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Abstract

Latent space Energy-Based Models (EBMs), also known as energy-based priors,
have drawn growing interests in the field of generative modeling due to its flexi-
bility in the formulation and strong modeling power of the latent space. However,
the common practice of learning latent space EBMs with non-convergent short-
run MCMC for prior and posterior sampling is hindering the model from further
progress; the degenerate MCMC sampling quality in practice often leads to de-
graded generation quality and instability in training, especially with highly multi-
modal and/or high-dimensional target distributions. To remedy this sampling is-
sue, in this paper we introduce a simple but effective diffusion-based amortization
method for long-run MCMC sampling and develop a novel learning algorithm for
the latent space EBM based on it. We provide theoretical evidence that the learned
amortization of MCMC is a valid long-run MCMC sampler. Experiments on sev-
eral image modeling benchmark datasets demonstrate the superior performance of
our method compared with strong counterparts1.

1 Introduction

Generative modeling of data distributions has achieved impressive progress with the fast develop-
ment of deep generative models in recent years [1–9]. It provides a powerful framework that allows
successful applications in synthesizing data of different modalities [10–15], extracting semantically
meaningful data representation [16–18] as well as other important domains of unsupervised or semi-
supervised learning [19–21]. A fundamental and powerful branch of generative modeling is the Deep
Latent Variable Model (DLVM). Typically, DLVM assumes that the observation (e.g., a piece of
text or images) is generated by its corresponding low-dimensional latent variables via a top-down
generator network [1–3]. The latent variables are often assumed to follow a non-informative prior
distribution, such as a uniform or isotropic Gaussian distribution. While one can directly learn a
deep top-down generator network to faithfully map the non-informative prior distribution to the data
distribution, learning an informative prior model in the latent space could further improve the ex-

1Code and data available at https://github.com/yuPeiyu98/Diffusion-Amortized-MCMC.
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pressive power of the DLVM with significantly less parameters [22]. In this paper, we specifically
consider learning an EBM in the latent space as an informative prior for the model.

Learning energy-based prior can be challenging, as it typically requires computationally expen-
sive Markov Chain Monte Carlo (MCMC) sampling to estimate learning gradients. The difficulty
of MCMC-based sampling is non-negligible when the target distribution is highly multi-modal or
high-dimensional. In these situations, MCMC sampling can take a long time to converge and per-
form poorly on traversing modes with limited iterations [23]. Consequently, training models with
samples from non-convergent short-run MCMC [24], which is a common choice for learning latent
space EBMs [22], often results in malformed energy landscapes [15, 24, 25] and biased estima-
tion of the model parameter. One possible solution is to follow the variational learning scheme [1],
which however requires non-trivial extra efforts on model design to deal with problems like posterior
collapse [26–28] and limited expressivity induced by model assumptions [1, 29, 30].

To remedy this sampling issue and further unleash the expressive power of the prior model, we
propose to shift attention to an economical compromise between unrealistically expensive long-run
MCMC and biased short-run MCMC: we consider learning valid amortization of the potentially
long-run MCMC for learning energy-based priors. Specifically, inspired by the connection between
MCMC sampling and denoising diffusion process [7, 8, 31], in this paper we propose a diffusion-
based amortization method suitable for long-run MCMC sampling in learning latent space EBMs.
The learning algorithm derived from it breaks the long-run chain into consecutive affordable short-
run segments that can be iteratively distilled by a diffusion-based sampler. The core idea is simple
and can be summarized by a one-liner (Fig. 1). We provide theoretical and empirical evidence that
the resulting sampler approximates the long-run chain (see the proof-of-concept toy examples in
Appendix E.1), and brings significant performance improvement for learning latent space EBMs on
several tasks. We believe that this proposal is a notable attempt to address the learning issues of
energy-based priors and is new to the best of our knowledge. We kindly refer to Section 5 for a
comprehensive discussion of the related work.

Contributions i) We propose a diffusion-based amortization method for MCMC sampling and de-
velop a novel learning algorithm for the latent space EBM. ii) We provide a theoretical understanding
that the learned amortization of MCMC is a valid long-run MCMC sampler. iii) Our experiments
demonstrate empirically that the proposed method brings higher sampling quality, a better-learned
model and stronger performance on several image modeling benchmark datasets.

2 Background

2.1 Energy-Based Prior Model

We assume that for the observed sample x P RD, there exists z P Rd as its unobserved latent
variable vector. The complete-data distribution is

pθpz,xq :“ pαpzqpβpx|zq, pαpzq :“
1

Zα
exp pfαpzqq p0pzq, (1)

where pαpzq is the prior model with parameters α, pβpx|zq is the top-down generation model with
parameters β, and θ “ pα,βq. The prior model pαpzq can be formulated as an energy-based model,
which we refer to as the Latent-space Energy-Based Model (LEBM) [22] throughout the paper. In
this formulation, fαpzq is parameterized by a neural network with scalar output, Zα is the partition
function, and p0pzq is standard normal as a reference distribution. The prior model in Eq. (1) can be
interpreted as an energy-based correction or exponential tilting of the original prior distribution p0.
The generation model follows pβpx|zq “ N pgβpzq, σ2IDq, where gβ is the generator network and
σ2 takes a pre-specified value as in VAE [1]. This is equivalent to using l2 error for reconstruction.

The parameters of LEBM and the generation model can be learned by Maximum Likelihood Esti-
mation (MLE) [22]. To be specific, given the training data x, the gradients for updating α,β are,

δαpxq :“ Epθpz|xq r∇αfαpzqs ´ Epαpzq r∇αfαpzqs , δβpxq :“ Epθpz|xq r∇β log pβpx|zqs . (2)

In practice, one may use the Monte-Carlo average to estimate the expectations in Eq. (2). This in-
volves sampling from the prior pαpzq and the posterior pθpz|xq distribution using MCMC, specifi-
cally Langevin Dynamics (LD) [32], to estimate the expectations and hence the gradient. For a target
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Figure 1: Learning the DAMC sampler. The training samples for updating the sampler to ϕk`1 is obtained by
T -step short-run LD, initialized with the samples from the current learned sampler ϕk. Best viewed in color.

distribution πpzq, the dynamics iterates

zt`1 “ zt `
s2

2
∇zt

log πpztq ` swt, t “ 0, 1, ..., T ´ 1, wt „ N p0, Idq, (3)

where s is a small step size. One can draw z0 „ N p0, Idq to initialize the chain. For sufficiently
small step size s, the distribution of zt will converge to π as t Ñ 8 [32]. However, it is prohibitively
expensive to run LD until convergence in most cases, for which we may resort to limited iterations of
LD for sampling in practice. This non-convergent short chain yields a moment-matching distribution
close to the true πpzq but is often biased, which was dubbed as short-run LD [15, 23–25].

2.2 Denoising Diffusion Probabilistic Model

Closely related to EBMs are the Denoising Diffusion Probabilistic Models (DDPMs) [5, 7, 8]. As
pointed out in [5, 8], the sampling procedure of DDPM with ϵ-prediction parametrization resembles
LD; ϵ (predicted noise) plays a similar role to the gradient of the log density [8].

In the formulation proposed by Kingma et al. [33], the DDPM parameterized by ϕ is specified
by a noise schedule built upon λs “ logrβ2

s{σ2
s s, i.e., the log signal-to-noise-ratio, that decreases

monotonically with s. βs and σ2
s are strictly positive scalar-valued functions of s. We use z0 to

denote training data in Rd. The forward-time diffusion process qpz|z0q is defined as:

qpzs|z0q “ N pzs;βsz0, σ
2
sIdq, qpz1

s|zsq “ N pz1
s; pβs1 {βsqzs, σ

2
s1|sIdq, (4)

where 0 ď s ă s1 ď S and σ2
s1|s “ p1 ´ eλs1 ´λsqσ2

s . Noticing that the forward process can be
reverted as qpzs|zs1 , z0q “ N pzs; µ̃s|s1 pzs1 , z0q, σ̃2

s|s1Idq, an ancestral sampler qϕpzs|zs1 q [8] that
starts at zS „ N p0, Idq can be derived accordingly [33]:

µ̃s|s1 pzs1 , z0q “ eλs1 ´λspαs{αs1 qzs1 ` p1 ´ eλs1 ´λsqαsz0, σ̃2
s|s1 “ p1 ´ eλs1 ´λsqσ2

s ,

zs “ µ̃s|s1 pzs1 , ẑ0q `

b

pσ̃2
s|s1 q

1´γpσ2
s1|sqγqϵ,

(5)

where ϵ is standard Gaussian noise, ẑ0 is the prediction of z0 by the DDPM ϕ, and γ is a hy-
perparameter that controls the noise magnitude, following [34]. The goal of DDPM is to recover
the distribution of z0 from the given Gaussian noise distribution. It can be trained by optimizing
Eϵ,λ

“

}ϵpzλq ´ ϵ}22

‰

, where ϵ „ N p0, Idq and λ is drawn from a distribution of log noise-to-signal
ratio ppλq over uniformly sampled times s P r0, Ss. This loss can be justified as a lower bound on
the data log-likelihood [8, 33] or as a variant of denoising score matching [7, 35]. We will exploit
in this paper the connection between DDPMs and LD sampling of EBMs, based upon which we
achieve better sampling performance for LEBM compared with short-run LD.

3 Method

In this section, we introduce the diffusion-based amortization method for long-run MCMC sampling
in learning LEBM in Section 3.1. The learning algorithm of LEBM based on the proposed method
and details about implementation are then presented in Section 3.2 and Section 3.3, respectively.
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3.1 Amortizing MCMC with DDPM

Amortized MCMC Using the same notation as in Section 2, we denote the starting distribution
of LD as π0pzq, the distribution after t-th iteration as πtpzq and the target distribution as πpzq.
The trajectory of LD in Eq. (3) is typically specified by its transition kernel Kpz|z1q. The process
starts with drawing z0 from π0pzq and iteratively sample zt at the t-th iteration from the transition
kernel conditioned on zt´1, i.e., πtpzq “ Kπt´1pzq, where Kπt´1pzq :“

ş

Kpz|z1qπt´1pz1qdz1.
Recursively, πt “ Ktπ0, where Kt denotes the t-step transition kernel. LD can therefore be viewed
as approximating a fixed point update in a non-parametric fashion since the target distribution π
is a stationary distribution πpzq :“

ş

Kpz|z1qπpz1qdz1,@z. This motivates several works for more
general approximations of this update [36–38] with the help of neural samplers.

Inspired by [36], we propose to use the following framework for amortizing the LD in learning the
LEBM. Formally, let Q “ tqϕu be the set of amortized samplers parameterized by ϕ. Given the
transition kernel K, the goal is to find a sampler qϕ˚ to closely approximate the target distribution
π. This can be achieved by iteratively distill T -step transitions of LD into qϕ:

qϕk
Ð argmin

qϕPQ
Drqϕk´1,T ||qϕs, qϕk´1,T :“ KT qϕk´1

, qϕ0
« π0, k “ 0, ...,K ´ 1. (6)

where Dr¨||¨s is the Kullbeck-Leibler Divergence (KLD) measure between distributions. Concretely,
Eq. (6) means that to recover the target distribution π, instead of using long-run LD, we can repeat
the following steps: i) employ a T -step short-run LD initialized with the current sampler qϕk´1

to
approximate KT qϕk´1

as the target distribution of the current sampler, and ii) update the current
sampler qϕk´1

to qϕk
. The correct convergence of qϕ to π with Eq. (6) is supported by the standard

theory of Markov chains [39], which suggests that the update in Eq. (6) is monotonically decreasing
in terms of KLD, Drqϕk

||πs ď Drqϕk´1
||πs. We refer to Appendix A.1 for a detailed explanation

and discussion of this statement. In practice, one can apply gradient-based methods to minimize
Drqϕk´1,T ||qϕs and approximate Eq. (6) for the update from qϕk´1

to qϕk
. The above formulation

provides a generic and flexible framework for amortizing the potentially long MCMC.

Diffusion-based amortization To avoid clutter, we simply write qϕk´1,T as qT . We can see that

argmin
qϕ

DrqT ||qϕs “ argmin
qϕ

´HpqT q ` HpqT , qϕq “ argmin
qϕ

´EqT rlog qϕs , (7)

where H represents the entropy of distributions. The selection of the sampler qϕ is a matter of de-
sign. According to Eq. (7), we may expect the following properties from qϕ: i) having analytically
tractable expression of the exact value or lower bound of log-likelihood, ii) easy to draw samples
from and iii) capable of close approximation to the given distribution tqT u. In practice, iii) is impor-
tant for the convergence of Eq. (6). If qϕ is far away from qT in each iteration, then non-increasing
KLD property Drqϕk

||πs ď Drqϕk´1
||πs might not hold, and the resulting amortized sampler would

not converge to the true target distribution πpzq.

For the choice of qϕ, let us consider distilling the gradient field of qT in each iteration, so that the
resulting sampler is close to the qT distribution. This naturally points to the DDPMs [8]. To be
specific, learning a DDPM with ϵ-prediction parameterization is equivalent to fitting the finite-time
marginal of a sampling chain resembling annealed Langevin dynamics [7, 8, 31]. Moreover, it also
fulfills i) and ii) of the desired properties mentioned above. We can plug in the objective of DDPM
(Section 2.2), which is a lower bound of log qϕ, to obtain the gradient-based update rule for qϕ:

ϕ
pi`1q

k´1 Ð ϕ
piq
k´1 ´ η∇ϕEϵ,λ

“

}ϵpzλq ´ ϵ}22

‰

, ϕ
p0q

k Ð ϕ
pMq

k´1, i “ 0, 1, ...,M ´ 1 (8)

where ϵ „ N p0, Idq. λ is drawn from a distribution of log noise-to-signal ratio ppλq. η is the step
size for the update, and M is the number of iterations needed in Eq. (8). In practice, we find that
when amortizing the LD sampling chain, a light-weight DDPM qϕ updated with very small M , i.e.,
few steps of Eq. (8) iteration, approximates Eq. (6) well. We provide a possible explanation using
the Fisher information by scoping the asymptotic behavior of this update rule in the Appendix A.2.
We term the resulting sampler as Diffusion-Amortized MCMC (DAMC).

3.2 Approximate MLE with DAMC

In this section, we show how to integrate the DAMC sampler into the learning framework of LEBM
and form a symbiosis between these models. Given a set of N training samples txiu

N
i“1 indepen-

dently drawn from the unknown data distribution pdatapxq, the model pθ (Section 2.1) can be trained
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by maximizing the log-likelihood over training samples Lpθq “ 1
N

řN
i“1 log pθ pxiq. Doing so typ-

ically requires computing the gradients of Lpθq, where for each xi the learning gradient satisfies:

∇θ log pθpxiq “ Epθpzi|xiq r∇θ log pθpzi,xiqs

“ pEpθpzi|xiq r∇αfαpziqs ´ Epαpziq r∇αfαpziqs
loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

δαpxiq

,Epθpzi|xiq r∇β log pβpxi|ziqs
looooooooooooooooomooooooooooooooooon

δβpxiq

q.

(9)

Intuitively, based on the discussion in Section 2.1 and Section 3.1, we can approximate the distri-
butions in Eq. (9) by drawing samples from rzi|xis „ KT,zi|xi

qϕk
pzi|xiq, zi „ KT,zi

qϕk
pziq,

to estimate the expectations and hence the learning gradient. Here we learn the DAMC samplers
qϕk

pzi|xiq and qϕk
pziq for the posterior and prior sampling chain, respectively. ϕk represents the

current sampler as in Section 3.1; KT,zi|xi
and KT,zi

are the transition kernels for posterior and
prior sampling chain. Equivalently, this means to better estimate the learning gradients we can i) first
draw approximate posterior and prior MCMC samples from the current qϕk

model, and ii) update
the approximation of the prior pαpzq and posterior pθpz|xq distributions with additional T -step LD
initialized with qϕk

samples. These updated samples are closer to pθpzi|xiq and pαpziq compared
with short-run LD samples based on our discussion in Section 2.2. Consequently, the diffusion-
amortized LD samples provide a generally better estimation of the learning gradients and lead to
better performance, as we will show empirically in Section 4. After updating θ “ pα,βq based on
these approximate samples with Eq. (9), we can update qϕk

with Eq. (8) to distill the sampling chain
into qϕk`1

. As shown in Fig. 1, we can see that the whole learning procedure iterates between the
approximate MLE of pθ and the amortization of MCMC with qϕ. We refer to Appendix A.3 for an
extended discussion of this procedure.

After learning the models, we can use either DAMC or LEBM for prior sampling. For DAMC, we
may draw samples from qϕpziq with Eq. (5). Prior sampling with LEBM still requires short-run LD
initialized from N p0, Idq. For posterior sampling, we may sample from KT,zi|xi

qϕk
pzi|xiq, i.e.,

first draw samples from DAMC and then run few steps of LD to obtain posterior samples.

Algorithm 1: Learning algorithm of DAMC.
Input: initial parameters pα,β,ϕq; learning rate η “ pηα, ηβ, ηϕq; observed examples

txpiquNi“1; prob. of uncond. training puncond for the DAMC sampler.

Output:
´

θpKq
“ tαpKq,βpKq

u,ϕpKq
¯

.

1 for k “ 0 : K ´ 1 do
2 Sample a minibatch of data txpiquBi“1;
3 Draw DAMC samples: For each xpiq, draw z

piq
` and z

piq
´ from qϕk

pzi|xiq.
4 Prior LD update: For each xpiq, update z

piq
´ using Eq. (3), with πpziq “ pαpkq pziq;

5 Posterior LD update: For each xpiq, update z
piq
` using Eq. (3), with πpziq “ pβpkq pzi|xiq;

6 Update θpkq: Update αpkq and βpkq using Monte-Carlo estimates (i.e., Monte-Carlo
average) of Eq. (9) with tz

piq
` uBi“1 and tz

piq
´ uBi“1.

7 Update ϕpkq: Update ϕpkq using Eq. (8) with puncond and tz
piq
` uBi“1 as the target.

3.3 Implementation

In order to efficiently model both qϕk
pzi|xiq and qϕk

pziq, we follow the method of [40] to train
a single network to parameterize both models, where qϕk

pzi|xiq can be viewed as a conditional
DDPM with the embedding of xi produced by an encoder network as its condition, and qϕk

pziq

an unconditional one. For qϕk
pziq, we can input a null token H as its condition when predicting

the noise ϵ. We jointly train both models by randomly nullifying the inputs with the probability
puncond “ 0.2. During training, we use samples from qϕk

pzi|xiq to initialize both prior and poste-
rior updates for training stability. For the posterior and prior DAMC samplers, we set the number of
diffusion steps to 100. The number of iterations in Eq. (8) is set to M “ 6 throughout the experi-
ments. The LD runs 30 and 60 iterations for posterior and prior updates during training with a step
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Table 1: MSE(Ó) and FID(Ó) obtained from models trained on different datasets. The FID scores are com-
puted based on 50k generated images and training images for the first three datasets and 5k images for the
CelebA-HQ dataset. The MSEs are computed based on unseen testing images. We highlight our model results
in gray color. The best and second-best performances are marked in bold numbers and underlines, respectively;
tables henceforth follow this format. *[41] uses a prior model with 4x parameters compared with [22] and ours.

Model
SVHN CelebA CIFAR-10 CelebA-HQ

MSE FID MSE FID MSE FID MSE FID

VAE [1] 0.019 46.78 0.021 65.75 0.057 106.37 0.031 180.49
2s-VAE [48] 0.019 42.81 0.021 44.40 0.056 72.90 - -

RAE [49] 0.014 40.02 0.018 40.95 0.027 74.16 - -
NCP-VAE [50] 0.020 33.23 0.021 42.07 0.054 78.06 - -

Adaptive CE˚ [41] 0.004 26.19 0.009 35.38 0.008 65.01 - -

ABP [51] - 49.71 - 51.50 0.018 90.30 0.025 160.21
SRI [24] 0.018 44.86 0.020 61.03 - - - -

SRI (L=5) [24] 0.011 35.32 0.015 47.95 - - - -
LEBM [22] 0.008 29.44 0.013 37.87 0.020 70.15 0.025 133.07

Ours-LEBM 21.17 35.67 60.89 89.54
Ours-DAMC 0.002 18.76 0.005 30.83 0.015 57.72 0.023 85.88

size of s “ 0.1. For test time sampling from KT,zi|xi
qϕk

pzi|xiq, T “ 10 for the additional LD.
For a fair comparison, we use the same LEBM and generator as in [22, 41] for all the experiments.
We summarize the learning algorithm in Algorithm 1. Please see Appendices B and C for network
architecture and further training details, as well as the pytorch-style pseudocode of the algorithm.

4 Experiments

In this section, we are interested in the following questions: (i) How does the proposed method
compare with its previous counterparts (e.g., purely MCMC-based or variational methods)? (ii) How
is the scalability of this method? (iii) How are the time and parameter efficiencies? (iv) Does the
proposed method provide a desirable latent space? To answer these questions, we present a series
of experiments on benchmark datasets including MNIST [42], SVHN [43], CelebA64 [44], CIFAR-
10 [45], CelebAMask-HQ [46], FFHQ [10] and LSUN-Tower [47]. As to be shown, the proposed
method demonstrates consistently better performance in various experimental settings compared
with previous methods. We refer to Appendix D for details about the experiments.

4.1 Generation and Inference: Prior and Posterior Sampling

Generation and reconstruction We evaluate the quality of the generated and reconstructed im-
ages to examine the sampling quality of DAMC. Specifically, we would like to check i) how well
does DAMC fit the seen data, ii) does DAMC provide better MCMC samples for learning LEBM and
iii) the generalizability of DAMC on unseen data. We check the goodness of fit of DAMC by evalu-
ating the quality of the images generated with DAMC prior samples. If DAMC does provide better
MCMC samples for learning LEBM, we would expect better fitting of data and hence an improved
generation quality of LEBM. We evaluate the performance of posterior sampling given unseen test-
ing images by examining the reconstruction error on testing data. We benchmark our model against
a variety of previous methods in two groups. The first group covers competing methods that adopt
the variational learning scheme, including VAE [1], as well as recent two-stage methods such as 2-
stage VAE [48], RAE [49] and NCP-VAE [50], whose prior distributions are learned with posterior
samples in a second stage after the generator is trained. The second group includes methods that
adopt MCMC-based sampling. It includes Alternating Back-Propogation (ABP) [51], Short-Run In-
ference (SRI) from [24] and the vanilla learning method of LEBM [22], which relies on short-run
LD for both posterior and prior sampling. We also compare our method with the recently proposed
Adaptive CE [41]. It learns a series of LEBMs adaptively during training, while these LEBMs are
sequentially updated by density ratio estimation instead of MLE. To make fair comparisons, we
follow the same evaluation protocol as in [22, 41].
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(a) SVHN (b) CelebA (c) CIFAR-10 (d) CelebA-HQ

Figure 2: Samples generated from the DAMC sampler and LEBM trained on SVHN, CelebA, CIFAR-10
and CelebA-HQ datasets. In each sub-figure, the first four rows are generated by the DAMC sampler. The last
four rows are generated by LEBM trained with the DAMC sampler.

For generation, we report the FID scores [52] in Table 1. We observe that i) the DAMC sampler,
denoted as Ours-DAMC, provides superior generation performance compared to baseline models,
and ii) the LEBM learned with samples from DAMC, denoted as Ours-LEBM, demonstrates sig-
nificant performance improvement compared with the LEBM trained with short-run LD, denoted
as LEBM. These results confirm that DAMC is a reliable sampler and indeed partly addresses the
learning issue of LEBM caused by short-run LD. We would like to point out that the improvement
is clearer on the CelebAMask-HQ dataset, where the input data is of higher dimension (256 ˆ 256)
and contains richer details compared with other datasets. This illustrates the superiority of DAMC
sampler over short-run LD when the target distribution is potentially highly multi-modal. We show
qualitative results of generated samples in Fig. 2, where we observe that our method can generate
diverse, sharp and high-quality samples. For reconstruction, we compare our method with baseline
methods in terms of MSE in Table 1. We observe that our method demonstrates competitive recon-
struction error, if not better, than competing methods do. Additional qualitative results of generation
and reconstruction are presented in Appendices E.2 and E.3.

Model
FFHQ LSUN-T

MSE FID MSE FID

Opt. [53] 0.055 149.39 0.080 240.11
Enc. [16] 0.028 62.32 0.079 132.41

[22] w/ 1x 0.054 149.21 0.072 239.51
[22] w/ 2x 0.039 101.59 0.066 163.20
[22] w/ 4x 0.032 84.64 0.059 111.53

Ours 0.025 52.85 0.059 80.42

Table 2: MSE(Ó) and FID(Ó) for GAN inversion
on different datasets. Opt. and Enc. denotes the
optimization-based and encoder-based methods.

GAN inversion We have examined the scal-
ability of our method on the CelebAMask-HQ
dataset. Next, we provide more results on high-
dimensional and highly multi-modal data by
performing GAN inversion [54] using the pro-
posed method. Indeed, we may regard GAN
inversion as an inference problem and a spe-
cial case of posterior sampling. As a suitable
testbed, the StyleGAN structure [10] is specif-
ically considered as our generator in the exper-
iments: [53] points out that to effectively infer
the latent representation of a given image, the
GAN inversion method needs to consider an ex-
tended latent space of StyleGAN, consisting of
14 different 512-dimensional latent vectors. We attempt to use the DAMC sampler for GAN inver-
sion. We benchmark our method against i) learning an encoder that maps a given image to the latent
space [16], which relates to the variational methods for posterior inference, ii) optimizing a random
initial latent code by minimizing the reconstruction error and perceptual loss [53], which can be
viewed as a variant of LD sampling, and iii) optimizing the latent code by minimizing both the ob-
jectives used in ii) and the energy score provided by LEBM. We use the pretrained weights provided
by [18] for the experiments. Both the DAMC sampler and the encoder-based method are augmented
with 100 post-processing optimization iterations. We refer to Appendix D for more experiment de-
tails. We test LEBM-based inversion with different optimization iterations. To be specific, 1x, 2x,
and 4x represent 100, 200, and 400 iterations respectively. We can see in Table 2 that DAMC per-
forms better than all the baseline methods on the unseen testing data, which supports the efficacy of
our method in high-dimensional settings. We provide qualitative results in Fig. 3.

Parameter efficiency and sampling time One potential disadvantage of our method is its param-
eter inefficiency for introducing an extra DDPM. Fortunately, our models are in the latent space
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(a) Observation

(b) Inversion

Figure 3: Qualitative results of StyleGAN inversion using the DAMC sampler. In each sub-figure, the left
panel contain samples from the FFHQ dataset, and the right panel contains samples from the LSUN-T dataset.

(a) 200 steps (b) 2500 steps

Figure 4: Transition of Markov chains initialized from N p0, Idq towards pαpzq. We present results by
running LD for 200 and 2500 steps. In each sub-figure, the top panel displays the trajectory in the data space
uniformly sampled along the chain. The bottom panel shows the energy score fαpzq over the iterations.

so the network is lightweight. To be specific, on CIFAR-10 dataset the number of parameters in
the DDPM is only around 10% (excluding the encoder) of those in the generator. The method has
competitive time efficiency. With the batch size of 64, the DAMC prior sampling takes 0.3s, while
100 steps of short-run LD with LEBM takes 0.2s. The DAMC posterior sampling takes 1.0s, while
LEBM takes 8.0s. Further discussions about the limitations can be found in the Appendix G.1.

4.2 Analysis of Latent Space

Long-run langevin transition In this section, we examine the energy landscape induced by the
learned LEBM. We expect that a well-trained pαpzq fueled by better prior and posterior samples
from the DAMC sampler would lead to energy landscape with regular geometry. In Fig. 4, we
visualize the transition of LD initialized from N p0, Idq towards pαpzq on the model trained on the
CelebA dataset. Additional visualization of transitions on SVHN and CIFAR-10 datasets can be
found in the Appendix E.4. The LD iterates for 200 and 2500 steps, which is longer than the LD
within each training iteration (60 steps). For the 200-step set-up, we can see that the generation
quality quickly improves by exploring the local modes (demonstrating different facial features, e.g.,
hairstyle, facial expression and lighting). For the 2500-step long-run set-up, we can see that the LD
produces consistently valid results without the oversaturating issue of the long-run chain samples
[23]. These observations provide empirical evidence that the LEBM is well-trained.

Anomaly detection We further evaluate how the LEBM learned by our method could benefit the
anomaly detection task. With properly learned models, the posterior pθ,ϕpz|xq could form a dis-
criminative latent space that has separated probability densities for in-distribution (normal) and out-
of-distribution (anomalous) data. Given the testing sample x, we use un-normalized log joint density
pθ,ϕpz|xq9pθ,ϕpx, zq « pβpx|zqpαpzq|z„KT,z|xqϕpz|xq as our decision function. This means that
we draw samples from KT,z|xqϕpz|xq and compare the corresponding reconstruction errors and en-
ergy scores. A higher value of log joint density indicates a higher probability of the test sample being
a normal sample. To make fair comparisons, we follow the experimental settings in [22, 41, 55, 56]
and train our model on MNIST with one class held out as an anomalous class. We consider the
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Table 3: AUPRC(Ò) scores for unsupervised anomaly detection on MNIST. Numbers are taken from [41].
Results of our model are averaged over the last 10 trials to account for variance.

Heldout Digit 1 4 5 7 9

VAE [1] 0.063 0.337 0.325 0.148 0.104
ABP [51] 0.095 ˘ 0.03 0.138 ˘ 0.04 0.147 ˘ 0.03 0.138 ˘ 0.02 0.102 ˘ 0.03
MEG [55] 0.281 ˘ 0.04 0.401 ˘ 0.06 0.402 ˘ 0.06 0.290 ˘ 0.04 0.342 ˘ 0.03

BiGAN-σ [56] 0.287 ˘ 0.02 0.443 ˘ 0.03 0.514 ˘ 0.03 0.347 ˘ 0.02 0.307 ˘ 0.03
LEBM [22] 0.336 ˘ 0.01 0.630 ˘ 0.02 0.619 ˘ 0.01 0.463 ˘ 0.01 0.413 ˘ 0.01

Adaptive CE [41] 0.531 ˘ 0.02 0.729 ˘ 0.02 0.742 ˘ 0.01 0.620 ˘ 0.02 0.499 ˘ 0.01

Ours 0.684 ˘ 0.02 0.911 ˘ 0.01 0.939 ˘ 0.02 0.801 ˘ 0.01 0.705 ˘ 0.01

Table 4: Ablation study on CIFAR-10 dataset. VI denotes learning LEBM using variational methods. SR
denotes learning LEBM with short-run LD. DAMC-G replaces the LEBM in DAMC-LEBM with a standard
Gaussian distribution. NALR denotes the non-amortized DDPM setting. For each set-up, we provide results
using the vanilla sampling method, denoted as V, and the ones using the DAMC sampler, denoted as D.

Model
VI-LEBM SR-LEBM DAMC-G NALR-LEBM DAMC-LEBM

V. D. V. D. V. D. V. D. V. D.

MSE 0.054 - 0.020 - 0.018 0.015 0.028 0.016 0.021 0.015
FID 78.06 - 70.15 - 90.30 66.93 68.52 64.38 60.89 57.72

baseline models that employ MCMC-based or variational inferential mechanisms. Table 3 shows
the results of AUPRC scores averaged over the last 10 trials. We observe significant improvements
in our method over the previous counterparts.

4.3 Ablation Study

In this section, we conduct ablation study on several variants of the proposed method. Specifically,
we would like to know: i) what is the difference between the proposed method and directly training
a DDPM in a fixed latent space? ii) What is the role of LEBM in this learning scheme? iii) Does
DAMC effectively amortize the sampling chain? We use CIFAR-10 dataset for the ablative experi-
ments to empirically answer these questions. More ablation studies can be found in Appendix F.

Non-Amortized DDPM vs. DAMC We term directly training a DDPM in a fixed latent space as
the non-amortized DDPM. To analyze the difference between non-amortized DDPM and DAMC, we
first train a LEBM model with persistent long-run chain sampling [57] and use the trained model to
obtain persistent samples for learning the non-amortized DDPM. In short, the non-amortized DDPM
can be viewed as directly distilling the long-run MCMC sampling process, instead of progressively
amortizing the chain. We present the FID and MSE of the non-amortized model (NALR) in Table 4.
We observe that directly amortizing the long-run chain leads to degraded performance compared
with the proposed method. The results are consistently worse for both posterior and prior sampling
and the learned LEBMs, which verify the effectiveness of the proposed iterative learning scheme.

The contribution of LEBM One may argue that since we have the DAMC as a powerful sampler,
it might not be necessary to jointly learn LEBM in the latent space. To demonstrate the necessity
of this joint learning scheme, we train a variant of DAMC by replacing the LEBM with a Gaussian
prior. The results are presented in Table 4. We observe that models trained with non-informative
Gaussian prior obtain significantly worse generation results. It suggests that LEBM involved in the
learning iteration provides positive feedback to the DAMC sampler. Therefore, we believe that it is
crucial to jointly learn the DAMC and LEBM.

Vanilla sampling vs. DAMC We compare the vanilla sampling process of each model with
DAMC. The vanilla sampling typically refers to short-run or long-run LD initialized with N p0, Idq.
We also provide results of learning LEBM using variational methods for comparison. We can see
in Table 4 that sampling with DAMC shows significantly better scores of the listed models, com-
pared with vanilla sampling. The result is even better than that of the persistent chain sampler (V.
of NALR-LEBM). This indicates that DAMC effectively amortizes the sampling chain. Comparing
DAMC sampler with the variational sampler also indicates that DAMC is different from general vari-
ational approximation: it benefits from its connection with LD and shows better expressive power.
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5 Related Work

Energy-based prior model EBMs [23, 24, 58–60] play an important role in generative model-
ing. Pang et al. [22] propose to learn an EBM as a prior model in the latent space of DLVMs; it
greatly improves the model expressivity over those with non-informative priors and brings strong
performance on downstream tasks, e.g., image segmentation, text modeling, molecule generation,
and trajectory prediction [12, 15, 61, 62]. However, learning EBMs or latent space EBMs requires
MCMC sampling to estimate the learning gradients, which needs numerous iterations to converge
when the target distributions are high-dimensional or highly multi-modal. Typical choices of sam-
pling with non-convergent short-run MCMC [24] in practice can lead to poor generation quality,
malformed energy landscapes [15, 24, 25], biased estimation of the model parameter and instability
in training [23, 25, 59, 60]. In this work, we consider learning valid amortization of the long-run
MCMC for energy-based priors; the proposed model shows reliable sampling quality in practice.

Denoising diffusion probabilistic model DDPMs [7, 8, 31], originating from [5], learn the gen-
erative process by recovering the observed data from a sequence of noise-perturbed versions of the
data. The learning objective can be viewed as a variant of the denoising score matching objective
[35]. As pointed out in [5, 8], the sampling procedure of DDPM with ϵ-prediction parametrization
resembles LD of an EBM; ϵ (predicted noise) plays a similar role to the gradient of the log den-
sity [8]. To be specific, learning a DDPM with ϵ-prediction parameterization is equivalent to fitting
the finite-time marginal of a sampling chain resembling annealed Langevin dynamics [7, 8, 31].
Inspired by this connection, we propose to amortize the long-run MCMC in learning energy-based
prior by iteratively distilling the short-run chain segments with a DDPM-based sampler. We show
empirically and theoretically that the learned sampler is valid for long-run chain sampling.

Amortized MCMC The amortized MCMC technique is formally brought up by Li et al. [36],
which incorporates feedback from MCMC back to the parameters of the amortizer distribution qϕ.
It is concurrently and independently proposed by Xie et al. [37] as the MCMC teaching framework.
Methods under this umbrella term [36–38, 63–66] generally learns the amortizer by minimizing
the divergence (typically the KLD) between the improved distribution and its initialization, i.e.,
DrKT qϕk´1

||qϕs, where KT represents T -step MCMC transition kernel and qϕk´1
represents the

current amortizer. The diffusion-based amortization proposed in this work can be viewed as an in-
stantiation of this framework, while our focus is on learning the energy-based prior. Compared with
previous methods, our method i) specifically exploits the connection between EBMs and DDPMs
and is suitable for amortizing the prior and posterior sampling MCMC of energy-based prior, and ii)
resides in the lower-dimensional latent space and enables faster sampling and better convergence.

More methods for learning EBM Several techniques other than short-run MCMC have been pro-
posed to learn the EBM. In the seminal work, Hinton [67] proposes to initialize Markov chains using
real data and run several steps of MCMC to obtain samples from the model distribution. Tieleman
[57] proposes to start Markov chains from past samples in the previous sampling iteration, known as
Persistent Contrastive Divergence (PCD) or persistent chain sampling, to mimic the long-run sam-
pling chain. Nijkamp et al. [23] provide comprehensive discussions about tuning choices for LD
such as the step size s and sampling steps T to obtain stable long-run samples for persistent train-
ing. [59, 60] employ a hybrid of persistent chain sampling and short-run sampling by maintaining
a buffer of previous samples. The methods draw from the buffer or initialize the short-run chain
with noise distribution with some pre-specified probability. Another branch of work, stemmed from
[68], considers discriminative contrastive estimation to avoid MCMC sampling. Gao et al. [69] use
a normalizing flow [4] as the base distribution for contrastive estimation. Aneja et al. [50] propose
to estimate the energy-based prior model based on the prior of a pre-trained VAE [70] by noise con-
trastive estimation. More recently, Xiao and Han [41] learn a sequence of EBMs in the latent space
with adaptive multi-stage NCE to further improve the expressive power of the model.

6 Conclusion

In this paper, we propose the DAMC sampler and develop a novel learning algorithm for LEBM
based on it. We provide theoretical and empirical evidence for the effectiveness of our method. We
notice that our method can be applied to amortizing MCMC sampling of unnormalized continuous
densities in general. It can also be applied to sampling posterior distributions of continuous latent
variables in general latent variable models. We would like to explore these directions in future work.
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A Theoretical Discussion

A.1 Monotonically Decreasing KLD

We state in the main text that Drqϕk
||πs ď Drqϕk´1

||πs, where π is the stationary distribution.
To show this, we first provide a proof of Drπt`T ||πs ď Drπt||πs, where πt and πt`T are the
distributions of z at t-th and pt ` T q-th iteration, respectively. This is a known result from [39], and
we include it here for completeness.

Drπt||πs “ Eπtpztq

„

log
πtpztq

πpztq

ȷ

“ Eπtpztq,Kpzt`1|ztq

„

log
πtpztqKpzt`1|ztq

πpztqKpzt`1|ztq

ȷ

piq
“ Eπt`1pzt`1q,K1

πt`1
pzt|zt`1q

„

log
K1

πt`1
pzt|zt`1qπt`1pzt`1q

K1
πpzt|zt`1qπpzt`1q

ȷ

“ Drπt`1||πs ` Eπt`1pzt`1qDrK1
πt`1

pzt|zt`1q||K1
πpzt|zt`1qs

piiq
ě Drπt`1||πs,

(10)

where we denote the forward-time transition kernel as K and the reverse-time kernel as K1. (i)
holds because we are just re-factorizing the joint density of rzt, zt`1s: πtpztqKpzt`1|ztq “

K1
πt`1

pzt|zt`1qπt`1pzt`1q and πpztqKpzt`1|ztq “ K1
πpzt|zt`1qπpzt`1q. (ii) holds because the

KLD is non-negative. We can see that Drπt`T ||πs ď Drπt||πs is a direct result from Eq. (10), and
that πt Ñ π as t Ñ 8 under proper conditions [32].

In the main text, we describe the update rule of the sampler qϕ as follows:

qϕk
Ð argmin

qϕPQ
Drqϕk´1,T ||qϕs, qϕk´1,T :“ KT qϕk´1

, qϕ0
« π0, k “ 0, ...,K ´ 1. (11)

In the ideal case, we can assume that the objective in Eq. (6) is properly optimized and that tqϕu

is expressive enough to parameterize each qϕk´1,T . With qϕ0
« π0 and qϕk

« KT qϕk´1
, we can

conclude that Drqϕk
||πs ď Drqϕk´1

||πs for each k “ 1, ...,K according to Eq. (10). We will
discuss in the following section the scenario where we apply gradient-based methods to minimize
Drqϕk´1,T ||qϕs and approximate Eq. (6) for the update from qϕk´1

to qϕk
.

A.2 Discussion about Diffusion-Based Amortization

We can see that the statement in Appendix A.1 holds when qϕk
is a close approximation of

qT :“ KT qϕk´1
. This motivates our choice of employing DDPM to amortize the LD transition, con-

sidering its capability of close approximation to the given distribution tqT u. Based on the derivation
of DDPM learning objective in [1], we know that

argmin
qϕ

DrqT ||qϕs “ argmin
qϕ

´HpqT q ` HpqT , qϕq “ argmin
qϕ

´EqT rlog qϕs

ď argmin
qϕ

Eϵ,λ

“

}ϵϕpzλq ´ ϵ}22

‰

« argmin
qϕ

1

N

N
ÿ

j“1

“

}ϵϕpzj,λj q ´ ϵj}22

‰

,

(12)
where zλ is draw from qpzλ|z0q “ N pzλ;βλz0, σ

2
λIdq. z0 „ qT . ϵ „ N p0, Idq and λ is drawn

from a distribution of log noise-to-signal ratio ppλq. In practice, we use Monte-Carlo average to
approximate the objective and employ a gradient-based update rule for qϕ:

ϕ
pi`1q

k´1 Ð ϕ
piq
k´1 ´ η∇ϕ

1

N

N
ÿ

j“1

“

}ϵϕpzj,λj qϵj}22

‰

, ϕ
p0q

k Ð ϕ
pMq

k´1, i “ 0, 1, ...,M ´ 1. (13)

This can be viewed as a M-estimation of ϕ. Recall that qT “ KT qϕk´1
, we can construct ϕk “

´

ϕk´1, ϕ̃
¯

to minimize the KLD, where ϕ̃ models the transition kernel KT . Therefore, initializing

qϕ to be optimized with qϕk´1
, we are effectively maximizing Lpϕ̃q “ 1

N

řN
j“1 log pϕ̃pẑj |zjq,
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where tzju are from qϕk´1
and tẑju are from KT qϕk´1

. Let ϕ̃ be the result of M-estimation and

ϕ̃
˚

be the true target parameter. Then based on the derivation in [25], asymptotically we have

?
N

´

ϕ̃ ´ ϕ̃
˚

¯

Ñ N
ˆ

0, I
´

ϕ̃
˚

¯´1
˙

, (14)

where I
´

ϕ̃
˚

¯

“ Eẑ,z

”

´∇2 log pϕ̃pẑ|zq

ı

is the Fisher information matrix. This interpretation tells

us that i) when the sample size N is large, the estimation ϕ̃ is asymptotically unbiased, and ii) if
we want to obtain the estimation ϕ̃ with a few gradient-based updates, then the eigenvalues of the
Fisher information matrix would be relatively small but non-zero. ii) suggests that KT qϕk´1

should
be significantly different from qϕk´1

, which is confirmed by [38] and our preliminary experiments,
but it should not be too far away because that would require more gradient-based updates. We find
that setting T “ 30 and M “ 6 works well in the experiments.

A.3 Further Discussion about the Learning Algorithm

For completeness, we first derive the learning gradients for updating θ.

∇θ log pθpxq “
1

pθpxq
∇θ

ż

z

pθpx, zqdz “

ż

z

pθpx, zq

pθpxq
∇θ log pθpx, zqdz

“ Epθpz|xq r∇θ log pθpz,xqs

“ pEpθpz|xq r∇α log pαpzqs ,Epθpz|xq r∇β log pβpx|zqsq

“ pEpθpz|xq r∇αfαpzqs ´ Epαpzq r∇αfαpzqs
loooooooooooooooooooooooooomoooooooooooooooooooooooooon

δαpxq

,Epθpz|xq r∇β log pβpx|zqs
looooooooooooooomooooooooooooooon

δβpxq

q.

(15)

We can see that θ is estimated in a MLE-by-EM style. The learning gradient is the same as that of
directly maximizing the observed data likelihood, while we need to approximate the expectations
in Eq. (15). Estimating the expectations is like the E-step, and update θ with Eq. (15) is like the
M-step in the EM algorithm. The proposed diffusion-based amortization brings better estimation of
the expectations in the E-step, and incorporate the feedback from the M-step by running prior and
posterior sampling LD as follows

zt`1 “ zt `
s2

2
∇zt

ˆ

fαpztq ´
1

2
}zt}

2
2

˙

looooooooooomooooooooooon

log pαpztq

`swt,

zt`1 “ zt `
s2

2
∇zt

ˆ

´
}x ´ gβpztq}22

2σ2
` fαpztq ´

1

2
}zt}

2
2

˙

looooooooooooooooooooooooomooooooooooooooooooooooooon

log pθpz|xq“log pθpx,zq`C

`swt,

(16)

to obtain training data. Here t “ 0, 1, ..., T . z0 „ qϕpz|xq for posterior sampling and z0 „ qϕpzq

for prior sampling. wt „ N p0, Idq. Note that we plug-in pθpx, zq for the target distribution of
posterior sampling LD. This is because given the observed data x, by Bayes’ rule we know that
pθpz|xq9pθpx, zq “ pβpx|zqpαpzq. The whole learning iteration can be viewed as a variant of the
variational EM algorithm [71].
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B Network Architecture and Training Details

Architecture The energy score network fα uses a simple fully-connected structure throughout the
experiments. We describe the architecture in details in Table S1. The generator network has a simple
deconvolution structure similar to DCGAN [72] shown in Table S2. The denoising diffusion model
is implemented by a light-weight MLP-based U-Net [73] structure (Table S3). The encoder network
to embed the observed images has a fully convolutional structure [74], as shown in Table S4.

Table S1: Network structures of the energy score network. LReLU denotes the Leaky ReLU activation func-
tion. The slope in Leaky ReLU is set to 0.2. For SVHN and CelebA datasets, we use nz=100. For the CIFAR-
10 and CelebA-HQ datasets, we use nz=128. We use nz=8 for anomaly detection on the MNIST dataset, and
nz=7168 for GAN inversion. We use ndf=512 for GAN inversion and ndf=200 for the rest experiments.

Layers Out Size
Input: z nz P t8, 100, 128, 7168u

Linear, LReLU ndf P t200, 512u

Linear, LReLU ndf P t200, 512u

Linear 1

Table S2: Network structures of the generator networks used for the SVHN, CelebA, CIFAR-10, CelebA-
HQ and MNIST (from top to bottom) datasets. For GAN inversion, we use the StyleGAN [10] structure as our
generator network. ConvT(n) indicates a transposed convolutional operation with n output channels. We use
ngf=64 for the SVHN dataset and ngf=128 for the rest. LReLU indicates the Leaky-ReLU activation function.
The slope in Leaky ReLU is set to be 0.2.

Layers Out Size Stride
Input: z 1x1x100 -

4x4 ConvT(ngf x 8), LReLU 4x4x(ngf x 8) 1
4x4 ConvT(ngf x 4), LReLU 8x8x(ngf x 4) 2
4x4 ConvT(ngf x 2), LReLU 16x16x(ngf x 2) 2

4x4 ConvT(3), Tanh 32x32x3 2
Layers Out Size Stride
Input: z 1x1x100 -

4x4 ConvT(ngf x 8), LReLU 4x4x(ngf x 8) 1
4x4 ConvT(ngf x 4), LReLU 8x8x(ngf x 4) 2
4x4 ConvT(ngf x 2), LReLU 16x16x(ngf x 2) 2
4x4 ConvT(ngf x 1), LReLU 32x32x(ngf x 1) 2

4x4 ConvT(3), Tanh 64x64x3 2
Layers Out Size Stride
Input: z 1x1x128 -

8x8 ConvT(ngf x 8), LReLU 8x8x(ngf x 8) 1
4x4 ConvT(ngf x 4), LReLU 16x16x(ngf x 4) 2
4x4 ConvT(ngf x 2), LReLU 32x32x(ngf x 2) 2

3x3 ConvT(3), Tanh 32x32x3 1
Layers Out Size Stride
Input: z 1x1x128 -

4x4 ConvT(ngf x 16), LReLU 4x4x(ngf x 16) 1
4x4 ConvT(ngf x 8), LReLU 8x8x(ngf x 8) 2
4x4 ConvT(ngf x 4), LReLU 16x16x(ngf x 4) 2
4x4 ConvT(ngf x 4), LReLU 32x32x(ngf x 4) 2
4x4 ConvT(ngf x 2), LReLU 64x64x(ngf x 2) 2
4x4 ConvT(ngf x 1), LReLU 128x128x(ngfx1) 2

4x4 ConvT(3), Tanh 256x256x3 2
Layers Out Size Stride
Input: z 1x1x8 -

7x7 ConvT(ngf x 8), LReLU 7x7x(ngf x 8) 1
4x4 ConvT(ngf x 4), LReLU 14x14x(ngf x 4) 2
4x4 ConvT(ngf x 2), LReLU 28x28x(ngf x 2) 2

3x3 ConvT(1), Tanh 28x28x1 1
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Table S3: Network structure of the denoising diffusion network. a) We use the sinusoidal embedding to
embed the time index as in [25, 8]. b) We use the learned fourier feature module [75] to embed the input z. c)
The merged time embedding and context embedding is used to produce a pair of bias and scale terms to shift
and scale the embedding of input z. nz is the input dimension, as in Table S1. nemb is the dimension of image
embedding as in Table S4.

Layers Out size Note

Time Embedding
Input: t 1 time index

Sin. emb.a 128
Linear, SiLU 128

Linear 128
Input Embedding

Input: z nz
Fr. emb.b 2x(nz) Fourier feature

Basic Block
Input: z,zctx,zt nzf, nemb, 128 z, ctx. and t emb.

Cat, SiLU nemb + 128 merge ctx. & t emb.
Linear, SiLU nout

Linear nout Input emb.

Scale-shiftc nout scale-shift z emb.
w/ merged emb.

Add z nout skip connection
from z

Denoising Diffusion Network
Input: z,zctx, t nz, nemb, 128 Input

Embedding 2x(nz), 128 Input & t emb.
Basic Block 128 Encoding
Basic Block 256
Basic Block 256
Basic Block 256 Intermediate
Basic Block 256 Cat & Decoding
Basic Block 128
Basic Block nz Output

Hyperparameters and training details As mentioned in the main text, for the posterior and prior
DAMC samplers, we set the number of diffusion steps to 100. The number of iterations in Eq. (8) is
set to M “ 6 for the experiments. The LD runs T “ 30 and T “ 60 iterations for posterior and prior
updates during training with a step size of s “ 0.1. For test time sampling from KT,zi|xi

qϕk
pzi|xiq,

we set T “ 10 for the additional LD. For test time prior sampling of LEBM with LD, we follow
[22, 41] and set T “ 100. To further stabilize the training procedure, we i) perform gradient clipping
by setting the maximal gradient norm as 100, ii) use a separate target diffusion network which is the
EMA of the current diffusion network to initialize the prior and posterior updates and iii) add noise-
initialized prior samples for the prior updates. These set-ups are identical across different datasets.

The parameters of all the networks are initialized with the default pytorch methods [77]. We use
the Adam optimizer [78] with β1 “ 0.5 and β2 “ 0.999 to train the generator network and
the energy score network. We use the AdamW optimizer [79] with β1 “ 0.5, β2 “ 0.999 and
weight_decay=1e-4 to train the diffusion network. The initial learning rates of the generator and
diffusion networks are 2e-4, and 1e-4 for the energy score network. The learning rates are decayed
with a factor of 0.99 every 1K training iterations, with a minimum learning rate of 1e-5. We run the
experiments on a A6000 GPU with the batch size of 128. For GAN inversion, we reduce the batch
size to 64. Training typically converges within 200K iterations on all the datasets.
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Table S4: Network structures of the encoder networks used for the SVHN, CelebA, CIFAR-10, CelebA-HQ
and MNIST (from top to bottom) datasets. For GAN inversion, the encoder network structure is the same as
in [18]. Conv(n)Norm indicates a convolutional operation with n output channels followed by the Instance
Normalization [76]. We use nif=64 and nemb=1024 for all the datasets. LReLU indicates the Leaky-ReLU
activation function. The slope in Leaky ReLU is set to be 0.2.

Layers Out Size Stride
Input: x 32x32x3 -

3x3 Conv(nif x 1)Norm, LReLU 32x32x(nif x 1) 1
4x4 Conv(nif x 2)Norm, LReLU 16x16x(nif x 2) 2
4x4 Conv(nif x 4)Norm, LReLU 8x8x(nif x 4) 2
4x4 Conv(nif x 8)Norm, LReLU 4x4x(nif x 8) 2
4x4 Conv(nemb)Norm, LReLU 1x1x(nemb) 1

Layers Out Size Stride
Input: x 64x64x3 -

3x3 Conv(nif x 1)Norm, LReLU 64x64x(nif x 1) 1
4x4 Conv(nif x 2)Norm, LReLU 32x32x(nif x 2) 2
4x4 Conv(nif x 4)Norm, LReLU 16x16x(nif x 4) 2
4x4 Conv(nif x 8)Norm, LReLU 8x8x(nif x 8) 2
4x4 Conv(nif x 8)Norm, LReLU 4x4x(nif x 8) 2
4x4 Conv(nemb)Norm, LReLU 1x1x(nemb) 1

Layers Out Size Stride
Input: x 32x32x3 -

3x3 Conv(nif x 1)Norm, LReLU 32x32x(nif x 1) 1
4x4 Conv(nif x 2)Norm, LReLU 16x16x(nif x 2) 2
4x4 Conv(nif x 4)Norm, LReLU 8x8x(nif x 4) 2
4x4 Conv(nif x 8)Norm, LReLU 4x4x(nif x 8) 2
4x4 Conv(nemb)Norm, LReLU 1x1x(nemb) 1

Layers Out Size Stride
Input: x 256x256x3 -

3x3 Conv(nif x 1)Norm, LReLU 256x256x(nif x 1) 1
4x4 Conv(nif x 2)Norm, LReLU 128x128x(nif x 2) 2
4x4 Conv(nif x 4)Norm, LReLU 64x64x(nif x 4) 2
4x4 Conv(nif x 4)Norm, LReLU 32x32x(nif x 4) 2
4x4 Conv(nif x 8)Norm, LReLU 16x16x(nif x 8) 2
4x4 Conv(nif x 8)Norm, LReLU 8x8x(nif x 8) 2
4x4 Conv(nif x 8)Norm, LReLU 4x4x(nif x 8) 2
4x4 Conv(nemb)Norm, LReLU 1x1x(nemb) 1

Layers Out Size Stride
Input: x 28x28x3 -

3x3 Conv(nif x 1)Norm, LReLU 28x28x(nif x 1) 1
4x4 Conv(nif x 2)Norm, LReLU 14x14x(nif x 2) 2
4x4 Conv(nif x 4)Norm, LReLU 7x7x(nif x 4) 2
4x4 Conv(nif x 8)Norm, LReLU 3x3x(nif x 8) 2
3x3 Conv(nemb)Norm, LReLU 1x1x(nemb) 1
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C Pytorch-style Pseudocode

We provide pytorch-style pseudocode to help understand the proposed method. We denote the gen-
erator network as G, the energy score network as E and the diffusion network as Q. The first page
sketches the prior and posterior sampling process. The second page outlines the learning procedure.

Listing 1: Prior and posterior LD sampling.

def s a m p l e _ l a n g e v i n _ p r i o r _ z ( z , ne tE ) :
s = s t e p _ s i z e

f o r i in range ( n _ s t e p s ) :
en = ne tE ( z ) . sum ( )
z_norm = 1 . 0 / 2 . 0 * t o r c h . sum ( z **2)
z _g ra d = t o r c h . a u t o g r a d . g r ad ( en + z_norm , z ) [ 0 ]
w = t o r c h . r a n d n _ l i k e ( z )

# P r i o r LD Update
z . d a t a = z . d a t a − 0 . 5 * ( s ** 2) * z _g ra d + s * w

re turn z . d e t a c h ( )

def s a m p l e _ l a n g e v i n _ p o s t e r i o r _ z ( z , x , netG , ne tE ) :
s = s t e p _ s i z e
s igma_ inv = 1 . 0 / ( 2 . 0 * sigma ** 2)

f o r i in range ( n _ s t e p s ) :
x _ h a t = netG ( z )
g _ l o g _ l k h d = s igma_ inv * t o r c h . sum ( ( x _ h a t − x ) ** 2)

z_n = 1 . 0 / 2 . 0 * t o r c h . sum ( z **2)
en = netE ( z ) . sum ( )

t o t a l _ e n = g _ l o g _ l k h d + en + z_n
z _g ra d = t o r c h . a u t o g r a d . g r ad ( t o t a l _ e n , z ) [ 0 ]
w = t o r c h . r a n d n _ l i k e ( z )

# P o s t e r i o r LD Update
z . d a t a = z . d a t a − 0 . 5 * ( s ** 2) * z _g ra d + s * w

re turn z . d e t a c h ( )
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Listing 2: Learning LEBM with DAMC.

f o r x in d a t a s e t :
# mask f o r u n c o n d i t i o n a l l e a r n i n g o f DAMC
z_mask_prob = t o r c h . r and ( ( l e n ( x ) , ) , d e v i c e =x . d e v i c e )
z_mask = t o r c h . ones ( l e n ( x ) , d e v i c e =x . d e v i c e )
z_mask [ z_mask_prob < 0 . 2 ] = 0 . 0
z_mask = z_mask . unsqueeze ( −1)

# draw DAMC samples
z0 = Q( x )
zk_pos , zk_neg = z0 . d e t a c h ( ) . c l o n e ( ) , z0 . d e t a c h ( ) . c l o n e ( )

# p r i o r and p o s t e r i o r u p d a t e s
zk_pos = s a m p l e _ l a n g e v i n _ p o s t e r i o r _ z (

z=zk_pos , x=x , netG=G, ne tE =E )
zk_neg = s a m p l e _ l a n g e v i n _ p r i o r _ z (

z= t o r c h . c a t (
[ zk_neg , t o r c h . r a n d n _ l i k e ( zk_neg ) ] , dim = 0) ,
ne tE =E )

# u pd a t e Q
f o r __ in range ( 6 ) :

Q _ o p t i m i z e r . z e r o _ g r a d ( )
Q_loss = Q. c a l c u l a t e _ l o s s (
x=x , z=zk_pos , mask=z_mask ) . mean ( )
Q_loss . backward ( )
Q _ o p t i m i z e r . s t e p ( )

# u pd a t e G
G _ o p t i m i z e r . z e r o _ g r a d ( )
x _ h a t = G( zk_pos )
g _ l o s s = t o r c h . sum ( ( x _ h a t − x ) ** 2 , dim = [ 1 , 2 , 3 ] ) . mean ( )
g _ l o s s . backward ( )
G _ o p t i m i z e r . s t e p ( )

# u pd a t e E
E _ o p t i m i z e r . z e r o _ g r a d ( )
e_pos , e_neg = E ( zk_pos ) , E ( zk_neg )
E _ l o s s = e_pos . mean ( ) − e_neg . mean ( )
E _ l o s s . backward ( )
E _ o p t i m i z e r . s t e p ( )
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D Dataset and Experiment Settings

Datasets We include the following datasets to study our method: SVHN (32 × 32 × 3), CIFAR-
10 (32 × 32 × 3), CelebA (64 × 64 × 3), CeleAMask-HQ (256 x 256 x 3) and MNIST (28 x 28
x 1). Following Pang et al. [22], we use the full training set of SVHN (73,257) and CIFAR-10
(50,000), and take 40,000 samples of CelebA as the training data. We take 29,500 samples from
the CelebAMask-HQ dataset as the training data, and test the model on 500 held-out samples. For
anomaly detection on MNIST dataset, we follow the experimental settings in [22, 41, 55, 56] and
use 80% of the in-domain data to train the model. The images are scaled to r´1, 1s and randomly
horizontally flipped with a prob. of .5 for training.

GAN inversion settings We attempt to use the DAMC sampler for GAN version on the FFHQ
(256 x 256 x 3) and LSUN-Tower (256 x 256 x 3) datasets. We take 69,500 samples from the
CelebAMask-HQ dataset as the training data, and use the held-out 500 samples for testing. We
follow the default data splits of the LSUN dataset.

For the LEBM-based inversion method, we train a LEBM in the 14 x 512 = 7168 dim. latent space.
During training, we add l2-regularization on the energy score of LEBM to stabilize training, as
suggested in [59]. For the DAMC sampler and the encoder-based inversion method [16], we generate
initial posterior samples of the training data using [18] and train the DAMC sampler and the encoder-
based method for 5K iterations using these samples as a warm-up step. The encoder-based method
is trained by minimizing the l2 distance between the encoder output and the target samples. After
that, these two methods are trained with the default learning algorithms.
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E Additional Qualitative Results

E.1 Toy Examples

Figure S1: The 2-arm pinwheel-shaped prior distribution used in the toy example.

(a) Evolution of the learned posterior distributions (b) GT

Figure S2: Evolution of the posterior distributions learned by the DAMC sampler. In each row, we display
from left to right the evolution of the learned posterior distributions from the DAMC sampler through training
iterations. The last column shows the corresponding ground-truth posterior distribution obtained by running
1K-3K steps of Langevin Dynamics until convergence for posterior sampling.

As the proof-of-concept toy examples, we implement the neural likelihood experiments following
the same set-up mentioned in Section 5.1 and B.1 in [80]. We choose to use a more complex prior
distribution, i.e., 2-arm pinwheel-shaped prior distribution (shown in Fig. S1) instead of a standard
normal one to make sure that the true posterior distributions are multimodal. The ground-truth poste-
rior distributions are obtained by performing long-run LD sampling until convergence. We visualize
the convergence trajectory of the posterior distributions learned by our model to the ground-truth
ones. In Fig. S2, we can see that our model can faithfully reproduce the ground-truth distributions
with sufficient training iterations, which indicates that the learned sampler successfully amortizes
the long-run sampling chain with the length of 1, 000-3, 000 iterations.
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E.2 Generation

We provide additional generated samples from our models trained on SVHN (Fig. S3), CelebA
(Fig. S4), CIFAR-10 (Fig. S5) and CelebA-HQ (Fig. S6).

(a) Ours-DAMC (b) Ours-LEBM

Figure S3: Samples generated from the DAMC sampler and LEBM trained on the SVHN dataset.

(a) Ours-DAMC (b) Ours-LEBM

Figure S4: Samples generated from the DAMC sampler and LEBM trained on the CelebA dataset.

E.3 Reconstruction

We provide qualitative examples about the reconstruction results from our models trained on SVHN
(Fig. S7), CelebA (Fig. S8), CIFAR-10 (Fig. S9) and CelebA-HQ (Fig. S10). Observed images are
sampled from the testing set unseen during training.
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(a) Ours-DAMC (b) Ours-LEBM

Figure S5: Samples generated from the DAMC sampler and LEBM trained on the CIFAR-10 dataset.

(a) Ours-DAMC (b) Ours-LEBM

Figure S6: Samples generated from the DAMC sampler and LEBM trained on the CelebA-HQ dataset.

E.4 Visualization of Transitions

We provide additional visualization results of LD transitions initialized from N p0, Idq on SVHN
(Fig. S11) and CIFAR-10 datasets (Fig. S12). For the 200-step set-up, we can see that the generation
quality quickly improves by exploring the local modes with LD. For the 2500-step long-run set-up,
we can see that the LD produces consistently valid results without the oversaturating issue of the
long-run chain samples.
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(a) Observation (b) Reconstruction

Figure S7: Reconstructed samples from the posterior DAMC sampler trained on the SVHN dataset.

(a) Observation (b) Reconstruction

Figure S8: Reconstructed samples from the posterior DAMC sampler trained on the CelebA dataset.
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(a) Observation (b) Reconstruction

Figure S9: Reconstructed samples from the posterior DAMC sampler trained on the CIFAR-10 dataset.

(a) Observation (b) Reconstruction

Figure S10: Reconstructed samples from the posterior DAMC sampler trained on the CelebA-HQ dataset.

(a) 200 steps (b) 2500 steps

Figure S11: Transition of Markov chains initialized from N p0, Idq towards pαpzq on SVHN. We present
results by running LD for 200 and 2500 steps. In each sub-figure, the top panel displays the trajectory in the data
space uniformly sampled along the chain. The bottom panel shows the energy score fαpzq over the iterations.
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(a) 200 steps (b) 2500 steps

Figure S12: Transition of Markov chains initialized from N p0, Idq towards pαpzq on CIFAR-10. We
present results by running LD for 200 and 2500 steps. In each sub-figure, the top panel displays the trajec-
tory in the data space uniformly sampled along the chain. The bottom panel shows the energy score fαpzq over
the iterations.
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F Additional Quantitative Results

F.1 Learning DAMC in the Latent Space of Other DLVMs

We have compared our method with directly training diffusion models in the latent space. In the
NALR-LEBM column in Table 4, we compare our method with learning a diffusion model in the
pre-trained energy-based latent space on CIFAR-10 dataset. We further add experiments of learning
this model in the pre-trained VAE [1] and ABP [51] model latent spaces summarized in Table S5. We
can see that our method greatly outperforms these baselines using the same network architectures.

Table S5: Further baseline results for learning DAMC on CIFAR-10 dataset. These models are imple-
mented using the same encoder and decoder network architectures for fair comparison

VAE ABP NALR Ours

FID 102.54 69.93 64.38 57.52
MSE 0.036 0.017 0.016 0.015

F.2 Further Ablation Studies

We conduct more ablation studies to inspect the impact of some hyper-parameters. For prior LD
sampling, we follow [22] and set the sampling step as 60 throughout the experiments for fair com-
parison. We further add experiments on CIFAR-10 for training our model with different posterior
LD sampling steps T and with different capacities of the amortizer qϕ, summarized in Table S6. We
observe that larger posterior sampling steps and larger model capacities for training brings marginal
improvement compared with our default set-up. Less sampling steps and lower model capacities,
however, may have negative impact on the performances.

(a) Posterior sampling steps T
T=10 T=30 T=50

FID 74.20 57.72 57.03
MSE 0.016 0.015 0.015

(b) Model capacity of qϕ
f=1/4 f=1/2 f=1 f=2 f=4

FID 116.28 80.28 57.52 57.82 57.56
MSE 0.017 0.016 0.015 0.015 0.015

Table S6: Ablation Studies for the choice of Langevin steps and model capacity. We highlight the results
of our set-up reported in the main text. T is the posterior sampling step. f stands for the factor for the model
capacity, e.g., f=2 means 2x the size of the original model.

S15



G Further Discussion

G.1 Limitations

We mentioned in the main text that one potential disadvantage of our method is its parameter ineffi-
ciency for introducing an extra DDPM. Although fortunately, our models are in the latent space so
the network is lightweight. To be specific, on SVHN, CelebA, CIFAR-10 and CelebA-HQ datasets
the number of parameters in the diffusion network is around 10% of those in the generator.

Another issue is the time efficiency. We mentioned in the main text that the time efficiency for
sampling is competitive. With the batch size of 64, on these datasets the DAMC prior sampling
takes 0.3s, while 100 steps of short-run LD with LEBM takes 0.2s. The DAMC posterior sampling
takes 1.0s, while LEBM takes 8.0s. However, during training we need to run 30 steps of posterior
LD sampling and 60 steps of prior LD sampling in each training iteration. We observe that the
proposed learning method takes 15.2 minutes per training epoch, while the short-run LD-based
learning method takes 14.8 minutes per epoch. These methods are slower than the VAE-base method,
which takes 5.5 minutes for an training epoch. We can see that the time efficiency for training is
generally bottlenecked by the LD sampling process, and could be improved in future works.

G.2 Broader Impacts

Generative models could be misused for disinformation or faking profiles. Our work focuses on the
learning algorithm of energy-based prior model. Though we consider our work to be foundational
and not tied to particular applications or deployments, it is possible that more powerful energy-
based generative models augmented with this method may be used maliciously. Work on the reliable
detection of synthetic content could be important to address such harms from generative models.

S16


	Introduction
	Background
	Energy-Based Prior Model
	Denoising Diffusion Probabilistic Model

	Method
	Amortizing MCMC with DDPM
	Approximate  with 
	Implementation

	Experiments
	Generation and Inference: Prior and Posterior Sampling
	Analysis of Latent Space
	Ablation Study

	Related Work
	Conclusion
	Theoretical Discussion
	Monotonically Decreasing 
	Discussion about Diffusion-Based Amortization
	Further Discussion about the Learning Algorithm

	Network Architecture and Training Details
	Pytorch-style Pseudocode
	Dataset and Experiment Settings
	Additional Qualitative Results
	Toy Examples
	Generation
	Reconstruction
	Visualization of Transitions

	Additional Quantitative Results
	Learning  in the Latent Space of Other 
	Further Ablation Studies

	Further Discussion
	Limitations
	Broader Impacts


