Appendices for

## Online Ad Procurement in Non-stationary Autobidding Worlds

## A Proofs for Section 4

## A. 1 Additional definitions for Section 4

Definition A. 1 (Total variation between probability distributions). Consider two distributions $\mathcal{P}, \mathcal{P}^{\prime} \subseteq \Delta(\mathcal{S})$. Then we define their total variation as $\left\|\mathcal{P}-\mathcal{P}^{\prime}\right\|_{T V}=\frac{1}{2} \int_{\mathcal{S}}\left|\mathcal{P}(s)-\mathcal{P}^{\prime}(s)\right| d s$

We also define the smoothed version of $h_{t}: \mathcal{X} \rightarrow \mathbb{R}$ (see Eq. (4)) for any $t$ as followed:

$$
\begin{equation*}
\hat{h}_{t}(\boldsymbol{x})=\mathbb{E}_{\boldsymbol{v} \sim U(\mathbb{B})}\left[\mathcal{L}_{t}\left(\boldsymbol{x}+\rho \boldsymbol{v}, \boldsymbol{\lambda}_{t}\right)\right] \tag{10}
\end{equation*}
$$

where we recall the Lagrangian function $\mathcal{L}_{t}$ is defined in Eq. (3).

## A. 2 Additional lemmas for Section 4

Lemma A. 1 (Lipschitz continuity). Let Assumption 2.1 hold, and recall the definitions $h_{t}(\boldsymbol{x})$ and $\hat{h}_{t}(\boldsymbol{x})$ from Eqs. (4) as well as (10), respectively, and recall $\boldsymbol{\lambda}_{1} \ldots \boldsymbol{\lambda}_{T}$ are the dual variables generated from Algorithm 1 . Then for any $\boldsymbol{x}, \boldsymbol{x}^{\prime} \in \mathcal{X}$, we have $\left|h_{t}(\boldsymbol{x})-h_{t}\left(\boldsymbol{x}^{\prime}\right)\right| \leq\left(1+K \frac{\bar{F}}{\beta}\right) L \cdot\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|$ and $\left|h_{t}(\boldsymbol{x})-\hat{h}_{t}(\boldsymbol{x})\right| \leq\left(1+K \frac{\bar{F}}{\beta}\right) L \rho$.
Lemma A. 2 (Bounding BOCO dynamic regret with surrogate loss). Recall the definition $\hat{h}_{t}(\boldsymbol{x})=$ $\mathbb{E}_{\boldsymbol{v} \sim U(\mathbb{B})}\left[\mathcal{L}_{t}\left(\boldsymbol{x}+\rho \boldsymbol{v}, \boldsymbol{\lambda}_{t}\right)\right]$. Then, $\hat{h}_{t}(\boldsymbol{x})$ is concave. Further, For any $\boldsymbol{y} \in(1-\alpha) \mathcal{X}$, we have $\hat{h}_{t}(\boldsymbol{y})-\hat{h}_{t}\left(\widetilde{\boldsymbol{x}}_{t}\right) \leq \mathbb{E}_{\boldsymbol{u}_{t} \sim U(\mathbb{S})}\left[\ell_{t}\left(\widetilde{\boldsymbol{x}}_{t}\right)-\ell_{t}(\boldsymbol{y})\right]$, where $\widetilde{\boldsymbol{x}}_{t}$ is defined in Eq. (5), and the surrogate loss function $\ell_{t}: \mathcal{X} \rightarrow \mathbb{R}$ is defined in Eq. (7).
Lemma A. 3 (Bounding surrogate loss for each expert). Recall the definition of individual forecasters $\widetilde{x}_{t}^{i}$ defined in Eq. (8), and the surrogate loss function $\ell_{t}: \mathcal{X} \rightarrow \mathbb{R}$ defined in Eq. (7). Then for any $i \in[N]$ and any sequence $\boldsymbol{y}_{1: T} \in \mathcal{X}^{T}$ we have (i) $\sum_{t \in[T]} \ell_{t}\left(\widetilde{\boldsymbol{x}}_{t}^{i}\right)-\ell_{t}\left((1-\alpha) \boldsymbol{y}_{t}\right) \leq$ $\mathcal{O}\left(\frac{1+P\left(\boldsymbol{y}_{1: T}\right)}{\gamma_{i}}+\frac{\gamma_{i}}{\beta^{2} \rho^{2}} T\right)$ and (ii) $\sum_{t \in[T]} \ell_{t}\left(\widetilde{\boldsymbol{x}}_{t}\right)-\ell_{t}\left(\widetilde{\boldsymbol{x}}_{t}^{i}\right) \leq \mathcal{O}\left(T \epsilon+\frac{1}{\epsilon}\right)$. where the constant $\beta$ is specified in Algorithm [1] Here, recall $D$ is the diameter of the decision set $\mathcal{X}$.

The proofs of Lemmas A.1, A.2 A. 3 are shown in Appendices A.9, A.10, and A.11, respectively.

## A. 3 Proof for Lemma 4.1

Proof. For any $k \in[K]$ we have

$$
\begin{align*}
\sum_{t \in[T]} g_{k, t}\left(\boldsymbol{x}_{t}\right) & =\sum_{t \in\left[\tau_{A}-1\right]} g_{k, t}\left(\boldsymbol{x}_{t}\right)+\sum_{t=\tau_{A}}^{T} g_{k, t}\left(\boldsymbol{x}_{t}\right) \stackrel{(a)}{\geq} \sum_{t \in\left[\tau_{A}-1\right]} g_{k, t}\left(\boldsymbol{x}_{t}\right)+\bar{\beta}\left(T-\tau_{A}+1\right)  \tag{11}\\
& \geq \sum_{t \in\left[\tau_{A}-1\right]} g_{k, t}\left(\boldsymbol{x}_{t}\right)+\beta\left(T-\tau_{A}\right)+\beta \stackrel{(b)}{\geq} \bar{G}+\beta>0
\end{align*}
$$

where in $(a)$ we set $\boldsymbol{x}_{t}=\widetilde{\boldsymbol{x}}_{\beta}$ for all $t=\tau_{A} \ldots T$ and $g_{k, t}\left(\widetilde{\boldsymbol{x}}_{\beta}\right) \geq \bar{\beta}$ for any $k \in[K] ;(b)$ follows from the definition of the stopping time such that for any $t^{\prime}<\tau_{A}$ and $k \in[K]$ we have $\sum_{t \in\left[t^{\prime}\right]} g_{k, t}\left(\boldsymbol{x}_{t}\right)-$ $\bar{G}+\beta\left(T-t^{\prime}-1\right) \geq 0$.

## A. 4 Proof for Lemma 4.4

Proof. It is easy to see $\boldsymbol{\lambda}_{t+1}=\Pi_{\left[0, \frac{\bar{F}}{\beta} \boldsymbol{e}\right]}\left(\boldsymbol{\lambda}_{t}-\eta \nabla_{\boldsymbol{\lambda}} \mathcal{L}_{t}\left(\boldsymbol{x}_{t}, \boldsymbol{\lambda}_{t}\right)\right)_{+}=$ $\arg \min _{\boldsymbol{\lambda} \in[0, \bar{F}, \boldsymbol{B}} \nabla_{\boldsymbol{\lambda}} \mathcal{L}_{t}\left(\boldsymbol{x}_{t}, \boldsymbol{\lambda}_{t}\right)^{\top} \boldsymbol{\lambda}+\frac{1}{2 \eta}\left\|\boldsymbol{\lambda}-\boldsymbol{\lambda}_{t}\right\|^{2}$. By the first-order stationary condition
at $\boldsymbol{\lambda}_{t+1}$, we have for any $\boldsymbol{\lambda} \in\left[\mathbf{0}, \frac{\bar{F}}{\beta} \boldsymbol{e}\right]$

$$
\left(\nabla_{\boldsymbol{\lambda}} \mathcal{L}_{t}\left(\boldsymbol{x}_{t}, \boldsymbol{\lambda}_{t}\right)+\frac{1}{\eta}\left(\boldsymbol{\lambda}_{t+1}-\boldsymbol{\lambda}_{t}\right)\right)^{\top}\left(\boldsymbol{\lambda}-\boldsymbol{\lambda}_{t+1}\right) \geq 0
$$

where in the final equality we used $\boldsymbol{\lambda}_{1}=\mathbf{0}$. Also,

$$
\begin{equation*}
\left\|\nabla_{\boldsymbol{\lambda}} \mathcal{L}_{\tau}\left(\boldsymbol{x}_{\tau}, \boldsymbol{\lambda}_{\tau}\right)\right\|^{2}=\left\|\boldsymbol{g}_{\tau}\left(\boldsymbol{x}_{\tau}\right)\right\|^{2} \leq K \bar{G}^{2} \tag{13}
\end{equation*}
$$

538 Proof. Recall the definition of $\hat{h}_{t}(\boldsymbol{x})$ in Eq. (4). Then, we have

$$
\begin{align*}
& \sum_{\tau \in[t]} h_{\tau}\left(\boldsymbol{y}_{\tau}\right)-\sum_{\tau \in[t]} h_{\tau}\left(\boldsymbol{x}_{\tau}\right) \\
= & \sum_{\tau \in[t]}(\underbrace{h_{\tau}\left(\boldsymbol{y}_{\tau}\right)-\hat{h}_{\tau}\left((1-\alpha) \boldsymbol{y}_{\tau}\right)}_{A}+\underbrace{\hat{h}_{\tau}\left((1-\alpha) \boldsymbol{y}_{\tau}\right)-\hat{h}_{\tau}\left(\widetilde{\boldsymbol{x}}_{\tau}\right)}_{B}+\underbrace{\hat{h}_{\tau}\left(\widetilde{\boldsymbol{x}}_{\tau}\right)-h_{\tau}\left(\boldsymbol{x}_{\tau}\right)}_{C}) \tag{14}
\end{align*}
$$

## Bounding $A$.

$$
\begin{align*}
h_{\tau}\left(\boldsymbol{y}_{\tau}\right)-\hat{h}_{\tau}\left((1-\alpha) \boldsymbol{y}_{\tau}\right) & =h_{\tau}\left(\boldsymbol{y}_{\tau}\right)-h_{\tau}\left((1-\alpha) \boldsymbol{y}_{\tau}\right)+h_{\tau}\left((1-\alpha) \boldsymbol{y}_{\tau}\right)-\hat{h}_{\tau}\left((1-\alpha) \boldsymbol{y}_{\tau}\right) \\
& \stackrel{(a)}{\leq}\left(1+K \frac{\bar{F}}{\beta}\right) L \alpha\left\|\boldsymbol{y}_{\tau}\right\|+\left(1+K \frac{\bar{F}}{\beta}\right) L \rho  \tag{15}\\
& \stackrel{(b)}{\leq}\left(1+K \frac{\bar{F}}{\beta}\right) L \alpha D+\left(1+K \frac{\bar{F}}{\beta}\right) L \rho
\end{align*}
$$

where (a) follows from Lemma A.1, (b) follows from $\left\|\boldsymbol{y}_{\tau}\right\|=\left\|\boldsymbol{y}_{\tau}-\mathbf{0}\right\| \leq D$ since we assumed $\mathbf{0} \in \mathcal{X}$.
Bounding $B$.

$$
\begin{align*}
& \sum_{t \in[T]} \hat{h}_{\tau}\left((1-\alpha) \boldsymbol{y}_{\tau}\right)-\hat{h}_{\tau}\left(\widetilde{\boldsymbol{x}}_{\tau}\right) \\
\stackrel{(a)}{\leq} & \sum_{t \in[T]} \mathbb{E}_{\boldsymbol{u}_{\tau} \sim U(\mathbb{S})}\left[\ell_{\tau}\left(\widetilde{\boldsymbol{x}}_{\tau}\right)-\ell_{\tau}\left((1-\alpha) \boldsymbol{y}_{\tau}\right)\right]  \tag{16}\\
= & \sum_{t \in[T]} \mathbb{E}_{\boldsymbol{u}_{\tau} \sim U(\mathbb{S})}\left[\ell_{\tau}\left(\widetilde{\boldsymbol{x}}_{\tau}\right)-\ell_{\tau}\left(\widetilde{\boldsymbol{x}}_{\tau}^{i}\right)+\ell_{\tau}\left(\widetilde{\boldsymbol{x}}_{\tau}^{i}\right)-\ell_{\tau}\left((1-\alpha) \boldsymbol{y}_{\tau}\right)\right] \\
\stackrel{(b)}{\leq} & \mathcal{O}\left(\frac{P\left(\boldsymbol{y}_{1: T}\right)}{\gamma_{i}}+\frac{\gamma_{i} K \frac{\bar{F}}{\beta} T}{\rho^{2}}+T \epsilon+\frac{1}{\epsilon}\right)
\end{align*}
$$

where (a) follows from Lemma A. 2 and (b) follows from Lemma A. 3 (i) and (ii).
Bounding $C$.

$$
\begin{align*}
\hat{h}_{\tau}\left(\widetilde{\boldsymbol{x}}_{\tau}\right)-h_{\tau}\left(\boldsymbol{x}_{\tau}\right) & =\hat{h}_{\tau}\left(\widetilde{\boldsymbol{x}}_{\tau}\right)-h_{\tau}\left(\widetilde{\boldsymbol{x}}_{\tau}\right)+h_{\tau}\left(\widetilde{\boldsymbol{x}}_{\tau}\right)-h_{\tau}\left(\boldsymbol{x}_{\tau}\right) \\
& \stackrel{(a)}{\leq}\left(1+K \frac{\bar{F}}{\beta}\right) L \rho+\left(1+K \frac{\bar{F}}{\beta}\right) L \cdot\left\|\widetilde{\boldsymbol{x}}_{\tau}-\boldsymbol{x}_{\tau}\right\| \\
& \stackrel{(b)}{=}\left(1+K \frac{\bar{F}}{\beta}\right) L \rho+\left(1+K \frac{\bar{F}}{\beta}\right) L \cdot\left\|\rho \boldsymbol{u}_{\tau}\right\|  \tag{17}\\
& \leq 2 \rho\left(1+K \frac{\bar{F}}{\beta}\right) L
\end{align*}
$$

where (a) follows from Lemma A.1; (b) follows from the definition $\boldsymbol{x}_{\tau}=\widetilde{\boldsymbol{x}}_{\tau}+\rho \boldsymbol{u}_{\tau}$ in Algorithm 1

## A. 7 Proof of Lemma 4.3

## Stochastic.

Proof. In the stochastic regime, we have $\mathcal{P}=\mathcal{P}_{1}=\cdots=\mathcal{P}_{T}$ for some $\mathcal{P}$, and therefore we can rewrite $\operatorname{OPT}\left(\mathcal{P}_{1: T}\right)$ in Eq. 11) as followed

$$
\operatorname{OPT}\left(\mathcal{P}_{1: T}\right)=\max _{\boldsymbol{x}_{1: T} \in \mathcal{X}^{T}} \sum_{t \in[T]} F\left(\boldsymbol{x}_{t}\right) \quad \text { s.t. } \sum_{t \in[T]} \boldsymbol{G}\left(\boldsymbol{x}_{t}\right) \geq \mathbf{0} .
$$

where we defined $F(\boldsymbol{x})=\mathbb{E}_{(f, \boldsymbol{g}) \sim \mathcal{P}}[f(\boldsymbol{x})]$, and $\boldsymbol{G}(\boldsymbol{x})=\mathbb{E}_{(f, \boldsymbol{g}) \sim \mathcal{P}}[\boldsymbol{g}(\boldsymbol{x})]$ for any $\boldsymbol{x} \in \mathcal{X}$. Hence, for any $\boldsymbol{\lambda} \geq \mathbf{0}$ we have

$$
\begin{align*}
\mathrm{OPT}\left(\mathcal{P}_{1: T}\right) & =\frac{T-\tau_{A}}{T} \mathrm{OPT}\left(\mathcal{P}_{1: T}\right)+\frac{\tau_{A}}{T} \mathrm{OPT}\left(\mathcal{P}_{1: T}\right) \\
& \leq\left(T-\tau_{A}\right) \bar{F}+\frac{\tau_{A}}{T} \max _{\boldsymbol{x}_{1: T} \in \mathcal{X}^{T}} \sum_{t \in[T]}\left(F\left(\boldsymbol{x}_{t}\right)+\boldsymbol{\lambda}^{\top} \boldsymbol{G}\left(\boldsymbol{x}_{t}\right)\right) \\
& =\left(T-\tau_{A}\right) \bar{F}+\frac{\tau_{A}}{T} \max _{\boldsymbol{x} \in \mathcal{X}} \sum_{t \in[T]}\left(F(\boldsymbol{x})+\boldsymbol{\lambda}^{\top} \boldsymbol{G}(\boldsymbol{x})\right)  \tag{18}\\
& =\left(T-\tau_{A}\right) \bar{F}+\tau_{A} \max _{\boldsymbol{x} \in \mathcal{X}}\left(F(\boldsymbol{x})+\boldsymbol{\lambda}^{\top} \boldsymbol{G}(\boldsymbol{x})\right)
\end{align*}
$$

where in the inequality we applied Assumption 2.1 which states $\max _{\boldsymbol{x} \in \mathcal{X}} f(\boldsymbol{x})$ for all $(f, \boldsymbol{g}) \in \mathcal{S}$. Choosing $\boldsymbol{\lambda}=\overline{\boldsymbol{\lambda}}_{\tau_{A}}:=\frac{1}{\tau_{A}} \sum_{t \in\left[\tau_{A}\right]} \boldsymbol{\lambda}_{t}$ we have

$$
\begin{align*}
\mathrm{OPT}\left(\mathcal{P}_{1: T}\right) & \leq \mathbb{E}\left[\left(T-\tau_{A}\right) \bar{F}+\tau_{A} \max _{\boldsymbol{x} \in \mathcal{X}}\left(F(\boldsymbol{x})+\boldsymbol{\lambda}^{\top} \boldsymbol{G}(\boldsymbol{x})\right)\right] \\
& \leq \mathbb{E}\left[\left(T-\tau_{A}\right) \bar{F}+\max _{\boldsymbol{x} \in \mathcal{X}} \sum_{t \in\left[\tau_{A}\right]}\left(F(\boldsymbol{x})+\boldsymbol{\lambda}_{t}^{\top} \boldsymbol{G}(\boldsymbol{x})\right)\right] \\
& \stackrel{(a)}{\leq} \mathbb{E}\left[\left(T-\tau_{A}\right) \bar{F}+\max _{\boldsymbol{x} \in \mathcal{X}} \sum_{t \in\left[\tau_{A}\right]} \mathbb{E}\left[f_{t}(\boldsymbol{x})+\boldsymbol{\lambda}_{t}^{\top} \boldsymbol{g}_{t}(\boldsymbol{x}) \mid \sigma\left(\mathcal{H}_{t-1}\right)\right]\right]  \tag{19}\\
& \stackrel{(b)}{=} \mathbb{E}\left[\left(T-\tau_{A}\right) \bar{F}+\max _{\boldsymbol{x} \in \mathcal{X}} \sum_{t \in\left[\tau_{A}\right]} \mathbb{E}\left[h_{t}(\boldsymbol{x}) \mid \sigma\left(\mathcal{H}_{t-1}\right)\right]\right] \\
& \leq \mathbb{E}\left[\left(T-\tau_{A}\right) \bar{F}+\max _{\boldsymbol{x} \in \mathcal{X}} \sum_{t \in\left[\tau_{A}\right]} h_{t}(\boldsymbol{x})\right]
\end{align*}
$$

where in (a) we used the fact that $\boldsymbol{\lambda}_{t}$ is $\mathcal{H}_{t-1}$-measurable; in $(b)$ we used definitions $h_{t}(\boldsymbol{x})=$ $\mathcal{L}_{t}\left(\boldsymbol{x} ; \boldsymbol{\lambda}_{t}\right)$ and $\mathcal{L}_{t}(\boldsymbol{x} ; \boldsymbol{\lambda})=f_{t}(\boldsymbol{x})+\boldsymbol{\lambda}^{\top} \boldsymbol{g}_{t}(\boldsymbol{x})$ in Eqs. (3) and (4) respectively.
On the other hand, we have

$$
\begin{equation*}
f_{t}\left(\boldsymbol{x}_{t}\right)=h_{t}\left(\boldsymbol{x}_{t}\right)-\boldsymbol{\lambda}_{t}^{\top} \boldsymbol{g}_{t}\left(\boldsymbol{x}_{t}\right), \tag{20}
\end{equation*}
$$

so combining this with Eq. 19p we have

$$
\begin{equation*}
\mathrm{OPT}\left(\mathcal{P}_{1: T}\right)-\sum_{t \in[T]} \mathbb{E}\left[f_{t}\left(\boldsymbol{x}_{t}\right)\right] \leq \mathbb{E}\left[\left(T-\tau_{A}\right) \bar{F}+\max _{\boldsymbol{x} \in \mathcal{X}} \sum_{t \in\left[\tau_{A}\right]}\left(h_{t}(\boldsymbol{x})-h_{t}\left(\boldsymbol{x}_{t}\right)\right)+\sum_{t \in \tau_{A}} \boldsymbol{\lambda}_{t}^{\top} \boldsymbol{g}_{t}\left(\boldsymbol{x}_{t}\right)\right] \tag{21}
\end{equation*}
$$

where we also used the fact that $f_{t}(\boldsymbol{x}) \geq 0$ for all $t=\tau_{A}+1 \ldots T$ and $\boldsymbol{x} \in \mathcal{X}$.

## Adversarial.

Proof. Recall the definition of $\xi$ is Theorem 4.2 .

$$
\begin{equation*}
\xi=1-\frac{\min _{(f, \boldsymbol{g}) \in \mathcal{S}} \min _{k \in[K], \boldsymbol{x} \in \mathcal{X}} g_{k}(\boldsymbol{x})}{\bar{\beta}}>1 \tag{22}
\end{equation*}
$$

For any $t \in[T]$, define $\widetilde{\boldsymbol{y}}_{t}=\arg \max _{\boldsymbol{x}} f_{t}(\boldsymbol{x})+\boldsymbol{\lambda}_{t}^{\top} \boldsymbol{g}_{t}(\boldsymbol{x})$.
By comparing to the safety action $\boldsymbol{x}_{\beta} \in \mathcal{X}$ which ensures $g_{k}\left(\boldsymbol{x}_{\beta}\right) \geq \bar{\beta}$ for any $k \in[K]$ and $(f, \boldsymbol{g}) \in \mathcal{S}$, as well as the optimal hindsight action $\boldsymbol{x}_{t}^{*} \in \mathcal{X}$ (i.e. $\boldsymbol{x}_{1}^{*} \ldots \boldsymbol{x}_{T}^{*}$ is the optimal decision sequence to $\operatorname{OPT}\left(\mathcal{P}_{1: T}\right)$ ), we have

$$
\begin{align*}
f_{t}\left(\widetilde{\boldsymbol{y}}_{t}\right)+\boldsymbol{\lambda}_{t}^{\top} \boldsymbol{g}_{t}\left(\widetilde{\boldsymbol{y}}_{t}\right) & \geq f_{t}\left(\boldsymbol{x}_{\beta}\right)+\boldsymbol{\lambda}_{t}^{\top} \boldsymbol{g}_{t}\left(\boldsymbol{x}_{\beta}\right) \geq \bar{\beta} \boldsymbol{\lambda}_{t}^{\top} \boldsymbol{e}  \tag{23}\\
f_{t}\left(\widetilde{\boldsymbol{y}}_{t}\right)+\boldsymbol{\lambda}_{t}^{\top} \boldsymbol{g}_{t}\left(\widetilde{\boldsymbol{y}}_{t}\right) & \geq f_{t}\left(\boldsymbol{x}_{t}^{*}\right)+\boldsymbol{\lambda}_{t}^{\top} \boldsymbol{g}_{t}\left(\boldsymbol{x}_{t}^{*}\right) .
\end{align*}
$$

We further have

$$
\begin{align*}
\xi f_{t}\left(\widetilde{\boldsymbol{y}}_{t}\right) & =f_{t}\left(\widetilde{\boldsymbol{y}}_{t}\right)+(\xi-1) f_{t}\left(\widetilde{\boldsymbol{y}}_{t}\right) \\
& \stackrel{(a)}{\geq} f_{t}\left(\boldsymbol{x}_{t}^{*}\right)+\boldsymbol{\lambda}_{t}^{\top} \boldsymbol{g}_{t}\left(\boldsymbol{x}_{t}^{*}\right)-\boldsymbol{\lambda}_{t}^{\top} \boldsymbol{g}_{t}\left(\widetilde{\boldsymbol{y}}_{t}\right)+(\xi-1)\left(-\boldsymbol{\lambda}_{t}^{\top} \boldsymbol{g}_{t}\left(\widetilde{\boldsymbol{y}}_{t}\right)+\bar{\beta} \boldsymbol{\lambda}_{t}^{\top} \boldsymbol{e}\right) \\
& =f_{t}\left(\boldsymbol{x}_{t}^{*}\right)+\boldsymbol{\lambda}_{t}^{\top} \boldsymbol{g}_{t}\left(\boldsymbol{x}_{t}^{*}\right)-\xi \boldsymbol{\lambda}_{t}^{\top} \boldsymbol{g}_{t}\left(\widetilde{\boldsymbol{y}}_{t}\right)+(\xi-1) \bar{\beta} \boldsymbol{\lambda}_{t}^{\top} \boldsymbol{e}  \tag{24}\\
& \stackrel{(b)}{\geq} f_{t}\left(\boldsymbol{x}_{t}^{*}\right)-\xi \boldsymbol{\lambda}_{t}^{\top} \boldsymbol{g}_{t}\left(\widetilde{\boldsymbol{y}}_{t}\right)
\end{align*}
$$

where (a) follows Eq. (23); in (b) we used the fact that $g_{k, t}\left(\boldsymbol{x}_{t}^{*}\right)+(\xi-1) \bar{\beta} \geq 0$ since we have $\min _{(f, \boldsymbol{g}) \in \mathcal{S}} \min _{k \in[K], \boldsymbol{x} \in \mathcal{X}}\left(g_{k, t}(\boldsymbol{x})+(\xi-1) \bar{\beta}\right) \geq 0$ (see Eq. (22)). Hence we have

$$
\begin{align*}
& \operatorname{OPT}\left(\mathcal{P}_{1: T}\right)-\sum_{t \in[T]} \mathbb{E}\left[f_{t}\left(\boldsymbol{x}_{t}\right)\right] \\
= & \left(1-\frac{1}{\xi}\right) \operatorname{OPT}\left(\mathcal{P}_{1: T}\right)+\sum_{t \in[T]} \mathbb{E}\left[\frac{1}{\xi} f_{t}\left(\boldsymbol{x}_{t}^{*}\right)-f_{t}\left(\boldsymbol{x}_{t}\right)\right] \\
\leq & \left(1-\frac{1}{\xi}\right) \operatorname{OPT}\left(\mathcal{P}_{1: T}\right)+\sum_{t \in[T]} \mathbb{E}\left[f_{t}\left(\widetilde{\boldsymbol{y}}_{t}\right)-f_{t}\left(\boldsymbol{x}_{t}\right)+\boldsymbol{\lambda}_{t}^{\top} \boldsymbol{g}_{t}\left(\widetilde{\boldsymbol{y}}_{t}\right)\right]  \tag{25}\\
\leq & \left(1-\frac{1}{\xi}\right) \operatorname{OPT}\left(\mathcal{P}_{1: T}\right)+\mathbb{E}\left[\left(T-\tau_{A}\right) \bar{F}+\sum_{t \in \tau_{A}}\left(f_{t}\left(\widetilde{\boldsymbol{y}}_{t}\right)-f_{t}\left(\boldsymbol{x}_{t}\right)+\boldsymbol{\lambda}_{t}^{\top} \boldsymbol{g}_{t}\left(\widetilde{\boldsymbol{y}}_{t}\right)\right)\right]
\end{align*}
$$

## $\delta$-corrupted.

Here, we will prove a more general $\delta$-corrupted model where the input distribution sequence $\mathcal{P}_{1: T}$ satisfies the following:

$$
\begin{equation*}
\sum_{t \in[T]}\left\|\mathcal{P}_{t}-\frac{1}{T} \sum_{s \in[T]} \mathcal{P}_{s}\right\|_{T V} \leq \delta \tag{26}
\end{equation*}
$$

where the total variation norm is defined in Definition A.1. In fact, the definition in Section 2.2 for the $\delta$-corrupted regime satisfies the above property: recall in the definition of Section 2.2 , there exists $\mathcal{P} \in \Delta(\mathcal{S})$ as well as $\delta \in \mathbb{N}$ periods $\mathcal{T}=\left\{\tau_{1} \ldots \tau_{\delta}\right\} \subset[T]$ such that $\mathcal{P}_{t}=\mathcal{P}$ for all $t \notin \mathcal{T}$, hence for any $t \notin \mathcal{T}$, we have

$$
\begin{align*}
\left\|\mathcal{P}_{t}-\frac{1}{T} \sum_{s \in[T]} \mathcal{P}_{s}\right\|_{T V} & =\left\|\mathcal{P}-\frac{1}{T}\left(T \mathcal{P}+\sum_{s \in \mathcal{T}}\left(\mathcal{P}-\mathcal{P}_{s}\right)\right)\right\|_{T V} \\
& =\left\|\frac{1}{T} \sum_{s \in \mathcal{T}}\left(\mathcal{P}-\mathcal{P}_{s}\right)\right\|_{T V}  \tag{27}\\
& \leq \frac{\delta}{2 T}
\end{align*}
$$

577 On the other hand, we have for any $\tau \in \mathcal{T},\left\|\mathcal{P}_{t}-\frac{1}{T} \sum_{s \in[T]} \mathcal{P}_{s}\right\|_{T V} \leq \frac{1}{2}$. Hence, summing up we 578

$$
\begin{aligned}
\sum_{t \in[T]}\left\|\mathcal{P}_{t}-\frac{1}{T} \sum_{s \in[T]} \mathcal{P}_{s}\right\|_{T V} & =\sum_{t \in \mathcal{T}}\left\|\mathcal{P}_{t}-\frac{1}{T} \sum_{s \in[T]} \mathcal{P}_{s}\right\|_{T V}+\sum_{t \notin \mathcal{T}}\left\|\mathcal{P}_{t}-\frac{1}{T} \sum_{s \in[T]} \mathcal{P}_{s}\right\|_{T V} \\
& \leq \frac{\delta}{2}+(T-\delta) \frac{\delta}{2 T} \leq \delta
\end{aligned}
$$

which coincides with our general definition of $\delta$-corruption in Eq. (26).
We now prove the $\delta$-corruption regime under the general definition in Eq. (26). Define $\widetilde{\mathcal{P}}=$ $\frac{1}{T} \sum_{s \in[T]} \mathcal{P}_{s}, \widetilde{F}(\boldsymbol{x})=\mathbb{E}_{(f, \boldsymbol{g}) \sim \tilde{\mathcal{P}}}[f(\boldsymbol{x})], \widetilde{\boldsymbol{G}}(\boldsymbol{x})=\mathbb{E}_{(f, \boldsymbol{g}) \sim \tilde{\mathcal{P}}}[\boldsymbol{g}(\boldsymbol{x})], F_{t}(\boldsymbol{x})=\mathbb{E}_{(f, \boldsymbol{g}) \sim \mathcal{P}_{t}}[f(\boldsymbol{x})]$ and $\boldsymbol{G}_{t}(\boldsymbol{x})=\mathbb{E}_{(f, \boldsymbol{g}) \sim \mathcal{P}_{t}}[\boldsymbol{g}(\boldsymbol{x})]$ for all $t \in[T]$ and any $x \in \mathcal{X}$. Then for any $\boldsymbol{\lambda} \in\left[\mathbf{0}, \frac{\bar{F}}{\beta} \boldsymbol{e}\right]$, we have

$$
\begin{align*}
\mathrm{OPT}\left(\mathcal{P}_{1: T}\right) & \leq \max _{\boldsymbol{x}_{1: T} \in \mathcal{X}^{T}} \sum_{t \in[T]}\left(F_{t}\left(\boldsymbol{x}_{t}\right)+\boldsymbol{\lambda}^{\top} \boldsymbol{G}_{t}\left(\boldsymbol{x}_{t}\right)\right) \\
& \leq \max _{\boldsymbol{x}_{1: T} \in \mathcal{X}} \sum_{t \in[T]}\left(\widetilde{F}\left(\boldsymbol{x}_{t}\right)+\boldsymbol{\lambda}^{\top} \widetilde{\boldsymbol{G}}\left(\boldsymbol{x}_{t}\right)\right)+\left(\bar{F}+\bar{G} K \frac{\bar{F}}{\beta}\right) \delta  \tag{28}\\
& =T \cdot \max _{\boldsymbol{x} \in \mathcal{X}}\left(\widetilde{F}(\boldsymbol{x})+\boldsymbol{\lambda}^{\top} \widetilde{\boldsymbol{G}}(\boldsymbol{x})\right)+\left(\bar{F}+\bar{G} K \frac{\bar{F}}{\beta}\right) \delta,
\end{align*}
$$

where the last inequality follows the definitions of $(\widetilde{F}, \widetilde{\boldsymbol{G}})$, Assumption 2.1, and the general definition of $\delta$-corruption in Eq. (26). After choosing $\overline{\boldsymbol{\lambda}}=\frac{1}{\tau_{A}} \sum_{t \in\left[\tau_{A}\right]} \boldsymbol{\lambda}_{t}$, similar to our proof in Eq. (19) for the stochastic case we have

$$
\begin{align*}
& \operatorname{OPT}\left(\mathcal{P}_{1: T}\right) \\
&= \mathbb{E}\left[\frac{T-\tau_{A}}{T} \operatorname{OPT}\left(\mathcal{P}_{1: T}\right)+\frac{\tau_{A}}{T} \operatorname{OPT}\left(\mathcal{P}_{1: T}\right)\right] \\
& \stackrel{(a)}{\leq} \mathbb{E}\left[\left(T-\tau_{A}\right) \bar{F}+\tau_{A} \cdot \max _{\boldsymbol{x} \in \mathcal{X}}\left(\widetilde{F}(\boldsymbol{x})+\boldsymbol{\lambda}^{\top} \widetilde{\boldsymbol{G}}(\boldsymbol{x})\right)+\frac{\tau_{A}}{T}\left(\bar{F}+\bar{G} K \frac{\bar{F}}{\beta}\right) \delta\right] \\
&= \mathbb{E}\left[\left(T-\tau_{A}\right) \bar{F}+\frac{\tau_{A}}{T}\left(\bar{F}+\bar{G} K \frac{\bar{F}}{\beta}\right) \delta+\max _{\boldsymbol{x} \in \mathcal{X}}\left(\sum_{t \in\left[\tau_{A}\right]} \widetilde{F}(\boldsymbol{x})+\boldsymbol{\lambda}_{t}^{\top} \widetilde{\boldsymbol{G}}(\boldsymbol{x})\right)\right] \\
&(b) \\
& \leq \mathbb{E}\left[\left(T-\tau_{A}\right) \bar{F}+\left(1+\frac{\tau_{A}}{T}\right)\left(\bar{F}+\bar{G} K \frac{\bar{F}}{\beta}\right) \delta+\max _{\boldsymbol{x} \in \mathcal{X}} \sum_{t \in\left[\tau_{A}\right]}\left(F_{t}(\boldsymbol{x})+\boldsymbol{\lambda}_{t}^{\top} \boldsymbol{G}_{t}(\boldsymbol{x})\right)\right] \\
& \leq \mathbb{E}\left[\left(T-\tau_{A}\right) \bar{F}+\left(1+\frac{\tau_{A}}{T}\right)\left(\bar{F}+\bar{G} K \frac{\bar{F}}{\beta}\right) \delta+\max _{\boldsymbol{x} \in \mathcal{X}} \sum_{t \in\left[\tau_{A}\right]} \mathbb{E}\left[f_{t}(\boldsymbol{x})+\boldsymbol{\lambda}_{t}^{\top} \boldsymbol{g}_{t}(\boldsymbol{x}) \mid \sigma\left(\mathcal{H}_{t-1}\right)\right]\right]  \tag{29}\\
& \leq \mathbb{E}\left[\left(T-\tau_{A}\right) \bar{F}+2\left(\bar{F}+\bar{G} K \frac{\bar{F}}{\beta}\right) \delta+\max _{\boldsymbol{x} \in \mathcal{X}} \sum_{t \in\left[\tau_{A}\right]} h_{t}(\boldsymbol{x})\right],
\end{align*}
$$

where (a) follows from Eq. 28; (b) follows from the definition of general $\delta$-corruption in Eq. (26). Finally, we complete the proof by using the definition $f_{t}\left(\boldsymbol{x}_{t}\right)=h_{t}\left(\boldsymbol{x}_{t}\right)-\boldsymbol{\lambda}_{t}^{\top} \boldsymbol{g}_{t}\left(\boldsymbol{x}_{t}\right)$ and following the same argument as in Eq. 21) for the stochastic regime.

## Periodic.

Recall in Section 2.2 that in the periodic regime, there exists cycle length $q \in \mathbb{N}$ such that $T=c q$ for some integer $c \geq 2$ with $\mathcal{P}_{1: T}$ as $\mathcal{P}_{1: q}=\mathcal{P}_{q+1: 2 q}=\cdots=\mathcal{P}_{(c-1) q+1: T}$. For any $t \in[T]$, define $c_{t} \in[c]$ such that $\left(c_{t}-1\right) q+1 \leq t \leq c_{t} q$. After denoting $\widetilde{\mathcal{P}}=\frac{1}{q} \sum_{t \in[q]} \mathcal{P}_{t}$, we define the mean deviation within a single cycle of length $q$ as

$$
\begin{equation*}
M D\left(\mathcal{P}_{1: q}\right)=\sum_{1 \leq t \leq q}\left\|\mathcal{P}_{t}-\widetilde{\mathcal{P}}\right\|_{T V} \quad \text { and } \quad \delta=c \cdot M D\left(\mathcal{P}_{1: q}\right) \tag{30}
\end{equation*}
$$

We define $\widetilde{F}(\boldsymbol{x})=\mathbb{E}_{(f, \boldsymbol{g}) \sim \widetilde{\mathcal{P}}}[f(\boldsymbol{x})], \widetilde{\boldsymbol{G}}(\boldsymbol{x})=\mathbb{E}_{(f, \boldsymbol{g}) \sim \widetilde{\mathcal{P}}}[\boldsymbol{g}(\boldsymbol{x})], F_{t}(\boldsymbol{x})=\mathbb{E}_{(f, \boldsymbol{g}) \sim \mathcal{P}_{t}}[f(\boldsymbol{x})]$ and $\boldsymbol{G}_{t}(\boldsymbol{x})=\mathbb{E}_{(f, \boldsymbol{g}) \sim \mathcal{P}_{t}}[\boldsymbol{g}(\boldsymbol{x})]$ for all $t \in[T]$ and any $x \in \mathcal{X}$. Then for any $\boldsymbol{\lambda} \in[\mathbf{0}, \overline{\bar{F}} \boldsymbol{\beta} \boldsymbol{e}]$, we have

$$
\begin{aligned}
\mathrm{OPT}\left(\mathcal{P}_{1: T}\right) & \leq \max _{\boldsymbol{x}_{1: T} \in \mathcal{X}^{T}} \sum_{t \in[T]}\left(F_{t}\left(\boldsymbol{x}_{t}\right)+\boldsymbol{\lambda}^{\top} \boldsymbol{G}_{t}\left(\boldsymbol{x}_{t}\right)\right) \\
& =c \cdot \max _{\boldsymbol{x}_{1: q} \in \mathcal{X}^{q}} \sum_{t \in[q]}\left(F_{t}\left(\boldsymbol{x}_{t}\right)+\boldsymbol{\lambda}^{\top} \boldsymbol{G}_{t}\left(\boldsymbol{x}_{t}\right)\right) \\
& \leq c q \cdot \max _{\boldsymbol{x} \in \mathcal{X}}\left(\widetilde{F}(\boldsymbol{x})+\boldsymbol{\lambda}^{\top} \widetilde{\boldsymbol{G}}(\boldsymbol{x})\right)+\left(\bar{F}+\bar{G} K \frac{\bar{F}}{\beta}\right) c \cdot M D\left(\mathcal{P}_{1: q}\right) \\
& \leq c q \cdot \max _{\boldsymbol{x} \in \mathcal{X}}\left(\widetilde{F}(\boldsymbol{x})+\boldsymbol{\lambda}^{\top} \widetilde{\boldsymbol{G}}(\boldsymbol{x})\right)+\left(\bar{F}+\bar{G} K \frac{\bar{F}}{\beta}\right) \delta,
\end{aligned}
$$

where the equality follows the nature of periodic setting and the last inequality follows the definitions of $(\widetilde{F}, \widetilde{\boldsymbol{G}})$, Assumption 2.1, and (30). After choosing $\boldsymbol{\lambda}=\sum_{\hat{c} \in\left[c_{\tau_{A}}-1\right]} \frac{q}{\tau_{A}} \boldsymbol{\lambda}_{(\hat{c}-1) q+1}+$
$\frac{\tau_{A}-\left(c_{\tau_{A}}-1\right) q}{\tau_{A}} \boldsymbol{\lambda}_{\left(c_{\tau_{A}}-1\right) q+1}$, we further have that
$\operatorname{OPT}\left(\mathcal{P}_{1: T}\right)$
$=\frac{T-\tau_{A}}{T} \mathrm{OPT}\left(\mathcal{P}_{1: T}\right)+\frac{\tau_{A}}{T} \operatorname{OPT}\left(\mathcal{P}_{1: T}\right)$
$\leq\left(T-\tau_{A}\right) \bar{F}+\tau_{A} \cdot \max _{\boldsymbol{x} \in \mathcal{X}}\left(\widetilde{F}(\boldsymbol{x})+\boldsymbol{\lambda}^{\top} \widetilde{\boldsymbol{G}}(\boldsymbol{x})\right)+\frac{\tau_{A}}{T}\left(\bar{F}+\bar{G} K \frac{\bar{F}}{\beta}\right) \delta$
$=\left(T-\tau_{A}\right) \bar{F}+\max _{\boldsymbol{x} \in \mathcal{X}}\left(\tau_{A} \widetilde{F}(\boldsymbol{x})+\left(\sum_{\hat{c} \in\left[c_{\tau_{A}}-1\right]} q \boldsymbol{\lambda}_{(\hat{c}-1) q+1}+\left(\tau_{A}-\left(c_{\tau_{A}}-1\right) q\right) \boldsymbol{\lambda}_{\left(c_{\tau_{A}}-1\right) q+1}\right)^{\top} \widetilde{\boldsymbol{G}}(\boldsymbol{x})\right)$
$+\frac{\tau_{A}}{T}\left(\bar{F}+\bar{G} K \frac{\bar{F}}{\beta}\right) \delta$
$=\left(T-\tau_{A}\right) \bar{F}+\max _{\boldsymbol{x} \in \mathcal{X}}\left(q \cdot \sum_{\hat{c} \in\left[c_{\tau_{A}}-1\right]}\left(\widetilde{F}(\boldsymbol{x})+\boldsymbol{\lambda}_{(\hat{c}-1) q+1}^{\top} \widetilde{\boldsymbol{G}}(\boldsymbol{x})\right)\right.$
$\left.+\left(\tau_{A}-\left(c_{\tau_{A}}-1\right) q\right) \cdot\left(\widetilde{F}(\boldsymbol{x})+\boldsymbol{\lambda}_{\left(c_{\tau_{A}}-1\right) q+1}^{\top} \widetilde{\boldsymbol{G}}(\boldsymbol{x})\right)\right)+\frac{\tau_{A}}{T}\left(\bar{F}+\bar{G} K \frac{\bar{F}}{\beta}\right) \delta$
$\leq\left(T-\tau_{A}\right) \bar{F}+\max _{x \in \mathcal{X}} \sum_{t \in\left[\tau_{A}\right]}\left(\widetilde{F}(\boldsymbol{x})+\boldsymbol{\lambda}_{t}^{\top} \widetilde{\boldsymbol{G}}(\boldsymbol{x})\right)+\bar{G} \cdot \sum_{t \in\left[\tau_{A}\right]}\left\|\boldsymbol{\lambda}_{t}-\boldsymbol{\lambda}_{\left(c_{t}-1\right) q+1}\right\|_{1}+\frac{\tau_{A}}{T}\left(\bar{F}+\bar{G} K \frac{\bar{F}}{\beta}\right) \delta$.
From (8) in Algorithm 1. we know that $\left\|\boldsymbol{\lambda}_{t+1}-\boldsymbol{\lambda}_{t}\right\|_{1} \leq \eta \bar{G} K$, which further implies $\left\|\boldsymbol{\lambda}_{t+i}-\boldsymbol{\lambda}_{t}\right\|_{1} \leq$ $\eta \bar{G} K i$ for any $i \in[q-1]$ and thus

$$
\begin{equation*}
\sum_{t \in\left[\tau_{A}\right]}\left\|\boldsymbol{\lambda}_{t}-\boldsymbol{\lambda}_{\left(c_{t}-1\right) q+1}\right\|_{1} \leq c_{\tau_{A}} \eta \bar{G} K \sum_{i \in[q-1]} i \leq \frac{1}{2} \bar{G} K \eta c_{\tau_{A}} q^{2} \tag{31}
\end{equation*}
$$

After combining the two equations above, it follows that

$$
\begin{aligned}
& \mathrm{OPT}\left(\mathcal{P}_{1: T}\right) \\
\leq & \mathbb{E}\left[\left(T-\tau_{A}\right) \bar{F}+\max _{x \in \mathcal{X}} \sum_{t \in\left[\tau_{A}\right]}\left(\widetilde{F}(\boldsymbol{x})+\boldsymbol{\lambda}_{t}^{\top} \widetilde{\boldsymbol{G}}(\boldsymbol{x})\right)+\frac{1}{2} \bar{G}^{2} K \eta c_{\tau_{A}} q^{2}+\frac{\tau_{A}}{T}\left(\bar{F}+\bar{G} K \frac{\bar{F}}{\beta}\right) \delta\right] \\
\leq & \mathbb{E}\left[\left(T-\tau_{A}\right) \bar{F}+\max _{x \in \mathcal{X}} \sum_{t \in\left[\tau_{A}\right]}\left(F_{t}(\boldsymbol{x})+\boldsymbol{\lambda}_{t}^{\top} \boldsymbol{G}_{t}(\boldsymbol{x})\right)+\frac{1}{2} \bar{G}^{2} K \eta c_{\tau_{A}} q^{2}+2\left(\bar{F}+\bar{G} K \frac{\bar{F}}{\beta}\right) \delta\right] \\
\leq & \mathbb{E}\left[\left(T-\tau_{A}\right) \bar{F}+2\left(\bar{F}+\bar{G} K \frac{\bar{F}}{\beta}\right) \delta+\frac{1}{2} \bar{G}^{2} K \eta q T+\max _{\boldsymbol{x} \in \mathcal{X}} \sum_{t \in\left[\tau_{A}\right]} \mathbb{E}\left[h_{t}(\boldsymbol{x}) \mid \sigma\left(\mathcal{H}_{t-1}\right)\right]\right] \\
\leq & \mathbb{E}\left[\left(T-\tau_{A}\right) \bar{F}+2\left(\bar{F}+\bar{G} K \frac{\bar{F}}{\beta}\right) \delta+\frac{1}{2} \bar{G}^{2} K \eta q T+\max _{\boldsymbol{x} \in \mathcal{X}} \sum_{t \in\left[\tau_{A}\right]} h_{t}(\boldsymbol{x})\right]
\end{aligned}
$$

where the second last inequality follows from $c_{\tau_{A}} q \leq c q=T$.
Finally, we complete the proof by using the definition $f_{t}\left(\boldsymbol{x}_{t}\right)=h_{t}\left(\boldsymbol{x}_{t}\right)-\boldsymbol{\lambda}_{t}^{\top} \boldsymbol{g}_{t}\left(\boldsymbol{x}_{t}\right)$ and following the same argument as in Eq. (21) for the stochastic regime.

## Ergodic.

Consider some $\kappa \geq \log (T)$. Given the input distribution sequence $\mathcal{P}_{1: T}$, denote $\mathcal{P}_{(t+\kappa) \mid[t-1]}$ as the conditional distribution of $\left(f_{t+\kappa}, \boldsymbol{g}_{t+\kappa}\right)$ conditioned on the $\left\{\left(f_{\tau}, \boldsymbol{g}_{\tau}\right)\right\}_{\tau \in[t]}$. Then, in the ergodic regime, there exists a stationary distribution $\widetilde{\mathcal{P}} \in \Delta(\mathcal{S})$ and absolute constant $R>0$ such that

$$
\begin{equation*}
\sup _{\left\{\left(f_{t}, \boldsymbol{g}_{t}\right)\right\}_{t \in[T]} \in \mathcal{S}^{T}} \sup _{t \in[T-\kappa]}\left\|\mathcal{P}_{(t+\kappa) \mid[t-1]}-\widetilde{\mathcal{P}}\right\|_{T V} \leq \delta:=R \exp (-\kappa) \tag{32}
\end{equation*}
$$

By defining $\widetilde{F}(\boldsymbol{x})=\mathbb{E}_{(f, \boldsymbol{g}) \sim \widetilde{\mathcal{P}}}[f(\boldsymbol{x})], \quad \widetilde{\boldsymbol{G}}(\boldsymbol{x})=\mathbb{E}_{(f, \boldsymbol{g}) \sim \widetilde{\mathcal{P}}}[\boldsymbol{g}(\boldsymbol{x})], \quad \hat{F}_{t+\kappa}(\boldsymbol{x}) \quad=$ $\mathbb{E}_{(f, \boldsymbol{g}) \sim \mathcal{P}_{(t+\kappa) \mid[t-1]}}[f(\boldsymbol{x})], \quad \hat{\boldsymbol{G}}_{t+\kappa}(\boldsymbol{x})=\mathbb{E}_{(f, \boldsymbol{g}) \sim \mathcal{P}_{(t+\kappa) \mid[t-1]}}[\boldsymbol{g}(\boldsymbol{x})], \quad F_{t}(\boldsymbol{x})=\mathbb{E}_{(f, \boldsymbol{g}) \sim \mathcal{P}_{t}}[f(\boldsymbol{x})]$

611
and $\boldsymbol{G}_{t}(\boldsymbol{x})=\mathbb{E}_{(f, \boldsymbol{g}) \sim \mathcal{P}_{t}}[\boldsymbol{g}(\boldsymbol{x})]$ for all $t \in[T]$ and any $x \in \mathcal{X}$, we know that for any $\boldsymbol{\lambda} \in\left[\mathbf{0}, \frac{\bar{F}}{\beta} \boldsymbol{e}\right]$, it follows that

$$
\begin{align*}
& \operatorname{OPT}\left(\mathcal{P}_{1: T}\right) \\
\leq & \max _{\boldsymbol{x}_{1: T} \in \mathcal{X}^{T}} \mathbb{E}\left[\sum_{t \in[T]}\left(F_{t}\left(\boldsymbol{x}_{t}\right)+\boldsymbol{\lambda}^{\top} \boldsymbol{G}_{t}\left(\boldsymbol{x}_{t}\right)\right)\right] \\
= & \max _{\boldsymbol{x}_{1: \kappa} \in \mathcal{X}^{\kappa}} \mathbb{E}\left[\sum_{t \in[\kappa]}\left(F_{t}\left(\boldsymbol{x}_{t}\right)+\boldsymbol{\lambda}^{\top} \boldsymbol{G}_{t}\left(\boldsymbol{x}_{t}\right)\right)\right]+\max _{\boldsymbol{x}_{\kappa+1: T} \in \mathcal{X}^{T-\kappa}} \mathbb{E}\left[\sum_{t=1}^{T-\kappa}\left(\hat{F}_{t+\kappa}\left(\boldsymbol{x}_{t+\kappa}\right)+\boldsymbol{\lambda}^{\top} \hat{\boldsymbol{G}}_{t+\kappa}\left(\boldsymbol{x}_{t+\kappa}\right)\right)\right] \\
\leq & \left(\bar{F}+\bar{G} K \frac{\bar{F}}{\beta}\right) \kappa+\max _{\boldsymbol{x}_{\kappa+1: T} \in \mathcal{X}^{T-k}} \sum_{t=1}^{T-\kappa}\left(\widetilde{F}\left(\boldsymbol{x}_{t+\kappa}\right)+\boldsymbol{\lambda}^{\top} \widetilde{\boldsymbol{G}}\left(\boldsymbol{x}_{t+\kappa}\right)\right)+\left(\bar{F}+\bar{G} K \frac{\bar{F}}{\beta}\right) \cdot(T-\kappa) \delta \\
\leq & T \cdot \max _{x \in \mathcal{X}}\left(\widetilde{F}(\boldsymbol{x})+\boldsymbol{\lambda}^{\top} \widetilde{\boldsymbol{G}}(\boldsymbol{x})\right)+\left(\bar{F}+\bar{G} K \frac{\bar{F}}{\beta}\right) \kappa+\left(\bar{F}+\bar{G} K \frac{\bar{F}}{\beta}\right) \cdot T \delta \tag{33}
\end{align*}
$$

613 By choosing $\boldsymbol{\lambda}=\frac{1}{\tau_{A}} \sum_{t \in\left[\tau_{A}\right]} \boldsymbol{\lambda}_{t}$, we further have

$$
\begin{align*}
& \operatorname{OPT}\left(\mathcal{P}_{1: T}\right) \\
& =\mathbb{E}\left[\frac{T-\tau_{A}}{T} \mathrm{OPT}\left(\mathcal{P}_{1: T}\right)+\frac{\tau_{A}}{T} \mathrm{OPT}\left(\mathcal{P}_{1: T}\right)\right] \\
& \leq \mathbb{E}\left[\left(T-\tau_{A}\right) \bar{F}+\tau_{A} \cdot \max _{x \in \mathcal{X}}\left(\widetilde{F}(\boldsymbol{x})+\boldsymbol{\lambda}^{\top} \widetilde{\boldsymbol{G}}(\boldsymbol{x})\right)\right]+\left(\bar{F}+\bar{G} K \frac{\bar{F}}{\beta}\right) \kappa+\left(\bar{F}+\bar{G} K \frac{\bar{F}}{\beta}\right) \cdot T \delta \\
& =\mathbb{E}\left[\left(T-\tau_{A}\right) \bar{F}+\max _{x \in \mathcal{X}} \sum_{t \in\left[\tau_{A}\right]}\left(\widetilde{F}(\boldsymbol{x})+\boldsymbol{\lambda}_{t}^{\top} \widetilde{\boldsymbol{G}}(\boldsymbol{x})\right)\right]+\left(\bar{F}+\bar{G} K \frac{\bar{F}}{\beta}\right) \kappa+\left(\bar{F}+\bar{G} K \frac{\bar{F}}{\beta}\right) \cdot T \delta \\
& \leq \mathbb{E}\left[\left(T-\tau_{A}\right) \bar{F}+\max _{x \in \mathcal{X}} \sum_{t \in\left[\tau_{A}\right]}\left(\hat{F}_{t+\kappa}(\boldsymbol{x})+\boldsymbol{\lambda}_{t}^{\top} \hat{\boldsymbol{G}}_{t+\kappa}(\boldsymbol{x})\right)\right]+\left(\bar{F}+\bar{G} K \frac{\bar{F}}{\beta}\right) \kappa+2\left(\bar{F}+\bar{G} K \frac{\bar{F}}{\beta}\right) \cdot T \delta \\
& =\mathbb{E}\left[\left(T-\tau_{A}\right) \bar{F}+\max _{x \in \mathcal{X}} \mathbb{E} \sum_{t \in\left[\tau_{A}\right]}\left(\hat{F}_{t+\kappa}(\boldsymbol{x})+\boldsymbol{\lambda}_{t+\kappa}^{\top} \hat{\boldsymbol{G}}_{t+\kappa}(\boldsymbol{x})+\left(\boldsymbol{\lambda}_{t}-\boldsymbol{\lambda}_{t+\kappa}\right)^{\top} \hat{\boldsymbol{G}}_{t+\kappa}\left(\boldsymbol{x}_{t}\right)\right)\right] \\
& +\left(\bar{F}+\bar{G} K \frac{\bar{F}}{\beta}\right) \kappa+2\left(\bar{F}+\bar{G} K \frac{\bar{F}}{\beta}\right) \cdot T \delta \\
& \stackrel{(a)}{\leq} \mathbb{E}\left[\left(T-\tau_{A}\right) \bar{F}+\max _{x \in \mathcal{X}} \sum_{t \in\left[\tau_{A}\right]}\left(\hat{F}_{t+\kappa}(\boldsymbol{x})+\boldsymbol{\lambda}_{t+\kappa}^{\top} \hat{\boldsymbol{G}}_{t+\kappa}\left(\boldsymbol{x}_{t}\right)\right)\right]+\kappa \eta T K \bar{G}^{2} \\
& +\left(\bar{F}+\bar{G} K \frac{\bar{F}}{\beta}\right) \kappa+2\left(\bar{F}+\bar{G} K \frac{\bar{F}}{\beta}\right) \cdot T \delta \\
& \leq \mathbb{E}\left[\left(T-\tau_{A}\right) \bar{F}+\max _{x \in \mathcal{X}} \sum_{t \in\left[\tau_{A}-\kappa\right]}\left(\hat{F}_{t+\kappa}(\boldsymbol{x})+\boldsymbol{\lambda}_{t+\kappa}^{\top} \hat{\boldsymbol{G}}_{t+\kappa}\left(\boldsymbol{x}_{t}\right)\right)\right]+\kappa \eta T K \bar{G}^{2} \\
& +2\left(\bar{F}+\bar{G} K \frac{\bar{F}}{\beta}\right) \kappa+2\left(\bar{F}+K \frac{\bar{F}}{\beta}\right) \cdot T \delta \\
& \stackrel{(b)}{\leq} \mathbb{E}\left[\left(T-\tau_{A}\right) \bar{F}+\max _{\boldsymbol{x} \in \mathcal{X}} \sum_{t=\kappa+1}^{\tau_{A}} h_{t}(\boldsymbol{x})\right]+\kappa \eta T K \bar{G}^{2}+2\left(\bar{F}+\bar{G} K \frac{\bar{F}}{\beta}\right) \kappa+2\left(\bar{F}+\bar{G} K \frac{\bar{F}}{\beta}\right) \cdot T \delta \\
& \leq \mathbb{E}\left[\left(T-\tau_{A}\right) \bar{F}+\max _{\boldsymbol{x} \in \mathcal{X}} \sum_{t \in\left[\tau_{A}\right]} h_{t}(\boldsymbol{x})\right]+\kappa \eta T K \bar{G}^{2}+2\left(\bar{F}+\bar{G} K \frac{\bar{F}}{\beta}\right) \kappa+2\left(\bar{F}+\bar{G} K \frac{\bar{F}}{\beta}\right) \cdot T \delta \\
& \stackrel{(c)}{\leq} \mathbb{E}\left[\left(T-\tau_{A}\right) \bar{F}+\max _{\boldsymbol{x} \in \mathcal{X}} \sum_{t \in\left[\tau_{A}\right]} h_{t}(\boldsymbol{x})\right]+\kappa \eta T K \bar{G}^{2}+2\left(\bar{F}+\bar{G} K \frac{\bar{F}}{\beta}\right) \kappa+2 R\left(\bar{F}+\bar{G} K \frac{\bar{F}}{\beta}\right), \tag{34}
\end{align*}
$$

where in (a), from (8) in Algorithm 1, we know that $\left\|\boldsymbol{\lambda}_{t+1}-\boldsymbol{\lambda}_{t}\right\|_{1} \leq \eta \bar{G} K$, which further implies $\left\|\boldsymbol{\lambda}_{t+\kappa}-\boldsymbol{\lambda}_{t}\right\|_{1} \leq \kappa \eta G K$ and thus

$$
\begin{equation*}
\left(\boldsymbol{\lambda}_{t}-\boldsymbol{\lambda}_{t+\kappa}\right)^{\top} \hat{\boldsymbol{G}}_{t+\kappa}\left(\boldsymbol{x}_{t}\right) \leq \kappa \eta K \bar{G}^{2} \tag{35}
\end{equation*}
$$

In (b), we used the fact that for any $t \geq \kappa+1$, we have

$$
\begin{align*}
& \mathbb{E}\left[\max _{x \in \mathcal{X}} \sum_{t \in\left[\tau_{A}-\kappa\right]}\left(\hat{F}_{t+\kappa}(\boldsymbol{x})+\boldsymbol{\lambda}_{t+\kappa}^{\top} \hat{\boldsymbol{G}}_{t+\kappa}\left(\boldsymbol{x}_{t}\right)\right)\right] \\
= & \mathbb{E}\left[\max _{x \in \mathcal{X}} \sum_{t \in\left[\tau_{A}-\kappa\right]} \mathbb{E}\left[h_{t+\kappa}(\boldsymbol{x}) \mid\left(f_{\tau}, \boldsymbol{g}_{\tau}\right)_{\tau \in[t-1]}\right]\right]  \tag{36}\\
\leq & \mathbb{E}\left[\max _{x \in \mathcal{X}} \sum_{t \in\left[\tau_{A}-\kappa\right]} h_{t+\kappa}(\boldsymbol{x})\right]
\end{align*}
$$

In (c) we used the fact that $\kappa \geq \log (T)$, so $\delta=R \exp (-\kappa) \geq R$.
Finally, we complete the proof by using the definition $f_{t}\left(\boldsymbol{x}_{t}\right)=h_{t}\left(\boldsymbol{x}_{t}\right)-\boldsymbol{\lambda}_{t}^{\top} \boldsymbol{g}_{t}\left(\boldsymbol{x}_{t}\right)$ and following the same argument as in Eq. (21) for the stochastic regime.

## A. 8 Proof of Theorem 4.2

Proof. We bound the regret in every world as followed

$$
\begin{aligned}
\mathcal{R}_{T} & =\mathrm{OPT}\left(\mathcal{P}_{1: T}\right)-\sum_{t \in[T]} \mathbb{E}\left[f_{t}\left(\boldsymbol{x}_{t}\right)\right] \\
& \stackrel{(a)}{\leq} \mathbb{E}\left[\bar{F}\left(T-\tau_{A}\right)+\sum_{t \in\left[\tau_{A}\right]} \boldsymbol{\lambda}_{t}^{\top} \boldsymbol{g}_{t}\left(\boldsymbol{x}_{t}\right)+\mathcal{R}_{\mathrm{BOCO}}\left(\tau_{A}\right)\right] \\
& \stackrel{(b)}{\leq} \mathbb{E}\left[\mathcal{R}_{\mathrm{BOCO}}\left(\tau_{A}\right)\right]
\end{aligned}
$$

where (a) follows from Lemma 4.3 , and (b) follows from Lemma $4.5 \operatorname{Recall} \mathcal{R}_{\mathrm{BOCO}}\left(\tau_{A}\right)$ is specified in Lemma 4.3 for each world.

In the following we bound $\mathcal{R}_{\mathrm{BOCO}}\left(\tau_{A}\right)$ for each world.
Stochastic.

$$
\begin{equation*}
\mathbb{E}\left[\mathcal{R}_{\mathrm{BOCO}}\left(\tau_{A}\right)\right]=\mathbb{E}\left[\max _{\boldsymbol{x} \in \mathcal{X}} \sum_{t \in\left[\tau_{A}\right]} h_{t}(\boldsymbol{x})-h_{t}\left(\boldsymbol{x}_{t}\right)\right] \stackrel{(a)}{\leq} \mathcal{O}\left(\frac{\rho T}{\beta}+\frac{1}{\gamma_{i}}+\frac{\gamma_{i} K T}{\beta^{2} \rho^{2}}+T \epsilon+\frac{1}{\epsilon}\right) \stackrel{(b)}{=} \mathcal{O}\left(T^{\frac{3}{4}}\right) \tag{37}
\end{equation*}
$$

where (a) follows from Lemma 4.6 by taking the comparator sequence $\boldsymbol{y}_{t}=$ $\arg \max _{\boldsymbol{x} \in \mathcal{X}} \sum_{t \in\left[\tau_{A}\right]} h_{t}(\boldsymbol{x})$ for all $t \in\left[\tau_{A}\right]$ such that $P\left(\boldsymbol{y}_{1: T}\right)=1$, as well as any primal ascent expert $i \in[N]$; (b) follows from taking $\eta=\frac{1}{\sqrt{K T}}, \rho=K^{\frac{1}{3}} T^{-\frac{1}{4}}, \epsilon=T^{-\frac{1}{2}}, \beta=\frac{1}{\log (T)}$, and finally choosing $\gamma_{i}=K^{-\frac{1}{6}}(1+D T)^{\frac{1}{2}} T^{-\frac{3}{4}}$. Recall all primal ascent expert stepsizes arer $\left\{\gamma_{1} \ldots \gamma_{N}\right\}=\left\{2^{-i} K^{-\frac{1}{6}}(1+D T)^{\frac{1}{2}} T^{-\frac{3}{4}}: i=0 \ldots N\right\}$.
$\delta$-corrupted, Periodic, and Ergodic. The proof is nearly identical with that of the stochastic world in Eq. (37) given that we still consider the comparator sequence $\boldsymbol{y}_{t}=\arg \max _{\boldsymbol{x} \in \mathcal{X}} \sum_{t \in\left[\tau_{A}\right]} h_{t}(\boldsymbol{x})$ for all $t \in\left[\tau_{A}\right]$ such that $P\left(\boldsymbol{y}_{1: T}\right)=1$. Hence we will omit the proof.

Adversarial. Recall the definition $\widetilde{\boldsymbol{y}}_{t}=\arg \max _{\boldsymbol{x} \in \mathcal{X}} f_{t}\left(\boldsymbol{x}_{t}\right)+\boldsymbol{\lambda}_{t}^{\top} \boldsymbol{g}\left(\boldsymbol{x}_{t}\right)$. Then we have

$$
\begin{align*}
\mathbb{E}\left[\mathcal{R}_{\mathrm{BOCO}}\left(\tau_{A}\right)\right] & =\left(1-\frac{1}{\xi}\right) \operatorname{OPT}\left(\mathcal{P}_{1: T}\right)+\sum_{t \in\left[\tau_{A}\right]} \mathbb{E}\left[h_{t}\left(\widetilde{\boldsymbol{y}}_{t}\right)-h_{t}\left(\boldsymbol{x}_{t}\right)\right] \\
& \leq \mathcal{O}\left(\frac{\rho T}{\beta}+\frac{1+P\left(\widetilde{\boldsymbol{y}}_{1: T}\right)}{\gamma_{i}}+\frac{\gamma_{i} K T}{\beta^{2} \rho^{2}}+T \epsilon+\frac{1}{\epsilon}\right)=\left(1-\frac{1}{\xi}\right) \operatorname{OPT}\left(\mathcal{P}_{1: T}\right)+o(T) \tag{38}
\end{align*}
$$

where we chose the primal ascent stepsize $\gamma_{i}$ s.t.

$$
\begin{equation*}
\frac{1}{2} K^{-\frac{1}{6}}\left(1+P\left(\widetilde{\boldsymbol{y}}_{1: T}\right)\right)^{\frac{1}{2}} T^{-\frac{3}{4}} \leq \gamma_{i} \leq K^{-\frac{1}{6}}\left(1+P\left(\widetilde{\boldsymbol{y}}_{1: T}\right)\right)^{\frac{1}{2}} T^{-\frac{3}{4}} \tag{39}
\end{equation*}
$$

We note that such a $\gamma_{i}$ must exist because $P\left(\widetilde{\boldsymbol{y}}_{1: T}\right) \leq D T$ given all $\widetilde{\boldsymbol{y}}_{t} \in \mathcal{X}$, so that the largest element in the primal ascent stepsize set, namely $K^{-\frac{1}{6}}(1+D T)^{\frac{1}{2}} T^{-\frac{3}{4}}$ is larger than the upper bound above, namely $K^{-\frac{1}{6}}\left(1+P\left(\widetilde{\boldsymbol{y}}_{1: T}\right)\right)^{\frac{1}{2}} T^{-\frac{3}{4}}$.

## A. 9 Proof for Lemma A. 1

Proof. Recall the definition $h_{t}(\boldsymbol{x})=f_{t}(\boldsymbol{x})+\boldsymbol{\lambda}_{t}^{\top} \boldsymbol{g}_{t}(\boldsymbol{x})$ in Eq. 44. Then we have

$$
\begin{align*}
\left|h_{t}(\boldsymbol{x})-h_{t}\left(\boldsymbol{x}^{\prime}\right)\right| & \leq\left|f_{t}(\boldsymbol{x})-f_{t}\left(\boldsymbol{x}^{\prime}\right)\right|+\left\|\boldsymbol{\lambda}_{t}\right\| \cdot\left\|\boldsymbol{g}_{t}(\boldsymbol{x})-\boldsymbol{g}_{t}\left(\boldsymbol{x}^{\prime}\right)\right\| \\
& \stackrel{(a)}{\leq} L\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|+K \frac{\bar{F}}{\beta} L\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|=\left(1+K \frac{\bar{F}}{\beta}\right) L \cdot\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\| \tag{40}
\end{align*}
$$

where (a) follows from the fact that any $(f, \boldsymbol{g}) \in \mathcal{S}$ are $L$-lipschitz under Assumption 2.1 .
On the other hand, recall the definition $\hat{h}_{t}(\boldsymbol{x})=\mathbb{E}_{\boldsymbol{v} \sim U(\mathbb{B})}\left[\mathcal{L}_{t}\left(\boldsymbol{x}+\rho \boldsymbol{v}, \boldsymbol{\lambda}_{t}\right)\right]$ in Eq. 10). Then we have $\left|h_{t}(\boldsymbol{x})-\hat{h}_{t}(\boldsymbol{x})\right|=\mathbb{E}_{\boldsymbol{v} \sim U(\mathbb{B})}\left[h_{t}(\boldsymbol{x})-h_{t}(\boldsymbol{x}+\rho \boldsymbol{v})\right] \leq\left(1+K \frac{\bar{F}}{\beta}\right) L \rho \cdot E_{\boldsymbol{v} \sim U(\mathbb{B})}[\boldsymbol{v}]=\left(1+K \frac{\bar{F}}{\beta}\right) L \rho$
where the inequality follows from the first part of this lemma.

## A. 10 Proof of Lemma A. 2

Proof. Recall the definitions $h_{t}(\boldsymbol{x})=f_{t}(\boldsymbol{x})+\boldsymbol{\lambda}_{t}^{\top} \boldsymbol{g}_{t}(\boldsymbol{x})$ in Eq. (4), and $\hat{h}_{t}(\boldsymbol{x})=\mathbb{E}_{\boldsymbol{v} \sim U(\mathbb{B})}\left[\mathcal{L}_{t}(\boldsymbol{x}+\right.$ $\left.\left.\rho \boldsymbol{v}, \boldsymbol{\lambda}_{t}\right)\right]$ in Eq. (10). Then, we have

$$
\begin{align*}
\hat{h}_{t}(\boldsymbol{y})-\hat{h}_{t}\left(\widetilde{\boldsymbol{x}}_{t}\right) & \stackrel{(a)}{\leq}\left\langle\nabla \hat{h}_{t}\left(\widetilde{\boldsymbol{x}}_{t}\right), \boldsymbol{y}-\widetilde{\boldsymbol{x}}_{t}\right\rangle \\
& \stackrel{(b)}{=}\left\langle\frac{d}{\rho} \cdot \mathbb{E}_{\boldsymbol{u} \sim U(\mathbb{S})}\left[h_{t}\left(\widetilde{\boldsymbol{x}}_{t}+\rho \boldsymbol{u}\right) \cdot \boldsymbol{u}\right], \boldsymbol{y}-\widetilde{\boldsymbol{x}}_{t}\right\rangle \\
& =\mathbb{E}_{\boldsymbol{u}_{t} \sim U(\mathbb{S})}\left[\left\langle\frac{d}{\rho} \cdot h_{t}\left(\widetilde{\boldsymbol{x}}_{t}+\rho \boldsymbol{u}_{t}\right) \cdot \boldsymbol{u}_{t}, \boldsymbol{y}-\widetilde{\boldsymbol{x}}_{t}\right\rangle\right]  \tag{42}\\
& \stackrel{(c)}{=} \mathbb{E}_{\boldsymbol{u}_{t} \sim U(\mathbb{S})}\left[\left\langle\nabla_{t}, \boldsymbol{y}-\widetilde{\boldsymbol{x}}_{t}\right\rangle\right] \\
& \stackrel{(d)}{=} \mathbb{E}_{\boldsymbol{u}_{t} \sim U(\mathbb{S})}\left[\ell_{t}\left(\widetilde{\boldsymbol{x}}_{t}\right)-\ell_{t}(\boldsymbol{y})\right]
\end{align*}
$$

Finally, (d) follows from the definition of surrogate loss functions in Eq. 77.

## A. 11 Proof of Lemma A. 3

## Proving (i):

Proof. Since $\widetilde{\boldsymbol{x}}_{t+1}^{i}=\Pi_{(1-\alpha) \mathcal{X}}\left(\widetilde{\boldsymbol{x}}_{t}^{i}+\gamma_{i} \boldsymbol{\nabla}_{t}\right)$ we have $\left\|\boldsymbol{y}-\widetilde{\boldsymbol{x}}_{t+1}^{i}\right\| \leq\left\|\boldsymbol{y}-\left(\widetilde{\boldsymbol{x}}_{t}^{i}+\gamma_{i} \boldsymbol{\nabla}_{t}\right)\right\|$ for any $\boldsymbol{y} \in(1-\alpha) \mathcal{X}$. Then

$$
\begin{aligned}
& \left\|\boldsymbol{y}-\widetilde{\boldsymbol{x}}_{t+1}^{i}\right\|^{2} \leq\left\|\boldsymbol{y}-\widetilde{\boldsymbol{x}}_{t}^{i}\right\|^{2}-2 \gamma_{i} \nabla_{t}^{\top}\left(\boldsymbol{y}-\widetilde{\boldsymbol{x}}_{t}^{i}\right)+\gamma_{i}^{2} \nabla_{t}^{2} \\
\Longrightarrow & \left\|\widetilde{\boldsymbol{x}}_{t+1}^{i}\right\|^{2} \leq\left\|\widetilde{\boldsymbol{x}}_{t}^{i}\right\|^{2}+2 \boldsymbol{y}^{\top}\left(\widetilde{\boldsymbol{x}}_{t+1}^{i}-\widetilde{\boldsymbol{x}}_{t+}^{i}\right)-2 \gamma_{i} \nabla_{t}^{\top}\left(\boldsymbol{y}-\widetilde{\boldsymbol{x}}_{t}^{i}\right)+\gamma_{i}^{2} \nabla_{t}^{2}
\end{aligned}
$$

Hence by taking $\boldsymbol{y}=(1-\alpha) \boldsymbol{y}_{t} \in(1-\alpha) \mathcal{X}$ and rearranging we get

$$
\begin{align*}
& 2 \gamma_{i}\left(\ell_{t}\left(\widetilde{\boldsymbol{x}}_{t}^{i}\right)-\ell_{t}\left((1-\alpha) \boldsymbol{y}_{t}\right)\right) \\
= & 2 \gamma_{i} \nabla_{t}^{\top}\left((1-\alpha) \boldsymbol{y}_{t}-\widetilde{\boldsymbol{x}}_{t}^{i}\right)  \tag{43}\\
\leq & \left\|\widetilde{\boldsymbol{x}}_{t}^{i}\right\|^{2}-\left\|\widetilde{\boldsymbol{x}}_{t+1}^{i}\right\|^{2}+2(1-\alpha) \boldsymbol{y}_{t}^{\top}\left(\widetilde{\boldsymbol{x}}_{t+1}^{i}-\widetilde{\boldsymbol{x}}_{t}^{i}\right)+\gamma_{i}^{2} \nabla_{t}^{2}
\end{align*}
$$

Telescoping with $\tau=1 \ldots t$ we get

$$
\begin{align*}
& \sum_{\tau \in[t]} \ell_{\tau}\left(\widetilde{\boldsymbol{x}}_{\tau}^{i}\right)-\sum_{\tau \in[t]} \ell_{\tau}\left((1-\alpha) \boldsymbol{y}_{\tau}\right) \\
= & \frac{1}{2 \gamma_{i}}\left\|\widetilde{\boldsymbol{x}}_{1}^{i}\right\|^{2}+\frac{1-\alpha}{\gamma_{i}} \sum_{t \in[T]} \boldsymbol{y}_{\tau}^{\top}\left(\widetilde{\boldsymbol{x}}_{\tau+1}^{i}-\widetilde{\boldsymbol{x}}_{\tau}^{i}\right)+\frac{\gamma_{i}}{2} \sum_{\tau \in[t]} \nabla_{\tau}^{2} \\
= & \frac{1}{2 \gamma_{i}}\left\|\widetilde{\boldsymbol{x}}_{1}^{i}\right\|^{2}+\frac{1-\alpha}{\gamma_{i}}\left(\sum_{\tau \in[t-1]}\left(\boldsymbol{y}_{\tau}-\boldsymbol{y}_{\tau+1}\right)^{\top} \widetilde{\boldsymbol{x}}_{\tau+1}^{i}+\boldsymbol{y}_{\tau}^{\top} \widetilde{\boldsymbol{x}}_{\tau+1}^{i}\right)+\frac{\gamma_{i}}{2} \sum_{\tau \in[t]} \nabla_{\tau}^{2}  \tag{44}\\
\leq & \frac{1}{2 \gamma_{i}}\left\|\widetilde{\boldsymbol{x}}_{1}^{i}\right\|^{2}+\frac{1-\alpha}{\gamma_{i}} \sum_{\tau \in[t-1]}\left(\left\|\boldsymbol{y}_{\tau}-\boldsymbol{y}_{\tau+1}\right\| \cdot\left\|\widetilde{\boldsymbol{x}}_{\tau+1}^{i}\right\|+\left\|\boldsymbol{y}_{\tau}\right\| \cdot\left\|\widetilde{\boldsymbol{x}}_{\tau+1}^{i}\right\|\right)+\frac{\gamma_{i}}{2} \sum_{\tau \in[t]} \nabla_{\tau}^{2} \\
\leq & \frac{(1-\alpha)^{2} D^{2}}{2 \gamma_{i}}+\frac{(1-\alpha)^{2} D}{\gamma_{i}}\left(P\left(\boldsymbol{y}_{1: T}\right)+D\right)+\frac{\gamma_{i} d^{2}}{2 \rho^{2}}\left(\bar{F}+K \frac{\bar{F}}{\beta} \bar{G}\right)^{2} t
\end{align*}
$$

## Proving (ii):

Proof. First, we have for any $t \in[T], i \in[N]$

$$
\begin{equation*}
\left|\ell_{t}\left(\widetilde{\boldsymbol{x}}_{t}^{i}\right)\right|=\left|\nabla_{t}^{T}\left(\widetilde{\boldsymbol{x}}_{t}-\widetilde{\boldsymbol{x}}_{t}^{i}\right)\right| \leq\left\|\boldsymbol{\nabla}_{t}\right\| \cdot\left\|\widetilde{\boldsymbol{x}}_{t}^{i}-\widetilde{\boldsymbol{x}}_{t}\right\| \leq \frac{d}{\rho}\left(\bar{F}+K \frac{\bar{F}}{\beta} \bar{G}\right) \cdot(1-\alpha) D \tag{45}
\end{equation*}
$$

where we recall $D=\sup _{\boldsymbol{x}, \boldsymbol{x}^{\prime} \in \mathcal{X}}\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|$ is the diameter of $\mathcal{X}$, and both $\widetilde{\boldsymbol{x}}_{t}^{i}, \widetilde{\boldsymbol{x}}_{t} \in(1-\alpha) \mathcal{X}$.
Define $W_{t}=\sum_{i \in[N]} w_{i, t}$ for all $t \in[T]$, then

$$
\begin{align*}
\log \left(\frac{W_{t+1}}{W_{t}}\right) & =\log \left(\sum_{i \in[N]} \frac{w_{i, t} \exp \left(-\epsilon \ell_{t}\left(\widetilde{\boldsymbol{x}}_{t}^{i}\right)\right)}{W_{t}}\right) \\
& =\log \left(\mathbb{E}_{I_{t} \sim \boldsymbol{w}_{t} / W_{t}}\left[\exp \left(-\epsilon \ell_{t}\left(\widetilde{\boldsymbol{x}}_{t}^{I_{t}}\right)\right)\right]\right) \\
& \stackrel{(a)}{\leq}-\epsilon \mathbb{E}_{I_{t} \sim \boldsymbol{w}_{t} / W_{t}}\left[\ell_{t}\left(\widetilde{\boldsymbol{x}}_{t}^{I_{t}}\right)\right]+\frac{\epsilon^{2}}{8}  \tag{46}\\
& \stackrel{(b)}{=}-\epsilon \ell_{t}\left(\mathbb{E}_{I_{t} \sim \boldsymbol{w}_{t} / W_{t}}\left[\widetilde{\boldsymbol{x}}_{t}^{I_{t}}\right]\right)+\frac{\epsilon^{2}}{8} \\
& \stackrel{(c)}{=}-\epsilon \ell_{t}\left(\widetilde{\boldsymbol{x}}_{t}\right)+\frac{\epsilon^{2}}{8}
\end{align*}
$$

Here (a) follows from Hoeffding's Lemma as described in Lemma B. 1 where we take $X=\ell_{t}\left(\widetilde{\boldsymbol{x}}_{t}^{I_{t}}\right)$, $a=$ and $b=$; (b) follows from the definition that $\ell_{t}(\widetilde{\boldsymbol{x}})=\boldsymbol{\nabla}_{t}^{T}\left(\widetilde{\boldsymbol{x}}-\widetilde{\boldsymbol{x}}_{t}\right)$ is a linear function in $\widetilde{\boldsymbol{x}}$; (c) follows from Eq. [5].
Hence, telescoping the above we get

$$
\begin{equation*}
\log \left(\frac{W_{t+1}}{W_{1}}\right) \leq-\epsilon \sum_{\tau \in[t]} \ell_{\tau}\left(\widetilde{\boldsymbol{x}}_{\tau}\right)+\frac{t \epsilon^{2}}{8} \tag{47}
\end{equation*}
$$

667 On the other hand, we have

$$
\begin{align*}
\log \left(\frac{W_{t+1}}{W_{1}}\right) & =\log \left(W_{t+1}\right)-\log \left(W_{1}\right) \\
& \geq \log \left(\max _{i \in[N]} w_{i, t}\right)-\log (N) \\
& =\max _{i \in[N]} \log \left(w_{i, t}\right)-\log (N) \\
& \stackrel{(a)}{=} \max _{i \in[N]} \log \left(w_{i, 1} \exp \left(-\epsilon \sum_{\tau \in[t]} \ell_{\tau}\left(\widetilde{\boldsymbol{x}}_{\tau}^{i}\right)\right)\right)-\log (N)  \tag{48}\\
& =-\epsilon \min _{i \in[N]} \sum_{\tau \in[t]} \ell_{\tau}\left(\widetilde{\boldsymbol{x}}_{\tau}^{i}\right)-\log (N)
\end{align*}
$$

668 Hence, combining Eqs. (47) and (48), and dividing both sides by $\epsilon>0$ we get

$$
\begin{align*}
& -\sum_{\tau \in[t]} \ell_{\tau}\left(\widetilde{\boldsymbol{x}}_{\tau}\right)+\frac{t \epsilon}{8} \geq-\min _{i \in[N]} \sum_{\tau \in[t]} \ell_{\tau}\left(\widetilde{\boldsymbol{x}}_{\tau}^{i}\right)-\frac{\log (N)}{\epsilon} \\
\Longrightarrow & \sum_{\tau \in[t]} \ell_{\tau}\left(\widetilde{\boldsymbol{x}}_{\tau}\right)-\min _{i \in[N]} \sum_{\tau \in[t]} \ell_{\tau}\left(\widetilde{\boldsymbol{x}}_{\tau}^{i}\right) \leq \frac{t \epsilon}{8}+\frac{\log (N)}{\epsilon}  \tag{49}\\
\Longrightarrow & \sum_{\tau \in[t]} \ell_{\tau}\left(\widetilde{\boldsymbol{x}}_{\tau}\right)-\sum_{\tau \in[t]} \ell_{\tau}\left(\widetilde{\boldsymbol{x}}_{\tau}^{i}\right) \leq \frac{t \epsilon}{8}+\frac{\log (N)}{\epsilon}, \quad \forall i \in[N]
\end{align*}
$$

669

## B Supplementary lemmas

671 Lemma B. 1 (Hoeffding's lemma). Let $X$ be some random variable such that $a \leq X \leq b$ almost 672 surely for some $a, b \in \mathbb{R}$. Then for any $\epsilon \in \mathbb{R}$, we have $\mathbb{E}[\exp (-\epsilon X)] \leq \exp \left(-\epsilon \mathbb{E}[X]+\frac{\epsilon^{2}(b-a)^{2}}{8}\right)$.
673 Lemma B. 2 ([25] Lemma 2.1). Let $h: \mathcal{X} \rightarrow \mathbb{R}$ be some convex function (not necessarily differen674 tiable). Then for any $\boldsymbol{x} \in \mathcal{X} \subseteq \mathbb{R}^{d}$ and $\delta>0$ we have

$$
\begin{equation*}
\nabla_{\boldsymbol{x}} \mathbb{E}_{\boldsymbol{v} \sim U(\mathbb{B})}[h(\boldsymbol{x}+\delta \boldsymbol{v})]=\frac{d}{\delta} \cdot \mathbb{E}_{\boldsymbol{u} \sim U(\mathbb{S})}[h(\boldsymbol{x}+\delta \boldsymbol{u}) \cdot \boldsymbol{u}] \tag{50}
\end{equation*}
$$

