cycle forming a simple directed cycle in V .28

Let us mathematically formalize what we have discussed in the above paragraph. Suppose, C =29

{C1, . . . , Cu} where each Ci is a simple directed cycle. Clearly, V = ∪ui=1Ci as Cis form a partition30

in V . Without loss of generality, let us assume that {α̃1, . . . , α̃p} be arranged in such a way that the31

first r1 elements form the simple cycle C1, the next r2 elements form another simple cycle C2 and32

so on such that
∑u

i=0 ri = p with r0 = 0 and Ci = {α̃ri−1+1, . . . , α̃ri}. We denote the hypergraph33

formed by C by Ḡ.34

Let Ḡ and Ḡ′ be two graphs where Ḡ′ ̸= Ḡ. We can assume a topological ordering in Ḡ in a sense35

that if Cq → Cr then q < r. Therefore, the B induced by the graph Ḡ is necessarily a lower block36

triangular matrix with block 0 as the diagonal entries. We cannot say any such thing about the matrix37

B′ induced by the graph Ḡ′ except that having block 0 matrices as it’s diagonal elements.38

Let P and P′ be the joint probability distribution of X associated with the two graphs G and G′39

respectively. Let S = (Ḡ,P) and S ′ = (Ḡ′,P′). We shall prove by contradiction that S and S ′ are40

not equivalent.41

Suppose, P(X) ≡ P′(X). Then due to the identifiability of finite Gaussian mixture models up to42

label permutation [Teicher, 1963, Yakowitz and Spragins, 1968], we must have, for any ξ,η,43

Φ(t)ΩTξΩ
⊤Φ(t)⊤ +C(t)TηC(t)⊤ +Σ = Φ(t)Ω′T ′

ξΩ
′⊤Φ(t)⊤ +C(t)T ′

ηC(t)⊤ +Σ′ (6)

For some choice of ξ̃ ̸= ξ and η̃ = η, we can write from (6),44

Φ(t)Ω(Tξ − Tξ̃)Ω
⊤Φ(t)⊤ = Φ(t)Ω′(T ′

ξ − T ′
ξ̃
)Ω′⊤Φ(t)⊤

⇒ Ω(Tξ − Tξ̃)Ω
⊤ = Ω′(T ′

ξ − T ′
ξ̃
)Ω′⊤, (using Assumption 6) (7)

Notice that Ω being an invertible matrix, every row of every block diagonal matrices must have at45

least a non zero element. ΩK. denotes the last row for Ω and l1 be the extreme position for which46

ΩK,l1 ̸= 0. Pick ξ̃ above such that ξ̃ = ξ except for that l1th element such that (Tξ − Tξ̃)l1,l1 ̸=47

0. Hence the matrix (Tξ − Tξ̃) is of rank 1 and from (7) it implies that ∃ s1 ∈ [K] such that48

(T ′
ξ − T ′

ξ̃
)s1,s1 ̸= 0. Therefore clearly,49

0 ̸= ΩK,.(Tξ − Tξ̃)Ω
T
K,. = Ω′

K,.(T
′
ξ − T ′

ξ̃
)Ω′⊤

K,. = Ω′2
K,s1(T

′
ξ − T ′

ξ̃
)s1,s1 (8)

Now as (T ′
ξ − T ′

ξ̃
)s1,s1 ̸= 0, we have from (8), Ω′

K,s1
̸= 0. Similarly, if we now focus on the50

(K − 1)th row of Ω, there can be two cases,51

Case 1: The last position for which ΩK−1,. ̸= 0 coincides with l1. Then for this, we shall proceed52

with the same choice of ξ̃ as above and with the same argument from above we can show that53

Ω′
K−1,s1

̸= 054
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Case 2: If the position of the last non zero element in the (K − 1)th row of Ω is some l2(̸= l1),55

we pick ξ̃ such that ξ̃ = ξ except for that l2th element such that (Tξ − Tξ̃)l2,l2 ̸= 0. Hence the56

matrix (Tξ − Tξ̃) is of rank 1 and from (7) it implies that ∃ s2 ∈ [K] such that (T ′
ξ − T

′

ξ̃
)s2,s2 ̸= 0.57

Therefore clearly,58

0 ̸= ΩK−1,.(Tξ − Tξ̃)Ω
T
K−1,. = Ω′

K−1,.(T
′
ξ − T ′

ξ̃
)Ω′⊤

K−1,. = Ω′2
K−1,s2(T

′
ξ − T ′

ξ̃
)s2,s2 (9)

Similarly as before since (T ′
ξ − T

′

ξ̃
)s2,s2 ̸= 0, we have from (9), Ω′

K−1,s2
̸= 0. Define K|Ci| =59 ∑ri

j=ri−1+1 Kj . Clearly,
∑u

i=1

∑ri
j=ri−1+1 Kj = K. Therefore, proceeding similarly from above60

we can show that Ω′
K−K|Cu|+1,sK|Cu|

̸= 0.61

Now since Ω is a lower block triangular matrix, we have ∀ r ≤ K −K|Cu|,Ωr,(K−K|Cu|+1):K = 0.62

Therefore, if we pick some ξ̃ which does not match ξ at the lj th position, lj > K−K|Cu|, j ∈ [K|Cu|]63

such that (Tξ − Tξ̃)lj ,lj ̸= 0 then there will exist some sj ∈ [K] such that (T ′
ξ − T

′

ξ̃
)sj ,sj ̸= 0, j ∈64

[K|Cu|]. Therefore we have,65

0 = Ωr,.(Tξ − Tξ̃)Ω
T
r,. = Ω′

r,.(T
′
ξ − T ′

ξ̃
)Ω′⊤

r,. = Ω′2
r,sj (T

′
ξ − T ′

ξ̃
)sj ,sj (10)

From (10), as (T ′
ξ − T ′

ξ̃
)sj ,sj ̸= 0, we have, Ω′

r,sj = 0,∀ r ≤ K −K|Cu|, j ∈ [K|Cu|].66

Proceeding similarly from above, if we repeat the above set of arguments for all the rows of Ω67

matrix, we can observe that Ω′ is just a block column permutation of a lower block triangular matrix.68

Therefore there exists a block lower triangular matrix A and a block permutation matrix P such that,69

Ω′ = AP

⇒ (I −B′)−1 = AP

⇒ (I −B′) = P⊤A−1 (11)

Now, the RHS of (11) is just a row permuted block lower triangular matrix. Therefore, the permutation70

matrix P has to be the identity matrix; otherwise P TA−1 must have zeros in its diagonal but I−B′71

has unit diagonal because B′ has zero diagonal (no self-loop). Hence we arrive at a contradiction72

and conclude from here that S and S ′ are not equivalent, i.e. P(X) ̸= P′(X).73

Step 2. We now try to prove that each simple directed cycle is identifiable.74

If H and H ′ are the sub-matrices induced by some Cj ∈ C, j ∈ [u] in Ḡ and Ḡ′ respectively then it75

is sufficient to show that for any permutation matrix P , P (I −H) = I −H ′ ⇒ P = I .76

Now since H is a matrix for a simple cycle, it can be written as H = QD where Q is a permutation77

matrix and D is block diagonal matrix. Now,78

P (I −H) = I −H ′

⇒ P (I −QD) = I −H ′

⇒ P − PQD = I −H ′ (12)

The RHS of (12) has all 1′s in it’s diagonal. Therefore the diagonal elements of P and PQ i.e.79

(P )i,i and (PQ)i,i cannot be simultaneously 0.80

Case 1: (P )i,i ̸= 1 for some i.81

Without loss of generality let, P =

(
P1 0
0 I

)
where P1 is the matrix that has 0 in it’s diagonal.82

Clearly, P1 = (I 0)P

(
I
0

)
. Now from (12),83
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(I 0) (P − PQD)

(
I
0

)
= (I 0) (I −H ′)

(
I
0

)
⇒ P1 − (P1 0)Q

(
D1

0

)
= I − (I 0)H ′

(
I
0

)
⇒ P1 − P1Q11D1 = I −H ′

11 (13)

Notice that, the diagonals of RHS of (13) are equal to 1, Q11 is not necessarily a permutation
matrix but it has at most one 1 in every column and P1 is a permutation matrix. Following from
the same argument as before, we can therefore say that the diagonals of P1 and P1Q11 cannot be
simultaneously 0. Now from our assumption since (P1)i,i = 0,∀ i we have,

(P1Q11)i,i = 1,∀ i
Now since P1 is a permutation matrix and Q11 has at most one 1 in every column, we have84

P1Q11 = I and D1 = −I Therefore, from above we obtain,85

I + P1 = I −H ′
11

⇒ P1 = −H ′
11 (14)

Let any eigenvalue of matrix A be donoted by λ(A). Therefore from (14), we can obtain,86

λ(P1) = λ(−H ′
11)

⇒ λ(P1) = −λ(H ′
11), (∵ −λ is an eigenvalue for H11)

⇒ |λ(P1)| = |λ(H ′
11)|, (taking modulus on both sides)

Now since P1 is a permutation matrix, all of it’s eigenvalues lie on a unit circle, i.e. |λ(P1)| = 1.87

But according to Assumption 3 of the main manuscript, the moduli of the eigenvalues of H ′ and88

hence H ′
11 are less than 1 and none of the real eigenvalues are equal to 1. Therefore, we arrive at a89

contradiction.90

Case 2: (P )i,i = 0 ∀i91

Therefore, (PQ)i,i = 1 ∀i and D = −I . Therefore from (12), we obtain,
P + I = I −H ′

Proceeding similarly from the case 1 argument, we arrrive at a contradiction.
∴ P = I

92

B Posterior inference93

B.1 Selecting the effective number of basis functions for the causal embedded space94

While it is possible to use a prior to learn the number of basis functions jointly with other parameters95

through reversible jump MCMC or to use shrinkage priors to adaptively truncate and eliminate96

redundant functions, these approaches can lead to significant computational burden and potential97

Markov chain mixing issues. Therefore, this article employs a simple heuristic approach, as described98

in Kowal et al., 2017, Zhou et al., 2022. First, the functional observations are imputed and arranged99

into a (n× p)× d matrix, where d = | ∪i,j T (i)
j | represents the size of the union of the measurement100

grid over all realized random functions. Then, singular value decomposition is performed, and the101

minimum value of K is selected such that its proportion of variance explained is at least 90%. This102

value is fixed throughout MCMC. It should be noted that while K remains fixed, the basis functions103

are adaptively inferred.104

We have noted that the value of K derived from the aforementioned heuristic method falls105

within a range of ±2 in comparison to the value obtained by fixing a grid encompassing values106

{1, 2, 3, 4, 5, 6, 7} for K and subsequently selecting the K associated with the lowest WAIC [Watan-107

abe, 2013]. The graph recovery performance, as assessed by Matthew’s correlation coefficient (MCC)108

using this method, closely aligns with that of the previous approach. Consequently, we adopted109

the aforementioned heuristic technique to determine the optimal number of basis functions that110

collectively span the causal embedded space.111
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B.2 Posterior distributions112

While the closed form expression for the posterior distribution cannot be obtained, we resort to MCMC113

techniques for sampling. We use superscript (·) to denote observations throughout the text. Let114

X(1), . . . ,X(n) be n realizations of the multivariate random functions X . For the mixture of Gaus-115

sian distribution we assume Mjk = M for simplicity. In order to obtain updates for the parameters of116

the mixture distribution, we define a class variable ξ(i) = (ξ
(i)⊤
1 , . . . , ξ

(i)⊤
p , ξ̄

(i)⊤
1 , . . . , ξ̄

(i)⊤
p )⊤117

with ξ
(i)
j = (ξ

(i)
j1 , . . . , ξ

(i)
jKj

)⊤ and ξ̄
(i)
j = (ξ

(i)
j,Kj+1, . . . , ξ

(i)
jS )

⊤ where ξ
(i)
jk = m if ϵ̃

(i)
jk be-118

longs to the mixture component m. Let M (i) = (µ
(i)⊤
1 , . . . ,µ

(i)⊤
p , µ̄

(i)⊤
1 , . . . , µ̄

(i)⊤
p )⊤ and119

T (i) = diag(τ (i)
1 , . . . , τ

(i)
p , τ̄

(i)
1 , . . . , τ̄

(i)
p ) be the mean and covariance matrix of ϵ(i) where120

µ
(i)
j = (µ

(i)
j1 , . . . , µ

(i)
jKj

)⊤, µ̄
(i)
j = (µ

(i)
j,Kj+1, . . . , µ

(i)
jS)

⊤, τ
(i)
j = (τ

(i)
j1 , . . . , τ

(i)
jS )

⊤ and τ̄
(i)
j =121

(τ
(i)
j,Kj+1, . . . , τ

(i)
jS )

⊤ with µ
(i)
jk =

∑M
m=1 µjkm1(ξ

(i)
jk = m) and τ

(i)
jk =

∑M
m=1 τjkm1(ξ

(i)
jk = m).122

Define πjk = (πjk1, . . . , πjkm)⊤,∀j ∈ [p], k ∈ [S]. Let ϵ̃(i) = α̃(i) − B̃α̃(i) be the vector of123

exogenous variables for the ith observation.124

Posterior distribution of the parameters of the mixture distribution. For each j ∈ [p], k ∈125

[S], update the mixture weights πjk by drawing from a Dirichlet distribution with concentration126

parameters {βm}m∈[M ] where,127

βm = α+

n∑
i=1

1(ξ
(i)
jk = m) (15)

Now, given the πjk’s, for each i ∈ [n], j ∈ [p], k ∈ [S], update the class variables ξ
(i)
jk from a128

categorical distribution with class probability {π(i)
m }m∈M where, π(i)

m ∝ πjkmN(ϵ̃
(i)
jk ;µjkm, τjkm)129

with
∑M

m=1 π
(i)
m = 1.130

π(i)
m ∝ πjkmN(ϵ̃

(i)
jk ;µjkm, τjkm),

M∑
m=1

π(i)
m = 1 (16)

Next, for each j ∈ [p], k ∈ [S],m ∈ [M ] we update the mean parameter µjkm by sampling from a131

N(pjkm, q−1
jkm) distribution with,132

qjkm =

(
1/bµ +

n∑
i=1

1(ξ
(i)
jk = m)

)

pjkm = q−1
jkm

(
aµ +

n∑
i=1

1(ξ
(i)
jk = m)ϵ̃

(i)
jk

) (17)

The variance parameter τjkm by sampling from a IG(p′jkm, q′jkm) where,133

p′jkm = aτ + 1/2

n∑
i=1

1(ξ
(i)
jk = m)

q′jkm = bτ + 1/2

n∑
i=1

1(ξ
(i)
jk = m)(ϵ̃

(i)
jk − µjkm)2

(18)

Posterior distribution of the orthonormal basis coefficients: For each i ∈ [n], define L(i) =134

(I − B̃)⊤T (i)−1(I − B̃), D(i)
1 = diag(D(i)

11 , . . . ,D
(i)
1p ) with D

(i)
1j =

(∑
t∈T (i)

j
ϕ(t)ϕ(t)⊤

/
σj

)
135
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and D
(i)
2 = (d

(i)⊤
21 , . . . ,d

(i)⊤
2p )⊤ with d

(i)
2j =

(∑
t∈T (i)

j
X

(i)
jt ϕ(t)

/
σj

)
. Now we sample α̃(i) from136

NpS(p
(i)
α ,Q

(i)−1
α ) where,137

Q(i)
α = (D

(i)
1 +L(i))

p(i)
α = Q(i)−1

α

(
D

(i)
2 + (I − B̃)′T (i)−1M (i)

) (19)

Posterior distribution of the noise variances: For each j ∈ [p], update σj by sampling from138

IG (pσ, qσ) where,139

pσ = aσ + 1/2

n∑
i=1

T
(i)
j

qσ = bσ + 1/2

n∑
i=1

∑
t∈T (i)

j

(
X

(i)
jt − α̃

(i)⊤
j ϕ(t)

)2 (20)

Posterior distribution of the edge formation probability: Update the edge probability r by140

drawing from a Beta(pr, qr) distribution where,141

pr = ar +
∑
j ̸=ℓ

Ejℓ

qr = br +
∑
j ̸=ℓ

(1− Ejℓ)
(21)

Posterior distribution of the causal effect size: Update γ by drawing from a IG(pγ , qγ) where,142

pγ = aγ +K2/2
∑
j ̸=ℓ

Ejℓ

qγ = bγ + 1/2
∑
j ̸=ℓ

Ejℓ trace(B⊤
jℓBjℓ)

(22)

Posterior distribution of the coefficients of the bspline coefficients: Define for each i ∈ [n], j ∈143

[p], k ∈ [S], X̃(i)
jt,−k = X

(i)
jt −

∑S
h=1
h ̸=k

α̃
(i)
jhϕh(t). For each k ∈ [S], we draw ÃU

k from NR(pk,Qk)144

where,145

Qk =




n∑
i=1

p∑
j=1

(α̃
(i)
jk )

2

σj

∑
t∈T (i)

j

b(t)b(t)⊤

+ S−1
k


−1

pk = Qk

 n∑
i=1

p∑
j=1

∑
t∈T (i)

j

α̃
(i)
jk

σj
X̃

(i)
jt,−kb(t)


(23)

Now, denote Pk = JÃ−k, where J =
∫
b̃(ω)b̃⊤(ω) dω. Finally, transform and normalize the uncon-146

strained sample to ÃN
k = ÃU

k −QkPk(P
⊤
k QkPk)

−1PkÃ
U
k and Ãk = ÃN

k × ([ÃN
k ]⊤JÃN

k )−1/2.147

Posterior distribution of the regularization parameter. Independently for each k ∈ [S], con-148

ditional on all other parameters, denote qk = 1/2
∑R

r=3 Ã
2
kr and p = R/2. We then draw each λk149

from a Gamma(p, qk) distribution truncated at (Lk, Uk).150
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Posterior distribution of the adjacency and causal effect matrices. Recursively for each151

Ejℓ, j, ℓ ∈ [p], we perform a birth/death move such that E′ = E except E′
jℓ = 1 − Ejℓ. The152

joint posterior of (Bjℓ, Ejℓ) does not have closed form expression and therefore we perform a153

Metropolis Hastings (MH) step for joint acceptance or rejection of (Bjℓ, Ejℓ). First we draw a B′
jℓ154

from a proposal distribution N(Bjℓ, zIK , IK). We check whether B′(= B except for j, ℓ block155

entry) satisfies the eigenvalue condition given in Assumption 2 of the main manuscript. If yes then156

we proceed to the next step and if not, we draw another B′
jℓ from the proposal ditribution. Here z is157

a tuning parameter for the MH step. Next we calculate the acceptance ratio(α) = αN − αD where,158

αN = E′
jℓ log

(
rMV N(B′

jℓ;Bjℓ, γIK , IK)
)
+(1−E′

jℓ) log
(
(1− r)MVN(B′

jℓ;Bjℓ, sγIK , IK)
)
+

n∑
i=1

log
(
N(α̃(i); (I − B̃′)−1M (i), (I − B̃′)⊤T (i)−1(I − B̃′))

)
(24)

159

αD = Ejℓ log
(
rMV N(Bjℓ;B

′
jℓ, γIK , IK)

)
+(1−Ejℓ) log

(
(1− r)MVN(Bjℓ;B

′
jℓ, sγIK , IK)

)
+

n∑
i=1

log
(
N(α̃(i); (I − B̃)−1M (i), (I − B̃)⊤T (i)−1(I − B̃))

)
(25)

Then we accept or reject the proposed (B′
jℓ, E

′
jℓ) based on whether the value of a uniform random160

variable is less than or greater than min{1, α}. The value of z is tuned to achieve an acceptance rate161

between 20% to 40%.162

B.3 Markov Chain Monte Carlo algorithm163

In this section we delineate the steps of Markov Chain Monte Carlo algorithm for drawing samples164

from the posterior distributions.165

Algorithm 1 MCMC algorithm to obtain posterior samples
1: for b← 1 to B do
2: for i← 1 to n do
3: Draw α̃(i),[b] ∼ NpS(p

(i)
α , (Q

(i)
α )−1); ▷ Update the basis coefficients by (19)

4: end for
5: end for
6: for j ← 1 to p do
7: Draw σ

[b]
j from IG (pσ, qσ); ▷ Update the noise variances by (20)

8: end for
9: Draw r[b] from Beta(pr, qr); ▷ Update the edge formation probability by (21)

10: Draw γ[b] from IG(pγ , qγ); ▷ Update the causal effect size by (22)
11: for k ← 1 to S do
12: Draw ÃU

k ∼ NR(pk,Qk); ▷ Update the un-normalized bspline coefficients by (23)
13: Calculate Pk = JÃ−k;
14: Calculate ÃN

k = ÃU
k −QkPk(P

⊤
k QkPk)

−1PkÃ
U
k ;

15: Normalize Ã
[b]
k = ÃN

k × ([ÃN
k ]⊤JÃN

k )−1/2;
16: end for
17: for k ← 1 to S do

18: Draw λ
[b]
k ∼ Gamma

(
R
2 ,

∑R
r=3

(
Ã

[b]
kr

)2

2

)
; ▷ Update the regularization parameter

19: end for
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20: for j ← 1 to p do
21: for k ← 1 to K do
22: Draw π

[b]
jk ∼ Dir(β1, . . . , βM ) ▷ Update the mixing weights by (15)

23: for i← 1 to n do
24: Draw ξ

(i),[b]
jk ∼ Cat({π(i),[b]

m }m∈[M ]); ▷ Update the class labels by (16)
25: end for
26: end for
27: end for
28: for j ← 1 to p do
29: for k ← 1 to K do
30: for m← 1 to M do
31: Draw µ

[b]
jkm ∼ N(pjkm, q−1

jkm); ▷ Update the mean parameter by (17)

32: Draw τ
[b]
jkm ∼ IG(p′jkm, q′jkm); ▷ Update the variance parameter by (18)

33: end for
34: end for
35: end for
36: for j ← 1 to p do
37: for ℓ← 1 to p do
38: Update (Ejℓ,Bjℓ) by MH step using (25) and (24)
39: end for
40: end for

C Some additional simulations166

C.1 Misspecification analysis of the proposed model167

C.1.1 With general exogenous variable distributions168

In this section we consider simulating the exogenous variable from distributions other than that of169

laplace distribution and compare the performance of our algorithm. In particular, following Shimizu170

et al., 2011, we generate the exogenous variable ϵjk from (1) Student t distribution with 1 degrees171

of freedom, (2) Uniform (3) Exponential, (4) Mixture of two double exponentials, (5) Symmetric172

mixture of four Gaussians, and (6) Non symmetric mixture of two Gaussians. Across all exogenous173

variable distributions, Table 1 shows that the proposed FENCE model had the best performance.174

Table 1: Table showing comparison of several methods for different distributions of exogenous
variables ϵjk under 50 replicates

Distributions FENCE fLiNG fPCA-LINGAM fPCA-PC fPCA-CCD

TPR FDR MCC TPR FDR MCC TPR FDR MCC TPR FDR MCC TPR FDR MCC
(1) 0.81(0.04) 0.24(0.07) 0.76(0.05) 0.71(0.09) 0.69(0.05) 0.36(0.04) 0.85(0.02) 0.84(0.04) 0.28(0.08) 0.81(0.05) 0.71(0.06) 0.26(0.07) 0.91(0.02) 0.62(0.04) 0.38(0.02)
(2) 0.75(0.04) 0.21(0.03) 0.86(0.04) 0.73(0.04) 0.68(0.04) 0.33(0.07) 0.82(0.06) 0.76(0.04) 0.26(0.02) 0.83(0.06) 0.67(0.04) 0.30(0.05) 0.87(0.02) 0.69(0.05) 0.35(0.04)
(3) 0.77(0.04) 0.23(0.05) 0.83(0.04) 0.74(0.04) 0.63(0.03) 0.32(0.04) 0.86(0.04) 0.81(0.03) 0.24(0.03) 0.81(0.03) 0.76(0.03) 0.31(0.03) 0.89(0.02) 0.73(0.05) 0.41(0.03)
(4) 0.88(0.07) 0.14(0.06) 0.89(0.05) 0.67(0.07) 0.75(0.06) 0.29(0.05) 0.81(0.02) 0.79(0.05) 0.22(0.09) 0.82(0.08) 0.75(0.04) 0.27(0.05) 0.83(0.03) 0.58(0.03) 0.43(0.03)
(5) 0.81(0.07) 0.21(0.06) 0.87(0.05) 0.69(0.06) 0.71(0.05) 0.25(0.04) 0.84(0.03) 0.76(0.02) 0.25(0.06) 0.80(0.07) 0.73(0.05) 0.29(0.03) 0.86(0.04) 0.67(0.05) 0.36(0.02)
(6) 0.79(0.06) 0.24(0.05) 0.81(0.04) 0.70(0.04) 0.71(0.06) 0.28(0.05) 0.82 (0.04) 0.73(0.05) 0.31(0.03) 0.83(0.07) 0.71(0.05) 0.25(0.03) 0.78(0.02) 0.68(0.04) 0.39(0.05)

C.1.2 With functions observed on unevenly spaced grids175

In this experiment, we generated simulated data with (n, p) values of either (500, 20), (500, 50),176

(800, 20), or (800, 50). Unlike the method used in Section 4 of the main manuscript, we initially177

selected 250 points at random from the uniform distribution between 0 and 1 and defined this set as178

D. For each realization i of function j, we randomly selected a subset D(i)
j of size m

(i)
j = 20 from179

D to measure the function. We generated the causal graph, direct causal effect matrix, orthonormal180

basis functions, basis coefficient sequences, and observations in the same way as Section 4 of the181

main manuscript. We conducted this scenario 50 times and compared the results with those from182

fLiNG, fPCA-LiNGAM, fPCA-PC and fPCA-CCD. The results presented in Table 2 demonstrate183

that FENCE is effective and superior to these other methods in learning directed cyclic graphs for184

general multivariate functional data.185
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Table 2: Comaprison of various methods under unevenly specified grids under 50 replicates

n p FENCE fLiNG fPCA-LINGAM fPCA-PC fPCA-CCD

TPR FDR MCC TPR FDR MCC TPR FDR MCC TPR FDR MCC TPR FDR MCC
500 20 0.86(0.03) 0.19(0.05) 0.89(0.05) 0.46(0.09) 0.73(0.05) 0.32(0.03) 0.25(0.02) 0.82(0.04) 0.17(0.04) 0.21(0.04) 0.83(0.04) 0.19(0.07) 0.56(0.02) 0.62(0.05) 0.32(0.06)
500 50 0.79(0.04) 0.24(0.06) 0.84(0.04) 0.37(0.04) 0.79(0.06) 0.29(0.05) 0.23(0.04) 0.87(0.03) 0.15(0.02) 0.17(0.06) 0.85(0.04) 0.17(0.05) 0.51(0.05) 0.67(0.03) 0.27(0.01)

800 20 0.91(0.04) 0.16(0.03) 0.91(0.04) 0.61(0.07) 0.79(0.06) 0.41(0.04) 0.33(0.03) 0.79(0.05) 0.25(0.02) 0.35(0.03) 0.81(0.02) 0.31(0.03) 0.78(0.02) 0.56(0.01) 0.39(0.03)
800 50 0.88(0.07) 0.20(0.04) 0.88(0.05) 0.55(0.03) 0.81(0.02) 0.38(0.05) 0.27(0.02) 0.86(0.05) 0.22(0.09) 0.31(0.06) 0.82(0.04) 0.29(0.05) 0.73(0.03) 0.64(0.04) 0.36(0.05)

C.1.3 When the true graph is acyclic186

In this section we compared our method with the fLiNG method under the assumption that the true187

graph is acyclic. The entire simulation setting remains same as that of described in Section 4 of the188

main manuscript except that the true graph was generated under acyclicity constraint. It is observed189

from Table 3 that under this assumption, fLiNG has superior performance against the proposed190

FENCE model.191

Table 3: Comparison of two methods when the true graph is acyclic under 50 replicates

n p d FENCE fLiNG

TPR FDR MCC TPR FDR MCC
150 30 125 0.81(0.03) 0.29(0.05) 0.85(0.05) 0.83(0.05) 0.21(0.05) 0.91(0.04)
150 60 125 0.79(0.04) 0.32(0.06) 0.81(0.02) 0.82(0.03) 0.24(0.06) 0.87(0.05)
150 30 250 0.67(0.05) 0.34(0.06) 0.79(0.04) 0.81(0.04) 0.23(0.06) 0.82(0.05)
150 60 250 0.64(0.04) 0.36(0.03) 0.74(0.04) 0.78(0.05) 0.26(0.06) 0.79(0.05)

300 30 125 0.85(0.03) 0.23(0.05) 0.87(0.04) 0.79(0.05) 0.19(0.06) 0.93(0.04)
300 60 125 0.81(0.04) 0.26(0.05) 0.81(0.08) 0.85(0.02) 0.21(0.05) 0.87(0.04)
300 30 250 0.77(0.02) 0.31(0.06) 0.81(0.05) 0.78(0.03) 0.23(0.06) 0.85(0.05)
300 60 250 0.75(0.03) 0.35(0.04) 0.79(0.05) 0.82(0.03) 0.24(0.05) 0.80(0.05)

C.1.4 When the true structural equation model is non-linear192

In this section, we have outlined the misspecification analysis for our model by generating data193

corresponding to a non-linear structural equation model (SEM). We have considered a scenario with194

number of samples(n) = 100, number of nodes(p) = 6 and evenly spaced time grid(d) over (0, 1)195

of size d = 100. The summary measures corresponding to 10 replicates are given in Table 4 below.196

The poor performance is clearly expected because our modeling assumptions involve linear SEM.197

Table 4: Performance of FENCE when the true SEM is non-linear

FENCE
TPR FDR MCC

0.27(0.08) 0.71(0.07) 0.34(0.07)

C.2 Sensitivity analysis198

In this section, we outline how sensitive the performance of our model is against different choices of199

hyperparameters. The hyperparameters for our model are (aγ , bγ), (aτ , bτ ), (aσ, bσ), s, R, S,M and200

β. The data were generated the same way as in Section 4 of the main manuscript with (n, p, d) =201

(150, 20, 125). From Table 5 we can conclude that the performance of our model is quite robust202

under different choice of hyperparameters.203

D Comparison of various methods204

In this section, as discussed in Section 4 of the main manuscript, we give the full summary of the205

simulation results related to the comparison of our method, FENCE, against fLiNG, fPCA-LiNGAM,206

fPCA-PC and fPCA-CCD in Table 6. Our conclusions remain the same.207
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Table 5: Sensitivity analysis for different choices of hyperparameters. The metrics reported are based
on 50 repetitions are reported; standard deviations are given within the parentheses.

Hyperparameters (aτ , bτ ) = (0.1, 0.1) (aσ, bσ) = (0.1, 0.1) (aγ , bγ) = (0.1, 0.1) s = 0.01 R = 30 S = 15 M = 15 β = 0.1
TPR 0.79(0.02) 0.80(0.02) 0.78(0.03) 0.75(0.03) 0.79(0.02) 0.80(0.01) 0.81(0.02) 0.82(0.02)
FDR 0.16(0.03) 0.18(0.03) 0.18(0.05) 0.20(0.04) 0.23(0.02) 0.19(0.03) 0.15(0.03) 0.21(0.02)
MCC 0.76(0.04) 0.81(0.04) 0.83(0.04) 0.82(0.03) 0.81(0.01) 0.84(0.04) 0.83(0.01) 0.84(0.03)

Hyperparameters (aτ , bτ ) = (0.1, 1) (aσ, bσ) = (0.01, 0.01) (aγ , bγ) = (0.1, 1) s = 0.03 R = 20 S = 10 M = 20 β = 2
TPR 0.80(0.02) 0.79(0.03) 0.76(0.02) 0.75(0.03) 0.78(0.03) 0.79(0.02) 0.82(0.04) 0.81(0.03)
FDR 0.17(0.03) 0.18(0.04) 0.15(0.03) 0.19(0.04) 0.22(0.03) 0.21(0.03) 0.15(0.03) 0.23(0.03)
MCC 0.77(0.02) 0.80(0.02) 0.82(0.02) 0.82(0.03) 0.80(0.02) 0.83(0.03) 0.83(0.03) 0.85(0.05)

Hyperparameters (aτ , bτ ) = (5, 1) (aσ, bσ) = (0.1, 1) (aγ , bγ) = (5, 1) s = 0.05 R = 25 S = 20 M = 30 β = 5
TPR 0.76(0.04) 0.82(0.05) 0.79(0.03) 0.76(0.04) 0.78(0.03) 0.80(0.03) 0.81(0.02) 0.79(0.04)
FDR 0.17(0.05) 0.19(0.04) 0.19(0.02) 0.20(0.03) 0.23(0.03) 0.22(0.04) 0.16(0.03) 0.21(0.03)
MCC 0.78(0.02 ) 0.83(0.03) 0.83(0.05) 0.81(0.03) 0.81(0.01) 0.84(0.01) 0.82(0.02) 0.83(0.03)

Table 6: Comparison of performance of various methods under 50 replicates. Since LiNGAM is not
applicable to cases where q > n with q = Kp being the total number of extracted basis coefficients
across all functions, the results from those cases are not available and indicated by "-".

n p d FENCE fLiNG fPCA-LINGAM fPCA-PC fPCA-CCD

TPR FDR MCC TPR FDR MCC TPR FDR MCC TPR FDR MCC TPR FDR MCC
75 20 125 0.85(0.09) 0.19(0.07) 0.88(0.05) 0.41(0.09) 0.79(0.05) 0.36(0.04) 0.35(0.19) 0.84(0.04) 0.11(0.08) 0.20(0.09) 0.83(0.06) 0.10(0.07) 0.69(0.03) 0.41(0.04) 0.23(0.03)
75 40 125 0.79(0.08) 0.23(0.06) 0.86(0.04) 0.37(0.08) 0.82(0.06) 0.33(0.05) - - - 0.11(0.06) 0.91(0.04) 0.05(0.05) 0.73(0.02) 0.47(0.04) 0.21(0.05)
75 60 125 0.75(0.07) 0.27(0.05) 0.83(0.04) 0.34(0.07) 0.83(0.06) 0.32(0.04) - - - 0.11(0.03) 0.91(0.03) 0.06(0.03) 0.68(0.03) 0.61(0.05) 0.19(0.03)

150 20 125 0.88(0.07) 0.14(0.06) 0.89(0.05) 0.45(0.07) 0.75(0.06) 0.39(0.05) 0.28(0.22) 0.86(0.05) 0.08(0.09) 0.31(0.08) 0.75(0.04) 0.12(0.05) 0.71(0.03) 0.42(0.03) 0.25(0.04)
150 40 125 0.81(0.07) 0.21(0.06) 0.87(0.05) 0.39(0.06) 0.79(0.05) 0.37(0.04) 0.35(0.22) 0.91(0.02) 0.08(0.06) 0.25(0.07) 0.81(0.05) 0.06(0.03) 0.73(0.04) 0.47(0.05) 0.23(0.03)
150 60 125 0.79(0.06) 0.24(0.05) 0.86(0.04) 0.36(0.04) 0.80(0.06) 0.36(0.05) - - - 0.23(0.07) 0.83(0.05) 0.05(0.03) 0.72(0.05) 0.54(0.04) 0.22(0.02)

300 20 125 0.91(0.03) 0.09(0.04) 0.90(0.04) 0.51(0.04) 0.73(0.06) 0.41(0.04) 0.30(0.19) 0.84(0.05) 0.11(0.09) 0.36(0.09) 0.72(0.05) 0.14(0.05) 0.81(0.03) 0.39(0.04) 0.26(0.03)
300 40 125 0.87(0.04) 0.15(0.05) 0.87(0.05) 0.47(0.05) 0.75(0.06) 0.38(0.05) 0.27(0.20) 0.91(0.02) 0.08(0.06) 0.29(0.06) 0.76(0.06) 0.07(0.03) 0.77(0.03) 0.45(0.02) 0.24(0.03)
300 60 125 0.85(0.05) 0.17(0.03) 0.86(0.03) 0.45(0.05) 0.76(0.04) 0.38(0.03) 0.28(0.17) 0.91(0.05) 0.07(0.06) 0.28(0.04) 0.77(0.05) 0.05(0.03) 0.72(0.03) 0.49(0.02) 0.22(0.03)

75 20 250 0.81(0.04) 0.23(0.02) 0.85(0.05) 0.39(0.07) 0.80(0.05) 0.39(0.04) 0.32(0.14) 0.82(0.03) 0.09(0.04) 0.19(0.07) 0.81(0.04) 0.13(0.07) 0.67(0.03) 0.46(0.03) 0.22(0.04)
75 40 250 0.73(0.04) 0.28(0.05) 0.82(0.04) 0.35(0.04) 0.85(0.06) 0.33(0.05) - - - 0.25(0.06) 0.83(0.04) 0.12(0.04) 0.68(0.02) 0.51(0.04) 0.21(0.03)
75 60 250 0.67(0.03) 0.34(0.05) 0.79(0.04) 0.34(0.04) 0.85(0.03) 0.31(0.04) - - - 0.17(0.03) 0.83(0.02) 0.09(0.03) 0.63(0.04) 0.56(0.04) 0.19(0.04)

150 20 250 0.83(0.06) 0.17(0.05) 0.86(0.05) 0.46(0.07) 0.73(0.07) 0.42(0.05) 0.32(0.19) 0.79(0.05) 0.13(0.05) 0.41(0.08) 0.72(0.04) 0.19(0.05) 0.73(0.04) 0.43(0.02) 0.24(0.03)
150 40 250 0.79(0.02) 0.26(0.06) 0.82(0.03) 0.41(0.05) 0.71(0.05) 0.40(0.03) 0.31(0.14) 0.81(0.02) 0.13(0.06) 0.46(0.07) 0.73(0.05) 0.15(0.02) 0.71(0.03) 0.47(0.04) 0.23(0.03)
150 60 250 0.69(0.05) 0.31(0.05) 0.79(0.04) 0.43(0.03) 0.79(0.06) 0.43(0.05) - - - 0.41(0.03) 0.75(0.05) 0.14(0.03) 0.69(0.02) 0.52(0.03) 0.21(0.02)

300 20 250 0.86(0.02) 0.16(0.04) 0.85(0.04) 0.68(0.02) 0.77(0.07) 0.47(0.04) 0.45(0.13) 0.86(0.05) 0.17(0.09) 0.42(0.09) 0.86(0.03) 0.13(0.05) 0.78(0.02) 0.44(0.06) 0.27(0.03)
300 40 250 0.79(0.08) 0.16(0.05) 0.84(0.06) 0.73(0.05) 0.71(0.06) 0.43(0.05) 0.39(0.16) 0.87(0.05) 0.16(0.07) 0.45(0.06) 0.81(0.06) 0.12(0.06) 0.76(0.05) 0.49(0.06) 0.23(0.05)
300 60 250 0.76(0.05) 0.21(0.03) 0.80(0.03) 0.77(0.05) 0.74(0.03) 0.42(0.03) 0.28(0.17) 0.90(0.04) 0.13(0.04) 0.43(0.04) 0.79(0.07) 0.12(0.04) 0.72(0.06) 0.53(0.03) 0.22(0.04)
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