
Neural Injective Functions for Multisets, Measures
and Graphs via a Finite Witness Theorem

Tal Amir1 Steven J. Gortler2 Ilai Avni1 Ravina Ravina1 Nadav Dym1,3

1 Faculty of Mathematics, Technion – Israel Institute of Technology, Haifa, Israel
2 School of Engineering and Applied Sciences, Harvard University, Cambridge, USA

3 Faculty of Computer Science, Technion – Israel Institute of Technology, Haifa, Israel.

Abstract

Injective multiset functions have a key role in the theoretical study of machine
learning on multisets and graphs. Yet, there remains a gap between the prov-
ably injective multiset functions considered in theory, which typically rely on
polynomial moments, and the multiset functions used in practice, which rely on
neural moments — whose injectivity on multisets has not been studied to date.
In this paper, we bridge this gap by showing that moments of neural networks
do define injective multiset functions, provided that an analytic non-polynomial
activation is used. The number of moments required by our theory is optimal
essentially up to a multiplicative factor of two. To prove this result, we state and
prove a finite witness theorem, which is of independent interest.
As a corollary to our main theorem, we derive new approximation results for
functions on multisets and measures, and new separation results for graph neural
networks. We also provide two negative results: (1) moments of piecewise-linear
neural networks cannot be injective multiset functions; and (2) even when moment-
based multiset functions are injective, they can never be bi-Lipschitz.

1 Introduction

Multisets are a slight generalization of sets: like sets, they are an unordered collection of elements
{{x1, . . . ,xk}}, but unlike sets, repetitions are allowed. Multisets arise naturally in many machine-
learning tasks. They are the natural way to represent point clouds in R3, neighborhoods of vertices in
graphs, and any other data that has an intrinsic order that is immaterial to the task at hand.

We refer to functions and architectures whose inputs are multisets in Rd as multiset functions and
multiset architectures. By definition, these functions do not depend on the order in which the multiset
elements are given. This is important not only because the order is irrelevant and thus should not affect
the output, but also because otherwise a model may overfit the training data by making predictions
based on its intrinsic order.

Multiset architectures are typically constructed using a combination of permutation-invariant opera-
tions such as sum- and max-pooling [34], attention mechanisms [23] and sorting [46]. One simple
and popular approach, pioneered in the seminal Deep-Sets paper [45], employs multiset functions
based solely on sum-pooling. Namely, if the elements of all multisets come from some fixed alphabet
Ω, any function f : Ω→ Rm induces a multiset function f̂ , to which we refer as the moment of f :

f̂ ({{x1, . . . ,xk}}) =

k∑
i=1

f(xi). (1)
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While moment functions of the form (1) are simple, they are quite powerful. For example, in [45] it
was shown that if Ω is countable, and the multisets have no repetitions (so they are just sets), then for
an appropriate f : Ω→ R, the induced function f̂ maps the input sets injectively to R.

Injectivity is indeed a desired property for multiset functions. The search for such functions stems
from the quest to find an architecture that can approximate all multiset functions. Clearly, if f̂ assigns
the same value f̂(S1) = f̂(S2) to two different multisets S1 6= S2, then any architecture based on f̂
will yield a poor approximation of a multiset function that assigns different values to S1 and S2.

The authors of [45] showed that injectivity is not only necessary for approximation, but also sufficient:
Under the assumption that the alphabet Ω is countable, if the moment f̂ of f maps multisets injectively
to Rm, then any multiset function F can be written as a composition of the form F ({{x1, . . . ,xk}}) =

g
(∑k

i=1 f(xi)
)

. Motivated by this observation, the authors proposed a neural architecture of this
form, with the functions f and g replaced by Multi-Layer Perceptrons (MLPs). This step was justified
by the universal approximation power of MLPs.

These intriguing results inspired further research, mainly focusing on seeking injective multiset
functions of the form (1) for continuous alphabets such as Ω = Rd. Preferably, such functions should
(a) have a minimal embedding dimension m while ensuring that f : Ω→ Rm induces an injective f̂ ;
and (b) be practical to compute. We next summarize some of these results:

For a countable Ω, the Deep-Sets paper as well as [44] showed that an embedding dimension m = 1
is sufficient. For Ω = R, if the multisets contain at most n elements, and f is continuous, then an
embedding dimension of m ≥ n is necessary and sufficient for injectivity [41, 6, 42].

For Ω = Rd and multisets of size at most n, it was shown in [16] that m ≥ nd is necessary for
injectivity. As for an upper bound on the required m, while some polynomials discussed in the
literature achieve injectivity with a rather high exponential [3, 26, 37] or polynomial [43] dimension
m, recent work [9] achieved injectivity with m = 2nd + 1, using a polynomial f with randomly
chosen coefficients — thus achieving the lower bound essentially up to a multiplicative factor of 2.

While the above works provide injective multiset functions with optimal or near-optimal embedding
dimension, these functions are typically polynomials, and not the MLPs used in practice. As
mentioned above, many papers [45, 44, 26] justify this by the fact that MLPs can approximate any
function, and thus any polynomial. However, using this argument, we have no control on the number
of neurons required for injectivity — which in some cases may be infinite, as we show in Section 4.
In this paper, we address this limitation by providing a practical and efficient method to construct
functions of the form (1) that are provably injective while having a near-optimal number of neurons.
We now state this formally.

1.1 Problem Statement

Let Ω ⊆ Rd be a set, to which we refer as an alphabet. Denote by S≤n(Ω) the collection of all
multisets {{x1, . . . ,xk}} with x1, . . . ,xk ∈ Ω and k ≤ n. Any function f : Ω → Rm induces a
moment function f̂ : S≤n(Ω)→ Rm as in (1). If f̂ is injective, we say that f is moment injective on
S≤n(Ω).

We also consider a natural generalization from multisets to measures, by identifying each multiset
{{x1, . . . ,xk}} with the measure µ =

∑k
i=1 δxi , where δx is the Dirac measure that assigns a unit

weight to x. In this generalized setting, the induced multiset function f̂ of (1) is just the integral of f
with respect to the measure µ. More generally, we consider signed measures µ =

∑n
i=1 wiδxi , with

weights wi ∈ R that can be negative, and points xi that belong to an alphabet Ω ⊆ Rd. We denote
the space1 of all such measures byM≤n(Ω). A function f : Ω→ Rm induces a moment function
f̂ :M≤n(Ω)→ Rm defined by

f̂(µ) =

∫
Ω

f(x)dµ(x) =

n∑
i=1

wif(xi), where µ =

n∑
i=1

wiδxi . (2)

1While we use the term space for S≤n(Ω) andM≤n(Ω), note that these are not vector spaces, since the
sum of two measures in these spaces might be supported on more than n points.
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Domain M≤n(Rd) S≤n(Rd) M≤n(Σ) S≤n(Zd) S≤n(Σα)

Analytic activation 2n(d+ 1) + 1 2nd+ 1 2n+ 1 1 1
Piecewise-linear activation ∞ ∞ ∞ ∞ 1

Lower bound n(d+ 1) nd n 1 1

Table 1: The embedding dimension required for constructing injective functions of measures and multisets.
Σ ⊂ Rd is any infinite countable alphabet. First row: dimensions for which our theorems guarantee injectivity
when using analytic non-polynomial activations. Second row: with infinite alphabets, moments of a neural
network of any finite size with a piecewise-linear activation cannot be injective, except in the multiset case,
with some special countable alphabets such as Σα, defined in Appendix B.1. Third row: lower bounds on the
embedding dimension required for injectivity. These bounds show that our results from the first row of the table
are optimal essentially up to a factor of two.

If f̂ is injective, we say that f is moment-injective onM≤n(Ω). Naturally, injectivity onM≤n(Ω)
implies injectivity on subsets of this space, such as the space of measures in M≤n(Ω) that are
probability measures, or that have only positive weights. In particular, if f is moment-injective on
M≤n(Ω), then it is moment-injective on S≤n(Ω).

To summarize, the main questions we focus on in this paper are:

Main Questions: (a) Under what conditions is an MLP f moment-injective on spaces of multisets
S≤n(Ω) or measuresM≤n(Ω)? (b) How many neurons are needed to achieve this injectivity?

2 Main Results

Interestingly, we find that the answers to these two questions largely depend on the activation function.
Consider shallow neural networks f : Rd → Rm of the form

f(x;A, b) = σ(Ax+ b), A ∈ Rm×d, b ∈ Rm, (3)

with the activation function σ : R→ R applied entrywise toAx+ b. Suppose that σ is analytic and
non-polynomial; such activations include the sigmoid, softplus, tanh, swish and sin. In Section 3
we show that for a large enough m, such networks f(x;A, b) with random parameters A,b are
moment-injective onM≤n(Ω) and on S≤n(Ω); namely, their induced moment functions f̂ of (2) are
injective. This holds for various natural choices of Ω.

The embedding dimension m required in (3) depends on the dimension d of Ω: For Ω = Rd, to
achieve injectivity on S≤n(Ω) orM≤n(Ω), it suffices to take m = 2nd+ 1 or m = 2n(d+ 1) + 1
respectively. When Ω is countable, m = 1 or m = 2n+ 1 are sufficient (corresponding to d = 0). In
Appendix C we show that in all these cases, these embedding dimensions are optimal essentially up
to a multiplicative factor of two. These results are summarized in Table 1. In Appendix C we also
discuss examples where the optimal embedding cardinality forM≤n(R) is obtained.

At the core of our poof of moment injectivity is a theorem which we name the finite witness theorem.
This theorem enables reducing an infinite family of analytic equality constraints {F (x;θ) = 0 | θ ∈
W} to a finite subset {F (x;θi) = 0 | i = 1, . . . ,m}. This theorem generalizes the results in [9],
where a special case of it was proved for semialgebraic domains and functions. The theorem we
prove here (see Appendix A) applies to a much wider class of domains and functions, among which
are analytic functions. In addition to our main result, we use the finite witness theorem to prove
moment injectivity of Gaussian functions (Proposition 3.5) and deep MLPs (Proposition 3.6), and we
believe it shall find additional applications beyond those discussed in this work.

Negative Results We also prove two negative results for moment-based multiset functions: We
show that in contrast to analytic activations, with piecewise linear (PwL) activations, such as ReLU,
leaky ReLU and hard arctan, moment injectivity on spaces of measuresM≤n(Ω) with infinite Ω is
impossible. On multiset spaces S≤n(Ω), moment injectivity with PwL activations can be obtained for
some irregular, countable Ω, such as the alphabet Ω = Σα defined in Appendix B, but not for infinite
alphabets that arise naturally, like Ω = Rd, Zd or (0, 1)d. These results are summarized in the bottom
row of Table 1. The second negative result is that while moments of MLPs with analytic activations
can be injective, they can never be stable in the bi-Lipschitz sense. This points to a possible advantage
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Figure 1: (a) The number of failures of graph neural networks, with varying hidden dimension and activation,
to achieve WL separation on the 600 graphs from the TUDataset [30]. Analytic activations succeed on all
graphs, as Theorem 6.3 predicts. (b) The normalized smallest singular value of multiset functions induced by
piecewise-linear ReLU-networks and analytic SiLU-networks. Piecewise-linear networks have singularities on
squares intersecting the diagonal, leading to non-injectivity. Analytic networks are moment injective, but have
singularities on the diagonal, which leads to a non-Lipschitz inverse. See the end of Section 5 for more details.

of injective multiset functions that are not based on moments, but rather on sorting [3] or max-filters
[5]. These multiset functions are not only injective but also bi-Lipschitz.

Implications for learning on multisets and graphs The result on moment injectivity of MLPs
with analytic non-polynomial activation enables us to improve upon two seminal theoretical results in
the study of functions on multisets and graphs:

(a) Universality for multisets. In Corollaries 6.1 and 6.2, we show that any continuous function on a
space of multisets or measures respectively can be presented as a continuous vector-to-vector function
composed with a moment function f̂ of an MLP of the form (3). The MLP has the same embedding
dimension m as in Table 1. Essentially, this result replaces the moment-injective polynomials
traditionally used in the characterization of multiset functions [45, 42] by MLPs.

(b) Separation power of Graph Neural Networks. Famously, the ability of Message-Passing
Neural Networks (MPNNs) to separate distinct graphs is at most that of the Weisfeiler-Leman (WL)
graph isomorphism test, with equivalence taking place if the multiset functions used in the MPNN
are injective [44]. Injective multiset functions are also used in generalizations of this result, such as
the equivalence of high-order Graph Neural Networks (GNNs) to high-order WL tests [31, 26], and
recent results on geometric GNNs and their corresponding WL tests [15, 16, 25, 33, 8].

Using the fact that an embedding dimension of one is sufficient to achieve injectivity on S≤n(Ω) with
countable Ω, we show in Theorem 6.3 that standard MPNNs with analytic non-polynomial activations
and random parameters have the separation power of WL, even when their architecture only uses a
single feature per node. This can be compared on the one hand with the construction in [44], which
also requires a single node feature but uses multiset aggregators that are not MLPs, and on the other
hand with works that do consider MLPs with ReLU activations [31, 1], but require a number of
node features and parameters that depends polylogarithmically on the number of nodes. In contrast,
our construction requires a single node feature and a fixed number of parameters (though we have
no bound on the number of bits required for achieving separation using floating-point arithmetic).
A numerical verification of these results is shown in Figure 1(a), where we show that, on the 600
graphs in the TUDataset [30], MPNNs with three different analytic activations were equivalent to the
WL-test even with a single node feature, whereas three different PwL activations were in some cases
weaker than WL when a small number of node features was used.

Independently of this work, it was recently proved in [17] that MPNNs with certain analytic activations
can separate all trees of depth two, while separation fails with PwL and even piecewise-polynomial
activations. Our results here are stronger in that we show separation for all graphs separable by WL,
and all analytic non-polynomial activations.

2.1 Notation

We denote vectors by boldface letters, e.g. x,y, and scalars by plain letters x, y. The inner product of
a,x is denoted by a · x. Throughout this work, the term measure always refers to signed measures.
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3 Moment injectivity with analytic activations

In this section, we prove moment injectivity for MLPs with analytic non-polynomial activations. We
begin by showing that for any non-polynomial function σ : R → R, a measure µ ∈ M≤n(Ω) is
uniquely determined by the integrals of all functions {σ(a · x + b) | a ∈ Rd, b ∈ R}. When this
holds, we say that σ is discriminatory:

Definition 3.1. Let σ : R→ R be a continuous function. We say that σ is discriminatory if for any
two signed Borel measures µ, µ′ on Rd that are distinct (i.e. µ 6= µ′), finite (i.e. |µ (A)|, |µ′ (A)| <∞
for all Borel A ⊆ Rd) and compactly supported, there exist a ∈ Rd, b ∈ R such that∫

Rd
σ(a · x+ b)dµ(x) 6=

∫
Rd
σ(a · x+ b)dµ′(x). (4)

The definition of discriminatory activation functions comes from2 Cybenko’s celebrated paper on
the universality of MLPs [7], where it was proved that sigmoid-like activations are discriminatory.
This, in turn, was used to prove the universality of MLPs with such activations. In later papers [24,
32] it was shown that universality can be achieved by all continuous non-polynomial activations. In
the following simple proposition, we use a reverse argument to that used by Cybenko, and show that
activations that allow for universality are automatically discriminatory:

Proposition 3.2. Let σ : R → R be a continuous function that is not a polynomial; then σ is
discriminatory.

Proof idea. Suppose that
∫
σ(a · x + b)dµ =

∫
σ(a · x + b)dµ′ for all a, b. By the universality

theorem for shallow MLPs [32], all continuous functions can be approximated by linear combinations
of functions of the form σ(a · x+ b). Thus, for any continuous function f ,

∫
fdµ =

∫
fdµ′. Since

a measure is uniquely determined by its integrals of all continuous functions, µ is equal to µ′.

Next, we shall prove our main result: If σ is analytic and discriminatory, then shallow MLPs of
reasonable width with σ as activation are moment injective.

Theorem 3.3. Let σ : R → R be an analytic non-polynomial function. Let n, d ∈ N, and set
m = 2n(d + 1) + 1. Then for Lebesgue almost any A ∈ Rm×d, b ∈ Rm, the shallow MLP
f(x) = σ(A · x+ b) is moment injective onM≤n(Rd); namely, the function f̂ :M≤n(Ω)→ Rm
given by

f̂ (µ) =

n∑
i=1

wiσ (Axi + b) for µ =

n∑
i=1

wiδxi (5)

is injective.

For moment injectivity on S≤n(Rd), it suffices to take m = 2nd+ 1. ForM≤n(Σ) or S≤n(Σ) with
countable Σ, m = 2n+ 1 and m = 1 respectively are sufficient.

Our proof of Theorem 3.3 is based on a separate theorem, which we name the finite witness theorem.
This theorem enables us to show that, since any two measures can be discriminated by an integral∫
σ(a · x + b)dµ(x) for some choice of parameters a,b, there exists a finite number of witness

parameters (ai, bi)
m
i=1 that are sufficient for discriminating between any two measures. This holds

under the assumption that the number of points in both measures is bounded. We shall now state a
simple version of this theorem, which suffices for proving Theorem 3.3.

Theorem 3.4. (Finite Witness Theorem, simple version) Let M ⊆ RL be a countable union of
affine sets, each of which is of dimension ≤ D. Let W ⊆ RDθ be open and connected. Let
F (x;θ) : M×W→ R be an analytic function. Then for almost any

(
θ(1), . . . ,θ(2D+1)

)
∈W2D+1,

the following set equality holds:

{(x,y) ∈M×M | F (x;θ) = F (y;θ) , ∀θ ∈W} =

{(x,y) ∈M×M | F
(
x;θ(i)

)
= F

(
y;θ(i)

)
, ∀i = 1, . . . 2D + 1}.

2with a minor change: we do not require that all measures considered are supported on the same fixed
compact set.
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Using the finite witness theorem, we are now ready to prove Theorem 3.3.

Proof of Theorem 3.3. Recall that a signed measure µ ∈M≤n(Rd) can be parameterized, albeit not
uniquely, by a matrixX = (x1, . . . ,xn) ∈ Rd×n representing n points in Rd, and a weight vector
w = (w1, . . . , wn), such that µ =

∑n
i=1 wiδxi . Let M be the space of measure parameters

M = {(w,X) ∈ Rn × Rd×n}.

Similarly, let W be the space of parameters

W = {(a, b) ∈ Rd × R}.

Define F : M×W→ R by

F (w,X;a, b) =

n∑
i=1

wiσ(a · xi + b). (6)

We now invoke the finite witness theorem. Set m = 2n(d+1)+1, and note that m = 2 dim (M)+1.
Recall that F is analytic. According to Theorem 3.4, for almost any choice of (ai, bi)

m
i=1 ∈W,

{((w,X) , (w′,X ′)) ∈M×M | F (w,X;a, b) = F (w′,X ′;a, b) , ∀ (a, b) ∈W} =

{((w,X) , (w′,X ′)) ∈M×M | F (w,X;ai, bi) = F (w′,X ′;ai, bi) , ∀i = 1, . . . ,m}.
(7)

LetA ∈ Rm×d with rows a1, . . . ,am, and b = (b1, . . . , bm). Suppose thatA,b indeed satisfy (7).

Let µ, µ′ ∈M≤n(Ω) be two measures with parameters (w,X), (w′,X ′) respectively. Equation (7)
implies that if the function f̂ of (5) satisfies f̂ (µ) = f̂ (µ′), then (w,X), (w′,X ′) are not separated
by the entire family of functions {F ( · ;a, b) | a ∈ Rd, b ∈ R}. Since σ is discriminatory, this in
turn implies that µ = µ′. This concludes the proof of moment injectivity onM≤n(Rd).

If we are only interested in moment injectivity on S≤n(Rd), it is sufficient to apply the theorem to

M =
⋃

w∈{0,1}n
{(w,X) | X ∈ Rd×n},

which is a finite union of affine subspaces of dimension D = nd. Thus, Theorem 3.4 only requires
m = 2nd + 1 to achieve injectivity on S≤n(Rd). Similarly, when considering M≤n(Σ) with a
countable Σ, the theorem can be applied to a domain M that can be written as a countable union of
affine spaces of dimension n, which yields m = 2n + 1. Finally, S≤n(Σ) is a countable union of
points, namely zero-dimensional affine subspaces, and therefore m = 1 is sufficient in this case.

3.1 More on the finite witness theorem

The finite witness theorem can be used to prove moment injectivity for functions beyond the activated
inner-product form of (5). As an example, we show in the following proposition that Gaussian
functions with random parameters are moment injective:

Proposition 3.5. Let n, d ∈ N and set m = 2n(d+ 1) + 1. Let W = (y, σ) ∈ Rd × R+. Then for
Lebesgue almost any (yi, σi)

m
i=1 ∈Wm, the function

f(x) =

(
exp

(
−‖x− y1‖2

σ2
1

)
, . . . , exp

(
−‖x− ym‖

2

σ2
m

))
is moment injective onM≤n(Rd).

Proof idea. Any two measures with bounded support can be separated by the moment of a Gaussian
function supported on a small ball around a point where the measures disagree. Thus, a measure
inM≤n(Ω) is uniquely defined by the continuous family of all its Gaussian moments. The finite
witness theorem then shows that a finite number m suffices.
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The full version of the finite witness theorem (Theorem A.2), discussed in Appendix A, is more
general than Theorem 3.4. In this version, the class of sets admissible as M is the class of σ-
subanalytic sets. While its definition is technically involved (see Appendix A), this class is quite
vast: it includes all open sets, all semialgebraic sets (including affine spaces, polygons, and closed
`2-balls), and countable unions thereof. The analyticity assumption on F is also substantially relaxed
to σ-subanalyticity, though this requires an additional condition (13) in the theorem assumptions.

The proof of the finite witness theorem is non-trivial, and we regard it as the main technical contri-
bution of this work. In essence, the proof generalizes a similar result in [9], which only applies to
polynomial functions on sets defined by polynomial constraints — known as semialgebraic sets. This
class of sets has several nice properties, which the proof in [9] relies on: It is closed under linear
projections, finite unions, finite intersections, and complements. Moreover, any semialgebraic set is a
finite union of smooth manifolds.

Our generalization from the polynomial to the analytic setting consists of two steps: First, we
generalize the theorem to a larger class of sets, called globally subanalytic sets, which are known
to be an o-minimal system — essentially, a family of sets that has the same nice properties of
semialgebraic sets mentioned above. This generalization is straightforward; however, it does not
allow F to be an arbitrary analytic function, and thus does not suffice even to prove the weaker
version, Theorem 3.4. Our second step is then to observe that our proof carries through also when
considering countable unions of globally subanalytic sets, which we name σ-subanalytic sets. This,
in turn, paves the way to prove the full version of the finite witness theorem.

Using the more general version of the theorem, we can prove the following proposition, which in
particular implies moment injectivity of deep networks, provided that the last activation is analytic:

Proposition 3.6. Let σ : R → R be an analytic non-polynomial function. Let n, d ∈ N and set
m = 2n(d + 1) + 1. Let f : Rd → RL be an injective function that is a composition of PwL
functions and analytic functions. Then for Lebesgue almost anyA ∈ Rm×L, b ∈ Rm, the function
σ(Af(x) + b) is moment injective onM≤n(Rd).

In particular, F could be a neural network that has increasing widths, linear layers with full rank,
and injective activations that are either PwL or analytic (such as leaky ReLU or sigmoid). Therefore,
Proposition 3.6 shows that increasing the network depth will not have a negative effect on its
moment-injectivity. While this may seem trivial, what is not immediate in this formulation is that the
embedding dimension m depends linearly on n · d rather than n · L. The reason this is true is that the
shallow neural network applied to F (x) will only ‘see’ inputs that originate from the set F

(
Rd
)
,

and in Appendix A we show that this is a σ-subanalytic set of dimension ≤ d.

4 Failure of moment injectivity for piecewise-linear functions

In this section, we show that moments of neural networks with piecewise-linear activations (such as
ReLU, leaky ReLU and the hard hyperbolic tangent) cannot be injective when the alphabet is infinite,
except for some singular cases discussed below.

Proposition 4.1. Let d,m and n ≥ 2 be natural numbers and Ω ⊆ Rd an open set. If ψ : Rd → Rm
is piecewise linear, then it is not moment injective on S≤n(Ω).

Proof. There exists some open U ⊂ Rd such that ψ(x) is of the form ψ(x) = Ax + b in U . Let
x0 ∈ U and let d 6= 0 ∈ Rd. For small enough ε > 0, we have that x0 + εd and x0 − εd are in U . It
follows that the multisets {{x0,x0}} and {{x0 − εd,x0 + εd}} have the same moments:

ψ(x0)+ψ(x0) = 2 (Ax0 + b) = A(x0−εd)+b+A(x0 +εd)+b = ψ(x0−εd)+ψ(x0 +εd).

This proves that ψ is not moment injective on S≤n(Ω).

The basic idea behind the above proof is that inside a linear region of ψ, different multisets with the
same center of mass have the same moments. The same idea can be used to prove failure of moment
injectivity of PwL functions onM≤n(Ω) for any infinite Ω, and on S≤n(Zd). On the other hand,
PwL networks can be moment injective onM≤n(Ω) with finite Ω, as well as on S≤n(Σ) when Σ is
a somewhat pathological infinite countable alphabet. These results are described in Appendix B.
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5 Failure of bi-Lipschitzness for general moment functions

In Section 3 we have shown that a neural network f : Rd → Rm with analytic non-polynomial
activation can induce an injective multiset function f̂ : S≤n(Rd)→ Rm. Ideally, we wish such f̂ to
be bi-Lipschitz, meaning that there exist constants 0 < c ≤ C such that

c ·W2(S1, S2) ≤ ‖f̂(S1)− f̂(S2)‖ ≤ C ·W2(S1, S2), ∀S1, S2 ∈ S≤n(Rd), (8)

where W2(S1, S2) is the 2-Wasserstein distance between the two measures µ1, µ2 that assign uniform
weights to the points in S1, S2 respectively. Unfortunately, we find that any moment function f̂
induced by some f : Rd → Rm cannot be bi-Lipschitz, assuming that f is differentiable in at least
one point.
Proposition 5.1. Let n ≥ 2, d,m ∈ N, and let f : Rd → Rm be differentiable at some x0 ∈ Rd.
Then the induced moment function f̂ : S≤n(Rd)→ Rm defined in (1) is not bi-Lipschitz.

Figure 1(b) illustrates the underlying reason for this failure of bi-Lipschitzness, and its relation to
the non-injectivity of PwL moments: consider a shallow neural network f : R→ R10 with ReLU
activations, and its induced moment function f̂({{x1, x2}}) = f(x1) +f(x2) on multisets in S≤2 (R).
The left-hand side visualizes the ratio σ2/σ1 of the smallest and largest singular values of the
differential matrix Df̂ . The function f is PwL, with four linear regions I1, . . . , I4 in [0, 1]. The linear
regions of f̂ in [0, 1]2 are thus the rectangles Ii × Ij . As seen in the figure, there are degeneracies in
the rectangles that intersect the diagonal, as for small enough ε, f̂({{x0 + ε, x0 − ε}}) = f̂({{x0, x0}})
as in the proof of Proposition 4.1. The right-hand side visualizes the same ratio when the analytic
SiLU activation is used instead of ReLU. We see that Df̂ is singular on the diagonal. Intuitively, this
is because the differentiability of f implies that it behaves locally like an affine function. This leads
to singularities of f̂ on the diagonal, which do not prevent it from being injective, but do prevent it
from being bi-Lipschitz. A proof of this phenomenon is given in the appendix. See also Theorem 21
in [4], which independently proved a similar result for general invariant embeddings.

6 Applications: Universal Approximation and Graph Separation

As mentioned in the introduction, injective multiset functions can be used to construct multiset
architectures with universal approximation power, and to prove separation results for graph neural
networks. In this section, we present some immediate corollaries of our results for these two
applications. Proofs are in Appendix D.3.

6.1 Universal approximation of functions on multisets and measures

Our first approximation result focuses on multisets of a fixed size n with an alphabet K ⊆ Rd that is
compact. Any such multiset is determined by a choice of n vectors inK, possibly with repetitions and
irrespective of order. Thus, multiset functions on this space are equivalent to permutation-invariant
functions on Kn. Using the finite witness theorem and a basic topological argument, we prove:
Corollary 6.1. Let n, d ∈ N and set m = 2nd+ 1. Let σ : R→ R be an analytic non-polynomial
function. Let K ⊆ Rd be a compact set. Then there exist A ∈ Rm×d, b ∈ Rd such that for any
continuous permutation-invariant f : Kn → R, there exists a continuous F : Rm → R such that

f(X) = F

 n∑
j=1

σ(Axj + b)

 , ∀X = (x1, . . . ,xn) ∈ Kn. (9)

Combining Corollary 6.1 with the universality of MLPs, we get that any continuous permutation-
invariant function on Kn can be approximated by expressions of the form (9) with F replaced by an
MLP. Similar results were obtained for moments of polynomials rather than of MLPs in [45, 42, 9].

It is worth noting that an analogue of Corollary 6.1 cannot hold with a piecewise-linear σ, assuming
that K has a non-empty interior. This is because by Proposition 4.1, any fixed moment function
induced by a PwL MLP will not be able to separate all multisets, whereas any two distinct multisets
can be separated by some continuous f . Though, with a PwL σ, one may approximate any given f to
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arbitrary precision, by taking the embedding dimension m to infinity. In contrast, with an analytic σ,
we are able to specify a finite m = 2nd+ 1 for which exact equality in (9) is guaranteed.

Since our injectivity results on multisets extend to measures, it is natural to seek an extension of
the above approximation result to functions defined on measures. Denote by P≤n(K) the space of
probability measures supported on ≤ n points in K ⊆ Rd, endowed with the 2-Wasserstein metric.
Corollary 6.2. Let n, d ∈ N and set m = 2n(d + 1) + 1. Let σ : R → R be analytic and non-
polynomial. Let K ⊆ Rd be compact. Then there exist A ∈ Rm×d, b ∈ Rm such that for any
continuous (in the 2-Wasserstein sense) f : P≤n(K)→ R, there exists a continuous F : Rm → R
such that

f(µ) = F

(∫
x∈K

σ(Ax+ b)dµ(x)

)
, ∀µ ∈ P≤n(K).

It follows from Corollary 6.2 that any continuous function f : P≤n(K) → R with com-
pact K ⊆ Rd can be approximated to arbitrary precision by functions of the form f̂(µ) =
F
(∫
x∈K σ(Ax+ b)dµ(x)

)
, withA ∈ Rm×d, b ∈ Rm, m = 2nd+ 1, and F being an MLP.

6.2 Graph separation

We now discuss the implications of Theorem 3.3 for graph separation, using terminology from [44].
Let G≤n(Σ) be the collection of all graphs G = (V,E,h(0)) with at most n vertices, endowed with
vertex features h(0)

v ∈ Σ, where Σ ⊆ Rd is a countable alphabet. We consider GIN-like [44] MPNNs
that recursively, for t = 1, . . . , T , calculate node features h(t)

v from the previous features h(t−1)
v by

h(t)
v =

∑
u∈N (v)

σ
(
A(t)

(
η(t)h(t−1)

v + h(t−1)
u

)
+ b(t)

)
. (10)

After the T iterations are concluded, a global feature is computed via a readout function:

hG =
∑
v∈V

σ
(
A(T+1)h(T )

v + b(T+1)
)
. (11)

We choose all features hG and h(t)
v for 1 ≤ t ≤ T , to have the same dimension m. Based on the

fact that MPNNs are equivalent to 1-WL when the multiset functions are injective [44], and on our
injectivity results for countable alphabets, we prove that:
Theorem 6.3. Let n, d, T ∈ N and let Σ ⊆ Rd be countable. Let m ≥ 1 be any integer. Let
σ : R → R be an analytic non-polynomial function. Then for Lebesgue almost any choice of
A(t), b(t) and η(t), the MPNN defined in (10) and (11) assigns different global features to any pair
of graphs G1, G2 ∈ G≤n(Σ) that can be separated by T iterations of 1-WL.

Graph separation with continuous features Up to now, we have discussed graphs with node
features coming from a countable alphabet. Since Theorem 3.3 applies to multisets with continuous
alphabets, it can be applied to separation of graphs with continuous node features as well. In particular,
the paper [15] explains how the random semialgebraic multiset function from [9] can be used to
construct architectures for graphs with continuous features, whose separation power is equivalent
to WL tests. Their focus is on showing that the embedding dimension in their construction depends
linearly on the dimension of the graph space, rather than grows exponentially with the number of
message-passing iterations T . Similar results can now be obtained by using our random analytic
multiset functions. We leave a full description of these aspects to future work.

7 Experiments

Empirical injectivity and bi-Lipschitzness We empirically investigated the injectivity and bi-
Lipschitzness of moments of shallow networks of the form (3), by randomly generating a large
number of pairs of multisets of n vectors in Rd, and computing the optimal constants c, C for which
(8) holds for the generated pairs. The ratio c/C for varying activations and embedding dimension m
is shown in Figure 2. Here d = 3 and n = 1000. Similar qualitative results were obtained for other
values of d and n; see Figure 4 in Appendix E.
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We observe several interesting phenomena: First, at low embedding-dimensions, the ratio c/C
for PwL networks is exactly zero, indicating that they are not injective even on the finite sam-
ple set. In contrast, for analytic activations, c/C is always positive. Indeed, we expect an-
alytic activations to be injective on a finite sample even with embedding dimension m = 1,
since a finite sample set has an intrinsic dimension of zero. Next, we observe that c/C nat-
urally improves as m increases. Finally, we note that even for high m, c/C is rather small.

1 10 100 1000
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10−6

10−5

10−4

10−3

10−2

0

Embedding dimension
c/
C

Cos
TanH

Sigmoid
HardTanH

ReLU

Figure 2

Indeed, if it were possible to consider all pairs
of multisets when computing c/C, we would
get zero for all activations and all embedding
dimensions, as follows from Theorem 5.1. For
additional details on this experiment, see Ap-
pendix E.1.

Graph Separation To validate Theorem 6.3,
we conducted the following experiment: we con-
sidered 600 graphs from the TUDataset [30]. On
each graph we ran three iterations of the WL test,
and three iterations of MPNNs with the Graph
Convolutional Layers from [18] with different
activations and hidden dimensions. Our goal
was to check in how many graphs the MPNNs
returned a vertex coloring that differs from the
coloring provided by the WL test. The results
are shown in Figure 1(a). As seen in the table,
with the three analytic activations tested, the vertex coloring of MPNN was always equivalent to
1-WL, even with a hidden dimension of 1. On the other hand, for the three PwL activations, there
were inconsistencies in about 1% of the graphs, even with a hidden dimension of 50.

We note that while analytic activations fully succeeded in separation, in some cases the separation was
rather weak: while the distance between features of non-equivalent nodes computed by the MPNNs
was typically around 0.1, the least-separated features had a distance of ∼ 10−7. In future work, it
could be interesting to investigate whether MPNNs can be trained to yield larger distances between
the features of all non-equivalent nodes. Further details on this experiment appear in Appendix E.2.

8 Conclusion

We have shown that moments of neural networks with an analytic non-polynomial activation are
injective on multisets and measures. We have also shown how this can be harnessed to construct
universal approximators for multiset functions, as well as prove separation results for graph neural
networks. A key advantage of our approach is that it enables constructing proofs using real models
that are used in practice, rather than idealized versions of them as done in previous works.

It may seem tempting, due to our theoretical results, to conclude that analytic activations should
perform on multisets better than piecewise-linear activations. We stress that we make no such claim.
Indeed, while the separation results in Figure 1(a) corroborate our theory, PwL networks fail to
separate only 1% of the graphs in our experiment. Furthermore, at high embedding dimensions, the
empirical bi-Lipschitzness in Figure 2 does not seem to strongly depend on the analyticity of the
activation function. Our claim is thus much more modest: we claim that multiset architectures with
analytic activations are easier to theoretically analyze, and we hope that pursuing this analysis shall
lead to fruitful theoretical and practical insights, which may ultimately benefit multiset architectures
with either type of activation.

Lastly, we note that the finite witness theorem, which is presented here as a tool for proving moment
injectivity, may prove valuable as a general tool for reducing an infinite number of equality constraints
to a finite number, and we believe it will find additional applications beyond the scope of this paper.

Acknowledgements N.D. is partially funded by a Horev Fellowship. T.A, R.R. and N.D. are partially
funded by ISF grant 272/23.
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A Finite witness theorem

In this section, we state and prove the full version of the finite witness theorem (Theorem A.2), which
is more general than Theorem 3.4 stated in the main text. Before laying out the formal definitions and
proofs, we begin by describing the context of these results. While this section makes use of notions
from algebraic geometry and real analytical functions, it is self-contained and most of it only requires
knowledge of elementary calculus and some topology.

The finite witness theorem is essentially a tool for reducing an infinite, continuously parameterized
family of constraints p(z;θ) = 0 ∀θ to a finite subset of constraints p(z;θi) = 0, i = 1, . . . ,m,
defined by random parameters θ1, . . . ,θm. This general approach seems to have originated from
the famous proof of uniqueness for phase-retrieval measurements in [2]. In that work, functions
p(z,θ) : Cn × Cn → R of the form p(z;θ) = |〈z,θ〉| were considered, and it was proved that a
finite number of ∼ 4n random measurements θi are sufficient to uniquely determine a signal, up
to unavoidable global phase ambiguity. The proof in [2] achieves this result by showing that the
values p(z;θ) for all possible θs are sufficient to determine the signal uniquely, and then uses a
real algebraic-geometric and dimension-counting argument to show that this continuous family of
measurements can be replaced by a finite subset, defined by m ∼ 4n random vectors (witnesses)
{θi}mi=1, without losing information.

In [9], the authors provide a generalization of the results in [2], by defining conditions under which a
continuously parameterized family of functions p(z;θ) that fully determines z up to equivalence,
can be replaced by a finite subset p(z;θi), i = 1, . . . ,m determined by random witness-vectors θi.
This theorem is based on similar arguments as those used in [2], and on similar assumptions required
for machinery from real algebraic geometry. Specifically, sets in [9] are assumed to be semialgebraic,
which means that they are finite unions of subsets of RD that can be defined by polynomial equalities
and inequalities. This class of sets includes, for example, finite unions of spheres, balls, and convex
polyhedra. The functions in the theorem are assumed to be semialgebraic as well, which means that
their graphs are semialgebraic sets. This class of functions includes polynomials, as well as rational
functions and piecewise-linear functions.

The main theorem in [9] can be essentially3 formulated as
Theorem A.1. Let M be a semialgebraic set of dimension D, and let F : M × RDθ → R be a
semialgebraic function. Define the set

N = {z ∈M|F (z;θ) = 0, ∀θ ∈ RDθ}

and assume that for all z ∈M \ N , we have that

dim{θ ∈ RDθ |F (z;θ) = 0} ≤ Dθ − 1, (12)

then for Lebesgue almost every θ(1), . . . ,θ(D+1),

N = {z ∈M|F (z;θ(i)) = 0, ∀i = 1, . . . D + 1}.

The notion of dimension used in condition (12) and throughout this section is the Hausdorff dimension,
explained in Appendix A.4 below.

Theorem A.1 is similar to the simple version of the finite witness theorem (Theorem 3.4), with four
notable differences: (1) The domain M in Theorem 3.4 is a countable union of affine sets; this is
not, in general, a semialgebraic set, and thus does not qualify for the conditions of Theorem A.1. (2)
The function F in Theorem 3.4 is analytic. Analytic functions are not necessarily semialgebraic. (3)
Theorem A.1 requires the extra condition (12), which does not appear in Theorem 3.4. This condition
is not required in Theorem 3.4 because with analytic functions, it is always satisfied; however, it will
be required in our full version of the theorem, since it admits a more general class of functions. (4)
Theorem A.1 deals with sets of the form {z|F (z,θ) = 0,∀θ} while Theorem 3.4 deals with sets of
the form {(x,y)|F (x,θ) = F (y,θ),∀θ}. This difference is not essential and can be handled by
the change of variables z = (x,y) and F̃ (x,y,θ) = F (x,θ)− F (y,θ).

3To obtain this theorem from the formulation in [9], use the change of variables z = (x,y) and F (z;θ) =
p(x;θ)− p(y;θ). The formulation in [9] makes some additional requirements on F which are relevant to the
specific applications considered there, but going through the details of the proof shows that it is sufficient for
proving Theorem A.1 as stated here.
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To address the first two differences, we shall generalize Theorem A.1 to support a large class of
domains M and functions F . The admissible domains shall include a vast class of sets, among which
are countable unions of semialgebraic sets, as well as all open sets, and sets defined by analytic,
rather than polynomial, equations. The admissible functions F shall include semialgebraic functions,
analytic functions, and many other types of functions. To achieve this goal, we use results from the
study of o-minimal structures (see below), which aim at finding families of sets that have the same
tame properties as semialgebraic sets.

A good starting point to achieve this generalization is to consider the family of globally subanalytic
sets (formally defined below). This family contains all semialgebraic sets and is an o-minimal system;
consequently, it is possible to generalize Theorem A.1 so that the domain M can include all globally
subanalytic sets, and the function F could be any globally subanalytic function (meaning that the
graph of F is a globally subanalytic set). However, this still will not allow for a general analytic F ,
nor for M to include countable unions of affine sets.

To address this, we will show that an analogue to Theorem A.1 holds even when considering
countable unions of globally subanalytic sets. We call such sets σ-subanalytic sets. To the best of
our knowledge, such sets have not been studied to date. The family of σ-subanalytic sets is not an
o-minimal structure, since it not closed under taking complements. However, it is closed under linear
projections, countable unions, finite intersections and Cartesian products. Moreover, σ-subanalytic
sets are countable unions of C∞ manifolds. We find that these properties are sufficient to generalize
Theorem A.1 and obtain a finite witness theorem for the σ-subanalytic category.

Clearly, the class of σ-subanalytic sets is larger than the class of globally subanalytic sets. In
particular, it includes countable unions of semialgebraic sets. This enables the domain M in the
theorem statement to be a countable union of affine spaces, as in Theorem 3.4 from the main text.
This also implies that any open set is σ-subanalytic, since it is a countable union of open balls —
which are semialgebraic sets.

As for the function F , our theorem admits all σ-subanalytic functions: functions whose graph is
σ-subanalytic. This class includes all analytic functions, as well as all semialgebraic functions.
Moreover, we show below that it is closed under composition and other elementary operations.

We now state the full version of the finite witness theorem.

Theorem A.2 (Finite Witness Theorem, full version). Let M ⊆ Rp, W ⊆ Rq be σ-subanalytic sets
of dimension D and Dθ respectively. Let F : M×W→ R be a σ-subanalytic function. Define the
set

N = {z ∈M | F (z;θ) = 0, ∀θ ∈W}.

Suppose that for all z ∈M \ N

dim{θ ∈W | F (z;θ) = 0} ≤ Dθ − 1. (13)

Then for generic
(
θ(1), . . . ,θ(D+1)

)
∈WD+1,

N = {z ∈M | F (z;θ(i)) = 0, ∀i = 1, . . . D + 1}. (14)

Moreover, if W is an open and connected subset of Rq , and F (z;θ) is analytic as a function of θ for
all fixed z ∈M, then condition (13) is not required, as it is automatically satisfied.

The notion of dimension in (13) is the Hausdorff dimension (discussed below), and the term generic
means that the set of

(
θ(1), . . . ,θ(D+1)

)
for which (14) fails is a subset of WD+1 whose Hausdorff

dimension is strictly lower than dim
(
WD+1

)
. In particular, in the common case where W = Rq,

or is an open subset of Rq, we have that the theorem holds for almost any
(
θ(1), . . . ,θ(D+1)

)
, with

respect to the Lebesgue measure on Rq(D+1) .

We now begin to rigorously define the notions discussed in this section and then prove Theorem A.2. In
Appendices A.1 to A.4, we construct the theoretical framework step by step. Then, in Appendix A.5
we prove the theorem, and in Appendix A.6 we show that the simple version of the theorem
(Theorem 3.4) follows from the full version. Finally, we present in Appendix A.6 several corollaries
to the theorem.
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A.1 Definitions and Background

A.1.1 Globally subanalytic sets: an o-minimal structure

We begin by defining analytic functions, subanalytic sets and functions, and various other related
concepts that will be required for our discussion. These definitions are taken from [19] and [38].
Definition A.3 (Analytic function [19]). Let U ⊆ RD be an open set. We say that f : U → R is
analytic if for all z ∈ U , there exists an open ball V ⊆ U centered at z, and (aα)α∈ND such that

f(y) =
∑
α∈ND

aα(y − z)α ∀y ∈ V, (15)

and the power series in (15) converges absolutely.

Our next goal is to define the family of globally subanalytic sets, which contains all semialgebraic
sets; moreover, it is an o-minimal structure, meaning that it shares the essential tame properties of
semialgebraic sets. This requires some preliminary definitions:
Definition A.4 (Semianalytic sets [38]). A subset E ⊆ Rn is called semianalytic if it is locally
defined by finitely many real analytic equalities and inequalities. Namely, for each a ∈ Rn, there is a
neighborhood U of a, and real analytic functions fij , gij on U , where i = 1, . . . , r and j = 1 . . . si,
such that

E ∩ U =

r⋃
i=1

si⋂
j=1

{z ∈ U | gij(z) > 0 and fij(z) = 0}. (16)

Example A.5. As shown in Example 1.1.2 in [38], the graph of the analytic function f : (0, 1)→ R
defined by f(x) = sin(1/x) is not a semianalytic set. This is because there is no neighborhood of
a = (0, 0) for which (16) holds. On the other hand, if B ⊆ Rn is a closed ball and f : B → R can
be extended to an analytic function in an open set containing B, then the graph of f (as a function
defined on B) will be semianalytic.

The example above suggests that the class of semianalytic sets may be too restrictive for our purposes.
More importantly, linear projections of semianalytic sets may not be semianalytic [38], so the family
of semianalytic sets does not form an o-minimal system. This can be remedied by defining globally
semianalytic sets (which don’t form an o-minimal system) and then using these sets to define globally
subanalytic sets (which do form an o-minimal system):
Definition A.6 (Globally semianalytic sets [38]). A subset Z ⊆ Rn is globally semianalytic if Vn(Z)
is a semianalytic subset of Rn, where Vn : Rn → (−1, 1)n is the homeomorphism defined by

Vn (z = (z1, . . . , zn)) =

(
z1√

1 + |z|2
, . . . ,

zn√
1 + |z|2

)
.

Globally semianalytic sets can be thought of as semianalytic sets that remain semianalytic when
‘compactified’ by Vn. This is useful to rule out bad behaviour as z goes out to infinity. Important
examples of globally semianalytic sets include all bounded semianalytic sets and all semialgebraic
sets [38].

Globally semianalytic sets are still not closed under linear projection. Their projections are called
globally subanalytic sets:
Definition A.7 (Globally subanalytic sets [38]). A subset E ⊆ Rn is globally subanalytic if it can
be presented as a linear projection of a globally semianalytic set; more precisely, if there exists a
globally semianalytic set Z ⊆ Rn+p such that E = π(Z), with π : Rn+p → Rn being the projection
operator that omits the last p coordinates while leaving the remaining coordinates unchanged.

Globally semianalytic sets are by definition globally subanalytic. Globally subanalytic sets do form
an o-minimal structure. In particular, they have the following properties:
Proposition A.8 (Properties of globally subanalytic sets [38]). Let A,B ⊆ RD and C ⊆ RM be
globally subanalytic sets. Then:

1. RD \A is globally subanalytic.
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2. A ∪B is globally subanalytic.

3. A ∩B is globally subanalytic.

4. A× C is globally subanalytic.

5. If π : RD → RL is a linear projection, then π(A) is globally subanalytic.

6. A is a finite union of C∞ manifolds.

The first property in Proposition A.8 is proven in Gabrielov’s Complement Theorem; see Theorem
1.8.8 in [38]. The last property is a weaker version of Theorem 1.2.3 in [38]. The remaining properties
are proved4 in [38, Basic properties 1.1.8].

A.2 σ-subanalytic sets

As mentioned above, the fact that globally subanalytic sets form an o-minimal structure is already
sufficient to prove a finite witness theorem for this class. However, this class is still too restrictive
for our purposes, as it does not allow us to support arbitrary analytic functions F , as the following
example shows:

Example A.9. Analogously to semialgebraic functions, we say that a function is globally subanalytic
if its graph is globally subanalytic. Consider the function sin(x) defined on the real line. Then by
Example 1.1.7 in [38], this function is not globally subanalytic.

Fortunately, we find that a finite witness theorem can be proven for a larger class of sets: countable
unions of globally subanalytic sets. We name such sets σ-subanalytic sets. To the best of our
knowledge, this class of sets has not been studied to date5. The class of σ-subanalytic sets is rather
large: we will show below that it contains all open sets, while the classes discussed previously do
not (see Example A.12 below). This is illustrated in the Venn diagram on the left-hand side of
Figure 3. Correspondingly, the class of σ-subanalytic functions is larger than the classes of functions
considered previously, and in particular it contains any analytic function F defined on any open
set. This is illustrated in the Venn diagram on the right-hand side of Figure 3, and will be discussed
rigorously in Appendix A.3 below. Thus, moving to σ-subanalytic sets and functions is the crucial
step that enables us to achieve our goal of proving a finite witness theorem for analytic functions
(though the theorem covers a much larger class).

We now define σ-subanalytic sets and study their properties.

Definition A.10 (σ-subanalytic sets). We say that a subset A ⊆ RD is σ-subanalytic if it is a
countable union of globally subanalytic subsets of RD.

The class of σ-subanalytic sets is rather large. For example, any open set in RD can be written as a
countable union of open balls. Since open balls are semialgebraic sets, it follows that all open sets
are σ-subanalytic. Also, any semianalytic set is σ-subanalytic, since semianalytic sets are a countable
union of bounded semianalytic sets, and these are globally subanalytic.

Properties of σ-subanalytic sets

As the following proposition shows, σ-subanalytic sets inherit most of the properties enjoyed by
globally subanalytic sets, described in Proposition A.8.

Proposition A.11 (Properties of σ-subanalytic sets). Assume that A,B ⊆ RD and C ⊆ RM are
σ-subanalytic sets, then

1. A ∪ B is σ-subanalytic. More generally, any countable union of σ-subanalytic sets is
σ-subanalytic.

4Regarding the fifth property in Proposition A.8, note that it does not follow directly from property 1 in [38]
which only discusses a special class of projections, but rather from property 4 in [38] which states that the image
of a globally subanalytic set under a globally subanalytic mapping is globally subanalytic. Any linear projection
is a semialgebraic mapping, and hence a globally subanalytic mapping.

5Model theorists and analytic geometers have researched other structures that are larger than o-minimal
structures and enjoy some of their tame properties; see, e.g., [39, 27].
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globally subanalytic 
functions

𝜎𝜎 −subanalytic 
functions

semialgebraic 
functionssemialgebraic 

sets

globally subanalytic 
sets

𝜎𝜎 −subanalytic sets

Figure 3: Left: The class of semialgebraic sets is contained in the class of globally subanalytic sets, which in
turn is contained in the class of σ-subanalytic sets — on which we focus in this paper. One of the advantages
of this larger class is that it contains all open sets, whereas the two smaller classes do not. Right: The classes
of semialgebraic, globally subanalytic, and σ-subanalytic functions are related in the same way. The class of
σ-subanalytic functions is the only one of the three that contains all analytic functions.

2. A ∩B is σ-subanalytic.

3. A× C is σ-subanalytic.

4. If π : RD → RL is a linear projection, then π(A) is a σ-subanalytic set.

5. A is a countable union of C∞ manifolds.

Proof. Let A,B ⊆ RD be σ-subanalytic sets. Then A = ∪n∈NAn and B = ∪m∈NBm, where each
An and Bm is globally subanalytic. We then have

1. A countable union of σ-analytic sets, each of which being itself a countable union of globally
subanalytic set, is clearly a countable union of globally subanalytic sets, and therefore is
σ-subanalytic by definition.

2. We have that

A ∩B = (∪n∈NAn) ∩ (∪m∈NBm) = ∪(n,m)∈N2(An ∩Bm)

and An ∩Bm is globally subanalytic as the intersection of globally subanalytic sets.

3. The set A× RM can be presented as

A× RM = (∪n∈NAn)× RM = ∪n∈N
(
An × RM

)
,

with Am being globally subanalytic. Since globally subanalytic sets are closed to Cartesian
products, each An ×RM is globally subanalytic, and their countable union is σ-subanalytic.
Finally,

A× C =
(
A× RM

)
∩
(
RD × C

)
,

which is σ-subanalytic by part 2.

4. Follows from globally subanalytic sets being closed to projections, since

π (∪n∈NAn) = ∪n∈N (π(An)) .

5. A σ-subanalytic set is a countable union of globally subanalytic sets, each of which is a
finite union of C∞ manifolds. Therefore, it is a countable union of C∞ manifolds.
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In comparison to Proposition A.8, we see that we have lost two properties by moving from globally
subanalytic sets to countable unions thereof: Firstly, a σ-subanalytic set is a countable union of
manifolds rather than a finite one. Secondly, the complement of a σ-subanalytic set may not be
σ-subanalytic, as our next example shows. As it turns out, the properties noted in Proposition A.11
are sufficient for our purposes.

Example A.12. The Cantor set is not σ-subanalytic, since it has fractal Hausdorff dimension and
thus is not a countable union of manifolds. However, the complement of the Cantor set, which we
denote by U , is an open set and hence is σ-subanalytic. This shows that the class of σ-subanalytic
sets is not closed to taking complements, as well as countable intersections: this is since the Cantor
set is a countable intersection of finite unions of intervals, which are σ-subanalytic. The set U is also
an example of an open set that is not semialgebraic or globally subanalytic, since these classes of sets
are closed to complements, and do not contain the Cantor set.

A.3 σ-subanalytic functions

We now define the class of functions our theorem can admit as the function F : σ-subanalytic functions.

Definition A.13 (σ-subanalytic function). Let M ⊆ RD be a σ-subanalytic set. We say that f :
M→ RL is a σ-subanalytic function if its graph is a σ-subanalytic subset of RD+L.

If M ⊆ RD is a semialgebraic set and f : M→ RL is a semialgebraic function, then the graph of
f is semialgebraic, and thus is σ-subanalytic. Therefore, a semialgebraic function f defined on a
semialgebraic domain M is a σ-subanalytic function. A similar result holds also for analytic functions
defined on open sets, as shown in the following lemma:

Lemma A.14. If U ⊆ RD is open and f : U → RL is analytic, then f is σ-subanalytic.

Proof. First recall that since U is open, it is a σ-subanalytic set. Next, we can write U as a countable
union of closed balls Bi, and then the graph of f can be written as a countable union of sets of the
form

{(x,y) ∈ Bi × RL|y = f(x)}.
These subsets of U ×RL are compact and semianalytic, and hence they are globally subanalytic.

Properties of σ-subanalytic functions

The following proposition shows that the class of σ-subanalytic functions is closed under composition
and elementary arithmetic operations. In particular, this allows for functions that combine analytic
and semialgebraic functions via compositions and elementary arithmetic operations.

Proposition A.15. Let A ⊆ Ra and B ⊆ Rb be σ-subanalytic sets.

1. (Composition) If f : A→ B and g : B → Rc are σ-subanalytic functions, then g ◦ f is a
σ-subanalytic function.

2. (Concatenation) If f : A → Rm and g : A → Rn are σ-subanalytic functions, then
h : A→ Rm+n given by h (x) = (f (x) , g (x)) is a σ-subanalytic function.

3. (Addition and multiplication) If f, g : A→ R are σ-subanalytic functions, then f + g and
f · g are σ-subanalytic functions.

Proof. 1. To prove that g◦f is σ-subanalytic, we need to prove that its graph is a σ-subanalytic
set. Indeed, this graph is of the form

{(x, z) ∈ A× Rc | g(f(x)) = z},

which is the projection of the intersection

{(x,y, z) ∈ A×B × Rc | f(x) = y} ∩ {(x,y, z) ∈ A×B × Rc | g(y) = z}

onto the (x, z) coordinates. The two sets in the intersection above are Cartesian products of
the graph of f (respectively g) with a σ-subanalytic set, and hence are σ-subanalytic.
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2. The graph of h is the intersection of the sets {(x,y, z)| f(x) = y} and {(x,y, z)| g(x) =
z}. Each of these two sets is a Cartesian product of a Euclidean space with the graph of a
σ-subanalytic function.

3. The functions f + g and f · g can be presented as the composition of the function Ra 3
x 7→ (f(x), g(x)), which is σ-subanalytic, with the addition or multiplications functions.
Thus, the claim follows.

A.4 Dimension

The proof of Theorem A.2 is based on a dimension-counting argument. Accordingly, we will need an
appropriate definition of dimension for σ-subanalytic sets. It is convenient to work with the Hausdorff
dimension, which is defined for every subset of a Euclidean space RD, and coincides with the standard
notions of dimension for vector spaces and manifolds. The definition of Hausdorff dimension can be
found, e.g., in [14]. For our purposes, we will only need to use some of its properties, stated below.

Proposition A.16 (Taken from [14]). The Hausdorff dimension has the following properties:

1. The Hausdorff dimension of a k-dimensional C1 submanifold of RD is k.

2. If B1, B2, . . . are subsets of RD then

dim (∪n∈NBn) = max
n∈N

dim(Bn).

3. For any B ⊆ RD and Lipschitz function f : B → RC , dim (f (B)) ≤ dim (B).

Recall that σ-subanalytic sets are countable unions A = ∪n∈NAn of C∞ manifolds. As we saw, their
Hausdorff dimension is just the maximal dimension of all manifolds An. We shall now see that for
such sets, the Hausdorff dimension has two nice properties that do not hold for general sets. These
properties will be used in the proof of the finite witness theorem.

The first property is the dimension of Cartesian products. For two general sets A,B, it is not always
true that dim(A × B) = dim(A) + dim(B) (see [14]). However, this does hold if A and B are
countable unions of manifolds.

Lemma A.17. If A,B are countable unions of C1 sub-manifolds of Ra and Rb, then

dim(A×B) = dim(A) + dim(B).

Proof. By assumption A = ∪n∈NAn and B = ∪m∈NBm, where An, Bm are C1 manifolds. We
have that

A×B = ∪(n,m)∈N2(An ×Bm)

is again a countable union of the product manifolds An ×Bm, which are known to be of dimension
dim(An) + dim(Bm) (see e.g. [22]). It follows that the dimension of A×B is equal to

max
(n,m)∈N2

(dim(An) + dim(Bm)) = max
n∈N

dim(An) + max
m∈N

dim(Bm) = dim(A) + dim(B).

The second nice property of the Hausdorff dimension for countable unions of manifolds, which does
not always hold for general sets, is dimension conservation, in the following sense.

Lemma A.18 (Dimension Conservation). Let S ⊆ RD1 be a countable union of C∞ manifolds and
f : RD1 → RD2 a C∞ function. Then

dim(S) ≤ dim(f(S)) + max
t∈f(S)

dim
(
f−1(t) ∩ S

)
. (17)

For failure of dimension conservation for general sets see, e.g., the discussion in [12].
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A good intuition for the concept of dimension conservation comes from the linear case, in which
f : RD1 → RD2 is a linear transformation and S ⊆ RD1 is a linear subspace. In this case, the
Rank-Nullity Theorem from elementary linear algebra states that

dim(S) = dim(f(S)) + dim(Kernel(f) ∩ S) (18)

= dim(f(S)) + dim(f−1(0) ∩ S).

The same statement also holds if we replace f−1(0) by f−1(t), with t being any point in the image
of f . Thus, for linear transformations, any loss of dimension when moving from a set S to its image,
is accounted for by the dimension of the fibers above points in the image. The image conservation
in Lemma A.18 is a weaker since it is only an inequality, but it applies to the more general class of
σ-semianalytic functions.

Proof of Lemma A.18. We know that S is a countable union of manifolds, and at least one of these,
which we denote by S1, has the maximal dimension dim(S1) = dim(S). This equality shall enable
us to argue about dim(S) by arguing only about dim(S1).

Let r be the maximal rank of the differential of f|S1
. Fix some s1 ∈ S1 so that the differential

of f|S1
at s1 has rank r. The set of s ∈ S1 whose differential has rank r is open, and so there

is a neighborhood V of s1, such that V ∩ S1 is a manifold of the same dimension as S1, and the
restriction of f to V ∩ S1 has constant rank r. Consider the restriction of f to V ∩ S1, denoted by
f|V ∩S1

. By the constant rank theorem [21], f|V ∩S1
is a projection, up to a diffeomorphic change

of coordinates. Since diffeomorphisms of manifolds preserve dimensions, and projections (like all
linear transformations) satisfy dimension conservation as in (18), this implies that locally we have
dimension conservation: for all t ∈ f(V ∩ S1),

dim(V ∩ S1) = dim (f(V ∩ S1)) + dim
(
f−1(t) ∩ V ∩ S1

)
.

Therefore:
dim(S) = dim(S1) = dim(V ∩ S1)

= dim (f(V ∩ S1)) + dim
(
f−1(t) ∩ V ∩ S1

)
, ∀t ∈ f(V ∩ S1)

≤dim (f(S)) + max
t∈f(V ∩S1)

dim
(
f−1(t) ∩ S

)
≤dim(f(S)) + max

t∈f(S)
dim

(
f−1(t) ∩ S

)
.

We conclude our discussion of the Hausdorff dimension with a natural corollary which will be useful
later on for our proof of Proposition 3.6.
Corollary A.19. Let M ⊆ RD be a σ-subanalytic set, and let F : M→ RL a σ-subanalytic function.
Then the graph and image of F are σ-subanalytic sets, and

dim (graph(F )) = dim(M), dim(F (M)) ≤ dim(M).

Proof. Note that by the definition of σ-subanalytic functions, the graph of f is a σ-subanalytic set.
We begin by showing that it has the same dimension as M. Denote by π the projection from

graph(F ) = {(x, F (x)) | x ∈M}
onto the first coordinate. Firstly, since π is a Lipschitz function, it cannot increase the Hausdorff
dimension, so

dim(graph(F )) ≥ dim(π(graph(F ))) = dim(M).
In the other direction, note that for every (x, F (x)) ∈ graph(F ) we have that

π−1 (π (x, F (x))) = π−1 (x) = {(x, F (x))}
is a set containing a single point, and thus has dimension zero. Therefore, using Lemma A.18 we
have that

dim(graph(F )) ≤ dim(π(graph(F ))) + 0 = dim(M),
and so we have shown that M and the graph of F have the same dimension. Finally, F (M) is the
projection of the graph of F onto the second coordinate and so it is a σ-subanalytic set. Moreover, as
projections cannot increase the Hausdorff dimension, we obtain that

dim(F (M)) ≤ dim(graph(F )) = dim(M),

which concludes the proof of the corollary.
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A.5 Proof of the finite witness theorem

We are finally ready to prove the full version of the finite witness theorem.

Proof of Theorem A.2. Let m = D + 1. Let Fm : M×Wm+1 → Rm+1 be given by

Fm (z,θ0,θ1, . . . ,θm) = (F (z;θ0) , . . . , F (z;θm)) .

Since Fm is a concatenation of σ-subanalytic functions (each such function is the composition of F
with a different linear projection), by Proposition A.15 it is also σ-subanalytic. Therefore, the graph
of Fm, given by Am below, is σ-subanalytic:

Am = {(z,θ0,θ1, . . . ,θm, s0, s1, . . . , sm) ∈M×Wm+1×Rm+1 | F (z;θi) = si, ∀i = 0, . . . ,m}.

Next, we can intersect Am with the semialgebraic set defined by the equations s0 6= 0, s1 = s2 =
. . . = sm = 0 to obtain the σ-subanalytic set

Ãm = {(z,θ0,θ1, . . . ,θm, F (z;θ0), 0, . . . , 0) ∈M×Wm+1 × Rm+1 |
F (z;θ0) 6= 0 and F (z;θi) = 0, ∀i = 1, . . . ,m}.

We can then remove by projection the last m+ 1 coordinates and the θ0 coordinate, to obtain the set

Bm = {(z,θ1, . . . ,θm) ∈M×Wm | z ∈M \ N and F (z;θi) = 0, ∀i = 1, . . . ,m},

which is σ-subanalytic as well. Let π and πθ denote the projections

π(z,θ1, . . . ,θm) = z, πθ(z,θ1, . . . ,θm) = (θ1, . . . ,θm).

The set πθ(Bm) ⊆Wm is exactly the set ofm-tuples (θ1, . . . ,θm) that are not sufficient to determine
N . To prove the theorem, we thus need to show that the dimension of πθ(Bm) is lower than
dim (Wm) = mDθ. We do so by bounding the dimension of Bm.

Let z0 ∈ π (Bm). The set π−1(z0) ∩ Bm can be presented as the Cartesian product

π−1(z0) ∩ Bm = {z0} ×Θz0
×Θz0

× . . .×Θz0︸ ︷︷ ︸
m times

, (19)

where
Θz0 = {θ ∈W | F (z0;θ) = 0}.

The set Θz0 is also σ-subanalytic: the graph of F

{(z,θ, s) ∈M×W× R | s = F (z; θ)}

is σ-subanalytic by assumption; intersecting it with the space z = z0, s = 0, and projecting to the θ
coordinate, yields the set Θz0

. Since Θz0
is σ-subanalytic, it is a countable union of manifolds. By

the theorem assumption (13), the Hausdorff dimension of Θz0
satisfies

dim(Θz0
) ≤ Dθ − 1.

Therefore by Lemma A.17 and Equation (19),

dim
(
π−1(z0) ∩ Bm

)
= m dim(Θz0) ≤ mDθ −m. (20)

So far, z0 is only assumed to be an arbitrary point in π(Bm). Now, fix z0 ∈ π(Bm) to be a maximizer
of the left-hand side of Equation (20). By the dimension conservation Lemma A.18,

dim(Bm) ≤dim(π(Bm)) + max
z∈π(Bm)

dim
(
π−1(z) ∩ Bm

)
(a)
= dim(π(Bm)) + dim

(
π−1(z0) ∩ Bm

)
(b)

≤ dim(π(Bm)) +mDθ −m
(c)

≤D +mDθ −m = mDθ − 1,

(21)
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where (a) holds by the choice of z0, (b) is by Equation (20), and (c) holds since π(Bm) ⊆ M and
dim(M) = D. Since πθ is Lipschitz, Equation (21) implies that

dim(πθ(Bm)) ≤ dim(Bm) ≤ mDθ − 1

as required.

Now, suppose that W is an open and connected subset of Rq. We need to show that (13) holds for
all z ∈ M \ N . Fix z ∈ M \ N and let f : W → R be given by f(θ) = F (z;θ). Since z 6∈ N ,
there exists some θ for which F (z;θ) 6= 0. Hence, f is an analytic function defined on an open
connected domain, and is not identically zero. Therefore, its zero-set must be dimension-deficient
(see [28, Proposition 3]) and so we obtain (13).

This concludes the proof of the theorem.

A.6 Corollaries

In this subsection, we present several corollaries to the finite witness theorem, and show that the
simple version Theorem 3.4 follows from it as a special case.

A useful application of the finite witness theorem, which often arises in invariant learning, is when one
wishes to assert that two points x,y ∈M are indistinguishable by a parametric family of functions
F ( · ;θ); namely, that F (x;θ) = F (y;θ) for all θ ∈W. As the following corollary shows, this can
be asserted almost surely by testing whether F (x;θ) = F (y;θ) on 2 dim (M) + 1 random θs.
Corollary A.20 (Separation by Finite Witnesses). Let M ⊆ Rp, W ⊆ Rq be σ-subanalytic sets of
dimension D and Dθ respectively. Let F : M×W→ R be a σ-subanalytic function. Define the set

N = {(x,y) ∈M×M | F (x;θ) = F (y;θ), ∀θ ∈W}.
Suppose that for all (x,y) ∈M×M \ N

dim{θ ∈W | F (x;θ) = F (y;θ)} ≤ Dθ − 1. (22)

Then for generic
(
θ(1), . . . ,θ(2D+1)

)
∈WD+1,

N = {(x,y) ∈M×M | F (x;θ(i)) = F (y;θ(i)), ∀i = 1, . . . 2D + 1}. (23)

Moreover, if W is an open and connected subset of Rq , and F (x;θ) is analytic as a function of θ for
all fixed x ∈M, then condition (22) is not required, as it is automatically satisfied.

Proof. Set M̃ = M×M, and define G : M̃×W→ R by

G ((x,y) ;θ) = F (x;θ)− F (y;θ).

Then M̃ is a σ-subanalytic set of dimension dim(M̃) = 2D, and G is a σ-subanalytic function.
Moreover, if F (x;θ) is analytic as a function of θ for any fixed x ∈ M, then the function θ 7→
G ((x,y) ;θ) is analytic for any fixed (x,y) ∈ M̃. The result follows from applying Theorem A.2 to
G.

Using Corollary A.20, we can now easily prove Theorem 3.4 and Proposition 3.6 from the main text,
which we restate here for convenience:
Theorem 3.4. (Finite Witness Theorem, simple version) Let M ⊆ RL be a countable union of
affine sets, each of which is of dimension ≤ D. Let W ⊆ RDθ be open and connected. Let
F (x;θ) : M×W→ R be an analytic function. Then for almost any

(
θ(1), . . . ,θ(2D+1)

)
∈W2D+1,

the following set equality holds:

{(x,y) ∈M×M | F (x;θ) = F (y;θ) , ∀θ ∈W} =

{(x,y) ∈M×M | F
(
x;θ(i)

)
= F

(
y;θ(i)

)
, ∀i = 1, . . . 2D + 1}.

Proof of Theorem 3.4. Since affine sets are semialgebraic, countable unions of affine sets are σ-
subanalytic. Therefore, Theorem 3.4 follows from Corollary A.20. Note that by Corollary A.20, the
claim holds for all (θ(1), . . . , θ(2D+1)) except for possibly a dimension-deficient subset of WD+1,
which is slightly stronger than the ‘for almost any’ statement in the theorem.
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We now prove Proposition 3.6 from the main text.
Proposition 3.6. Let σ : R → R be an analytic non-polynomial function. Let n, d ∈ N and set
m = 2n(d + 1) + 1. Let f : Rd → RL be an injective function that is a composition of PwL
functions and analytic functions. Then for Lebesgue almost anyA ∈ Rm×L, b ∈ Rm, the function
σ(Af(x) + b) is moment injective onM≤n(Rd).

Proof. Let Y = f
(
Rd
)
⊆ RL be the image of f . Since f is injective, it naturally induces an injective

pushforward map of measures f∗ :M≤n(Rd)→M≤n(Y), defined by

M≤n(Rd) 3
n∑
i=1

wiδxi 7→
n∑
i=1

wiδf(xi) ∈M≤n(Y).

Thus, it remains to show that for Lebesgue almost any A ∈ Rm×L, b ∈ Rm, the function g(y) =
σ(Ay + b) is moment-injective onM≤n(Y). To prove this, our first step is to bound the dimension
of Y . By Corollary A.19, since f is a σ-subanalytic function, Y is a σ-subanalytic set, and

dim (Y) ≤ dim
(
Rd
)

= d.

Let M be the space of measure parameters over Y with n points:

M = {(w,Y ) ∈ Rn × Yn},

and let W be the space of parameters

W = {(a, b) ∈ RL × R}.

Then M and W are σ-subanalytic sets, dim (M) ≤ n(d+ 1) and thus m = 2n(d+ 1) + 1 is larger
or equal to 2 dim (M) + 1. We can now proceed as in the proof of Theorem 3.3:

Define F : M×W→ R by

F (w,Y ;a, b) =

n∑
i=1

wiσ(a · yi + b).

The set W is open and connected, and F (w,Y ;a, b) is analytic as a function of (a, b) for any fixed
(w,Y ) ∈M. Therefore, by Corollary A.20, for almost any choice of (ai, bi)

m
i=1 ∈W, the following

set equality holds:

{((w,Y ) , (w′,Y ′)) ∈M×M | F (w,Y ;a, b) = F (w′,Y ′;a, b) , ∀ (a, b) ∈W} =

{((w,Y ) , (w′,Y ′)) ∈M×M | F (w,Y ;ai, bi) = F (w′,Y ′;ai, bi) , ∀i = 1, . . . ,m}.
(24)

Let A ∈ Rm×L with rows a1, . . . ,am, and b = (b1, . . . , bm). Suppose that A,b indeed satisfy
(24). Then, using the same argument as in the proof of Theorem 3.3, we see that the function g is
moment-injective onM≤n (Y). This concludes the proof.
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B Moment Injectivity of piecewise-linear networks

In this appendix, we describe some additional results on moment injectivity of PwL networks. Our
results are summarized as follows:

1. PwL networks are not moment injective onM≤n(Σ), when Σ is an infinite set.

2. PwL networks are not moment injective on S≤n(Ω) when Ω = Rd (shown in the main text)
or Ω = Zd.

3. There exist irregular, countable infinite Σ, for which PwL networks are moment injective on
S≤n(Σ) (but not onM≤n(Σ) as mentioned above).

4. For finite Σ, PwL networks can be moment-injective on bothM≤n(Σ) and S≤n(Σ). The
number of neurons needed for injectivity depends on n and on the size of Σ.

We now prove these results. We begin with discussing infinite alphabets.

B.1 Failure of moment-injectivity for piecewise-linear functions with infinite alphabets

We begin by showing that PwL moment injectivity is never possible on spaces of measures, when the
alphabet is infinite:
Proposition B.1. For all natural m, d and n ≥ (d + 2)/2, and Ω ⊆ Rd that is not finite, if
ψ : Rd → Rm is piecewise linear, then it is not moment injective onM≤n(Ω).

Proof. The proof is based on the fact that if µ =
∑n
i=1 wiδxi is supported on a single linear region

L of ψ, then, denoting the parameters of the affine function corresponding to the region L by
A ∈ Rd×m, b ∈ Rm, we have that

n∑
i=1

wiψ(xi) = A

(
n∑
i=1

wixi

)
+ b

(
n∑
i=1

wi

)
. (25)

Thus it is sufficient to find two distinct measures inM≤n(Ω) which are supported in the same linear
region, and for which the two sums

∑n
i=1 wi and

∑n
i=1 wixi give the same value. Since ψ has a

finite number of linear regions while Ω is infinite, there is some linear region which contains an
infinite number of points in Ω. Thus, we can choose d+ 2 distinct points x1, . . . ,xd+2 in this region.
Since all these points are in Rd, they must be affinely dependent, which means there exist weights
w1, . . . , wd+2, not all of which are zero, such that

d+2∑
j=1

wjxj = 0 and
d+2∑
j=1

wj = 0.

We can now define k = d(d + 2)/2e, and set µ =
∑k
i=1 wiδxi and µ′ =

∑d+2
j=k+1(−wj)δxj .

According to (25), integration of ψ over µ and over µ′ gives the same value, while µ 6= µ′, and so ψ
is not moment injective.

If we change the setup of Proposition B.1 and consider spaces of multisets rather than spaces of
measures, we get a somewhat more complicate picture: In the following, we give an example of
an irregular, infinite, countable alphabet Σα, for which even the simple identity function x 7→
x is moment injective. We shall then show that for the more natural alphabet Σ = Zd, PwL
moment injectivity is not possible on S≤n(Σ). We define Σα = {α, α2, α3, . . .}, where α ∈ R is a
transcendental number, which means that it is not the root of any polynomial with rational coefficients.
Examples of such numbers include π and e. In this case, we see that the integral

∫
R xdµ(x) over any

non-zero measure µ =
∑n
i=1 wiδαi where wi are rational numbers, will not be zero. This implies

that the identity function is moment injective on S≤n(Σα) for any natural n. Note also that if n is
fixed, we can just take α = (n+ 1)−1, as suggested in [44]. Finally, note that by choosing α to be
positive, we have that the simple piecewise linear MLP ReLU(x) is moment injective on S≤n(Σα)
as well, as ReLU(x) = x on the domain Σα.

We now consider the case Σ = Zd:
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Proposition B.2. Let d, n ≥ 2 be natural numbers and Σ = Zd. If ψ : Rd → Rm is piecewise
linear, then it is not moment injective on S≤n(Σ).

Proof. Let us first consider the case where d = 1. Since the number of linear regions is finite, there
exists a linear region L that contains an infinite number of natural numbers. From the convexity of L,
it follows that L contains an interval of the form [N,∞) where N ∈ N. Using the same argument as
in Proposition 4.1, we conclude that the moments of the multisets {{2N, 2N}} and {{N, 3N}} are the
same, and thus ψ is not moment injective. The same argument can be applied in the case d > 1 using
the identification of Z with the elements in Zd whose first d− 1 coordinates are zero.

B.2 Piecewise linear network moment injectivity for sets with finite alphabets

We now consider moment injectivity of PwL networks when the alphabet is finite. Recall that when
the activations are analytic, moment injectivity is achievable on S≤n(Σ) with a single output neuron.
For PwL activations, moment injectivity is also possible, but the required number of neurons depends
on the cardinality of the alphabet.
Definition B.3. For given W,L, d ∈ N, we denote by M(W,L, d) the maximal number of linear
regions that a ReLU network f : Rd → R with maximal width W and depth L can have.
Proposition B.4. If n,W,L, d are natural numbers with n ≥ (d + 2)/2, and Σ ⊆ Rd is a finite
alphabet satisfying |Σ| > M(W,L, d) · (d + 1), then any ReLU neural network ψ : Rd → Rm of
depth L and maximal width W will not be injective onM≤n(Σ). Moreover, for large enough n,
assuming that all points in Σ have rational coordinates, such ReLU networks will also not be moment
injective on S≤n(Σ).

Proof. Since M(W,L, d) < |Σ|
d+1 , by the pigeonhole principle, we know that there must exist at least

one linear region that contains at least d+ 2 points in Σ. Denote these points x1,x2, ...,xd+2. These
points are affinely dependent, and so there exist weights w1, . . . , wd+2, not all of which are zero,
such that

d+2∑
j=1

wjxj = 0 and
d+2∑
j=1

wj = 0. (26)

We can now define k = d(d + 2)/2e, and set µ =
∑k
i=1 wiδxi and µ′ =

∑d+2
j=k+1(−wj)δxj .

According to (25), integration of ψ over µ and over µ′ gives the same value, while µ 6= µ′, and so ψ
is not moment injective onM≤n(Σ).

We now show that moment injectivity fails also on S≤n(Σ) when n is large enough, under the
assumption that Σ ⊂ Qd. Under this assumption, the above-mentioned points x1,x2, ...,xd+2 are
affinely dependent over Q, and there exist rational weights w1, . . . , wd+2 for which (26) holds.

Now we can multiply (26) by an appropriate integer, so that the wis are all integers. Using these new
weights, suppose that n ≥

∑
i |wi|. Let µ =

∑
i:wi≥0 wiδxi and µ′ =

∑
j:wj<0(−wj)δxj . Then µ

and µ′ are two distinct measures that assign the same moment to f . Since the weights of µ and µ′ are
all natural numbers, these measures correspond to multisets, where the weights denote the number of
repetitions of each element.

Number of linear regions Proposition B.4 gives a lower bound on the number of linear regions
needed for moment injectivity. The relationship between a neural network’s size and the number of
its linear regions is well studied [29, 35]. In particular, it is known that the number of linear regions
can be exponentially larger than the number of the parameters. As shown in ([1], Theorem D.6), the
maximal number of linear regions M(W,L, d) of a ReLU network with maximal width W , depth L,
and input dimension d, is bounded from above by CW d·L, where C > 0 is a constant. Joining this
together with Proposition B.4, we see that we cannot have moment injectivity if

CW d·L(d+ 1) < |Σ|. (27)

This implies that the number of neurons required for injectivity is at least logarithmic in the cardinality
of the alphabet. Although this is only a lower bound, we believe that this bound can be achieved
using the techniques developed in [1].
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We conclude this discussion by providing an upper bound for the number of linear regions needed in
the simple case that Σ = {`1 < `2 < . . . < `S} is a subset of R, and the depth L is one. In this case,
our bound (27) states that one cannot attain moment injectivity onM≤n(Σ) when 2C ·W < S. In
the other direction, we show that moment injectivity can be obtained when W = S.
Proposition B.5. Let Σ = {`1 < `2 < . . . < `S}, and let n ≤ S be some natural number. Then
there exists a shallow ReLU network of width W = S that is moment injective onM≤n(Σ).

Proof. Choose some t1, . . . , tS such that

t1 < `1 < t2 < `2 < . . . < tS < `S .

Consider the shallow ReLU network

x 7→ ψ(x) =


ReLU(x− t1)
ReLU(x− t2)

...
ReLU(x− tS)



Suppose that µ =
∑S
i=1 wiδ`i and µ′ =

∑S
i=1 w

′
iδ`i are two measures such that∫

ψ(x)dµ(x) =

∫
ψ(x)dµ′(x).

The equality of the last coordinate implies

w′S(`S − tS) =

∫
ReLU(x− tS)dµ′(x) =

∫
ReLU(x− tS)dµ(x) = wS(`S − tS)

and so wS = w′S . Next, we can consider the equality of the (S − 1)th coordinate and show that this
implies that wS−1 = w′S−1. Continuing with this argument recursively, we see that the measures
must agree.
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C Optimal embedding dimension of moment-injective functions

In Appendix C.1, we prove the lower bounds on the embedding dimensions showed in Table 1 for
M≤n(Rd),S≤n(Rd) andM≤n(Σ) for countable Σ. The remaining lower bounds in the table are
equal to one, and thus do not require a proof. For S≤n(Rd), these bounds are already known [16,
6, 42], but here we present a slightly different proof, which also applies to spaces of measures that
were not considered previously. As a rule, for all the spaces of measures/multisets considered, the
lower bound equals to the intrinsic dimension of the space, i.e., the number of continuous parameters
required to describe it. For example, S≤n(Rd) is parameterized by n continuous vectors in Rd, with
a total dimension of n · d, and by a discrete weight vector that has no influence on the dimension, and
thus the lower bound in this case is n · d.

An interesting question that remains open is whether the gap between the embedding dimension
achieved here with shallow neural networks, and the best lower bound, can be closed completely.
For multisets with features in [0, 1], [42] showed that the lower bound of n moments can be attained
using n polynomial functions. In Appendix C.2, we show that for spaces of measures with features in
R, the lower bound 2n in Table 1 can be attained by 2n functions that form a T-system (see discussion
below). Examples of T-systems include the functions x, x2, . . . , x2n, as well as 2n univariate sigmoid
neural networks with distinct parameters. Thus, for d = 1, we know that the lower bounds on the
embedding dimension are optimal. For d > 1, it seems that this question is still open.

C.1 Lower bounds

Our lower bounds are based on the following intuitive fact, which is a simple corollary to Brouwer’s
invariance of domain theorem:
Proposition C.1. If U ⊆ RD is an open set and F : U → RM is continuous and injective, then
M ≥ D.

Proof. Suppose by contradiction that M < D, and let 0 ∈ RD−M be a vector of all zeros. Then
the function F̃ (x) = (0, F (x)) is a continuous injective function of U ⊆ RD into RD and by
the invariance of domain theorem ([13], Theorem 2B.3) F̃ (U) should be open. This leads to a
contradiction, since arbitrarily small perturbations of the first coordinate of a point (0, F (x)) in the
image of F̃ will no longer be in the image.

Based on this proposition, we can prove the lower bounds in Table 1. The following lower bound
holds for any alphabet Σ.
Theorem C.2. Let Σ ⊆ Rd with |Σ| ≥ n. Suppose that f : Σ → Rm is moment injective on
M≤n(Σ). Then m ≥ n .

Proof. Fix n distinct points x1, . . . ,xn in Σ. The function

(w1, . . . , wn) 7→
n∑
i=1

wiδxi

maps Rn injectively into the space of measuresM≤n(Σ). Since f is moment injective, it follows
that the continuous (in fact, linear) function

Rn 3 (w1, . . . , wn) 7→
n∑
i=1

wif(xi) ∈ Rm

is injective. Thus, by Proposition C.1 we have that m ≥ n.

When the alphabet is uncountable, we can obtain stronger lower bounds. We now show two lower
bounds on the embedding dimension required for moment injectivity of a continuous function f with
the alphabet Ω = Rd.
Theorem C.3. Let f : Rd → Rm be a continuous function. Then

1. If f is moment injective onM≤n(Rd), then m ≥ n(d+ 1).
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2. If f is moment injective on S≤n(Rd), then m ≥ nd.

Proof. Choose n distinct points y1, . . . ,yn ∈ Rd and let r > 0 be small enough so that the distance
between any two distinct points yi,yj is larger than 2r. Then the function

(w1, . . . , wn,xi, . . . ,xn) 7→
n∑
i=1

wiδxi

maps the open set

{(w1, . . . , wn,xi, . . . ,xn) | wi 6= 0, |xi − yi| < r, i = 1, . . . , n}
injectively intoM≤n(Rd). Therefore, the map

Rn+dn 3 (w1, . . . , wn,x1, . . . ,xn) 7→
n∑
i=1

wif(xi) ∈ Rm

is injective, and since it is also continuous, Proposition C.1 implies that m ≥ n(d+ 1).

For the second part of the theorem, where f is moment injective on S≤n(Rd), we can use a similar
argument, the only difference being that we fix wi = 1. Namely, the map

Rnd 3 (x1, . . . ,xn) 7→
n∑
i=1

f(xi) ∈ Rm

is continuous and injective on the open set of (x1, . . . ,xn) with |xi − yi| < r for all i, and therefore
by Proposition C.1 m ≥ nd.

C.2 T-Systems

We now show how to achieve moment injectivity onM≤n(R) with an optimal embedding dimension.
Recall from Table 1 that for this space, our lower bound on the embedding dimension of continuous
moment-injective functions is 2n, whereas the embedding dimension of the MLPs constructed using
our technique is 4n+ 1. We shall now show that this gap can be closed, using the moments of 2n
functions that form a T-system, which we now define.
Definition C.4 ([20]). Let Ω ⊆ R. We say that the k functions τi : Ω → R, i = 1, . . . , k, form a
T-system on Ω, if for all pairwise-distinct x1 . . . xk ∈ Ω, the square matrix

Mτ = [τi(xj)]1≤i,j≤k ∈ Rk×k (28)

is invertible.

An example of a T-system on Ω = R is the standard monomial basis τi(x) = xi−1, i = 1, . . . , k.
With this choice, (28) is the Vandermonde matrix, which is invertible, and hence the monomial basis
is a T-system.

We know that the moments of the first n elements of the standard monomial basis are injective on
S≤n(R). The following simple proposition shows that injectivity on all ofM≤n(R) can be achieved,
at the cost of increasing the number of moments to 2n. Moreover, this is true for all T-systems.
Proposition C.5 (Trivial, based on [20]). If τ = (τ1, . . . , τ2n) is a T-system on Ω ⊆ R, then the
induced moment function

τ̂ (µ) =

(∫
R
τ1(x)dµ(x), . . . ,

∫
R
τ2n(x)dµ(x)

)
is injective onM≤n(Ω).

Proof. Let µ, µ′ ∈ M≤n(Ω) such that τ̂ (µ) = τ̂ (µ′). Then τ (µ− µ′) = 0, where µ− µ′ denotes
the difference measure. Since µ− µ′ is supported on at most 2n points, we can write

µ− µ′ =

2n∑
i=1

wiδxi ,
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where the points xi are pairwise distinct, and some of the wi may be zero. Our goal is to show that
the vector

w = (w1, . . . , w2n)

is all zero. Indeed, the fact that τ̂(µ− µ′) = 0 implies that Mτ ·w = 0. And since by assumption
Mτ is full rank, we have that w = 0.

Example C.6 (Sigmoid T-systems). We’ve seen that the standard monomial basis forms a T-system.
Another well-known example [20] is the family of functions

τi(x) =
1

x− ai
, i = 1, . . . , k.

If the numbers a1, . . . , ak are pairwise distinct, then τ = (τ1, . . . , τk) form a T-system on Ω =
R \ {a1, . . . , ak}.
We can use these example to obtain an alternative T-system based on the sigmoid activation σ(x) =
(1 + e−x)−1. Firstly, using the injectivity of the exponent function, we can deduce from the fact that
τ is a T-system, that for any distinct b1, . . . , bk the functions

τ̂i(x) =
1

ebi + e−x
, i = 1, . . . , k

form a T-system on Ω = R. It follows that the functions

σ(x+ bi) =
1

1 + e−x−bi
= e−bi

(
1

ebi + e−x

)
, i = 1, . . . , k

form a T-system as well. In particular, for all pairwise-distinct b1, . . . , b2n, the function

x 7→ σ(x+ bi), i = 1, . . . , 2n

is moment injective onM≤n(R).

Unfortunately, these results cannot be extended to M≤n(Rd) with d > 1, as it is known that
T-systems can only be defined on subsets of R or S1 [20].
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D Proofs

In this section, we provide the proofs omitted from the main text, except for the proofs of Theorem 3.4
and Proposition 3.6, which appear in Appendix A.6.

D.1 Proofs for Section 3

Proposition 3.2. Let σ : R → R be a continuous function that is not a polynomial; then σ is
discriminatory.

Proof. Let σ be as in the statement of the proposition, and let µ be a signed Borel measure that is finite
and is supported on a compact set K ⊆ Rd. Furthermore, assume that

∫
Rd σ(a · x+ b)dµ(x) = 0

for all a and b. We need to prove that µ = 0.

Note that by the linearity of µ, we have that
∫
fdµ = 0 for every f in the space spanned by functions

of the form σ(a · x+ b). Additionally, since functions in this space can approximate any continuous
function on K uniformly ([32]), Propositions 3.3 and 3.8), and µ is compactly supported, we have
that

∫
fdµ = 0 for every continuous function. Finally, by the Riesz representation theorem ([36],

Theorem 6.19) we know that a signed (and more generally complex) measure on K is defined
uniquely by the integrals of continuous functions and thus µ = 0 as required.

Proposition 3.5. Let n, d ∈ N and set m = 2n(d+ 1) + 1. Let W = (y, σ) ∈ Rd × R+. Then for
Lebesgue almost any (yi, σi)

m
i=1 ∈Wm, the function

f(x) =

(
exp

(
−‖x− y1‖2

σ2
1

)
, . . . , exp

(
−‖x− ym‖

2

σ2
m

))
is moment injective onM≤n(Rd).

Proof. The proof follows the proof of Theorem 3.3 with some modifications. Set m = 2n(d+ 1) + 1.
A measure inM≤n(Rd) is determined (albeit not uniquely) by a matrixX = (x1, . . . ,xn) ∈ Rd×n
that represents n points in Rd, and a weight vector w ∈ Rn. Let M denote the space of pairs of
measure parameters

M = {(w,w′,X,X ′) ∈ Rn × Rn × Rd×n × Rd×n},
and let

F (w,w′,X,X ′;y, σ) =

n∑
i=1

wi exp
(
−σ−2‖xi − y‖2

)
−

n∑
i=1

w′i exp
(
−σ−2‖x′i − y‖2

)
. (29)

We prove the proposition by showing that for Lebesgue almost every y1, . . . ,ym and σ1, . . . , σm,

{(w,w′,X,X ′) ∈M |
n∑
i=1

wiδxi =
n∑
i=1

w′iδx′i}

(∗)
={(w,w′,X,X ′) ∈M | F (w,w′,X,X ′;y, σ) = 0, ∀y ∈ Rd, σ ∈ R+}

(∗∗)
= {(w,w′,X,X ′) ∈M | F (w,w′,X,X ′;yi, σi) = 0, ∀i = 1, . . . ,m}

As in the proof of Theorem 3.3, equality (**) follows from the finite witness theorem. The equality (*)
follows on the one hand from the fact that whenever the measures defined by (w,X) and (w′,X ′)
are the same, necessarily all integrals of functions against these measures are the same, and so
F (w,w′,X,X ′;y, σ) = 0 for all y ∈ Rd, σ ∈ R+.

On the other hand, if the measure µ defined by (w,X) and the measure µ′ defined by (w′,X ′),
are not the same, then it is sufficient to show that for some choice of y ∈ Rd, σ ∈ R+ we have
F (w,w′,X,X ′;y, σ) 6= 0. To see this is indeed the case, choose some y0 ∈ Rd which the non-zero
matrix µ− µ′ assigns a non-zero weight w0. Then

lim
σ→0,σ>0

F (w,w′,X,X ′;y0, σ) = w0 6= 0.

and so for small enough σ we have that F (w,w′,X,X ′;y0, σ) which concludes the proof.
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D.2 Proofs for Section 5

Proposition 5.1. Let n ≥ 2, d,m ∈ N, and let f : Rd → Rm be differentiable at some x0 ∈ Rd.
Then the induced moment function f̂ : S≤n(Rd)→ Rm defined in (1) is not bi-Lipschitz.

Proof. We choose some arbitrary d ∈ Rd with unit norm, and focus on multisets of two elements
in Rd of the form Sε = {{x0 + εd,x0 − εd}}. We note that the Wasserstein distance W2(Sε, S0) is√

2ε. Thus, it is sufficient to show that

lim
ε→0

‖f̂(Sε)− f̂(S0)‖
|ε|

= 0, (30)

for this implies that there is no positive c for which (8) holds. Indeed, denoting the differential of f at
x0 by J , we have

‖f̂(Sε)− f̂(S0)‖
|ε|

=
‖f(x0 + εd) + f(x0 − εd)− 2f(x0)‖

|ε|

=
‖f(x0 + εd)− f(x0)− εJd+ f(x0 − εd)− f(x0) + εJd‖

|ε|

≤ ‖f(x0 + εd)− f(x0)− εJd‖
|ε|

+
‖f(x0 − εd)− f(x0)− (−εJd)‖

|ε|
ε→0→ 0,

where the convergence to zero of the last expression follows from the definition of differentiability at
a point.

D.3 Proofs for Section 6

We now prove Corollary 6.1:

Corollary 6.1. Let n, d ∈ N and set m = 2nd+ 1. Let σ : R→ R be an analytic non-polynomial
function. Let K ⊆ Rd be a compact set. Then there exist A ∈ Rm×d, b ∈ Rd such that for any
continuous permutation-invariant f : Kn → R, there exists a continuous F : Rm → R such that

f(X) = F

 n∑
j=1

σ(Axj + b)

 , ∀X = (x1, . . . ,xn) ∈ Kn. (9)

Proof. By Proposition 1.3 in [9], it is sufficient to show that there exists A ∈ Rm×d, b ∈ Rd such
that the permutation invariant function

(x1, . . . ,xn) 7→
n∑
j=1

σ(Axj + b) (31)

is orbit separating. This means that any two element in Kn that are not related by a permutation will
be separated by the function in (31). Any pair of elements not related by a permutation correspond to
two distinct multisets in S≤n(Rd) with exactly n points. By Theorem 3.3, for almost every choice
ofA, b the function in (31) will be injective on S≤n(Rd), and thus for such choice this function is
indeed invariant and orbit separating.

We now prove Corollary 6.2:

Corollary 6.2. Let n, d ∈ N and set m = 2n(d + 1) + 1. Let σ : R → R be analytic and non-
polynomial. Let K ⊆ Rd be compact. Then there exist A ∈ Rm×d, b ∈ Rm such that for any
continuous (in the 2-Wasserstein sense) f : P≤n(K)→ R, there exists a continuous F : Rm → R
such that

f(µ) = F

(∫
x∈K

σ(Ax+ b)dµ(x)

)
, ∀µ ∈ P≤n(K).
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Proof. Our first step is to show that P≤n(K) is compact with respect to the Wasserstein metric.
Since P≤n(K) is the image of the compact set

Q := {(w,X) ∈ Rn ×Kn |
n∑
i=1

wi = 1 and wj ≥ 0, , j = 1, . . . , n}

under the function

(w,X) 7→
n∑
i=1

wiδxi ,

it is sufficient to show that this function is continuous, as the image of a compact set under a
continuous map is compact. Thus, given a sequence of (w(k),X(k)) which converges to some
(w,X), we need to show that in Wasserstein space, the measures µk :=

∑n
i=1 w

(k)
i δ

x
(k)
i

converge

to the measure µ :=
∑n
i=1 wiδxi . Since the Wasserstein distance metrizes the weak topology on

measures ([40], Theorem 6.9), it is sufficient to see that the integral of every continuous s : K → R
against the sequence of measures converge to the limit measure. Indeed:∫

K

s(x)dµ(k)(x) =

n∑
i=1

w
(k)
i s(x

(k)
i )→

n∑
i=1

wis(xi) =

∫
K

s(x)dµ(x)

Thus we have shown that P≤n(K) is compact.

Next, by Theorem 3.3, for almost every choice ofA, b the function

q(µ) :=

∫
x∈K

σ(Ax+ b)dµ(x)

is injective onM≤n(Rd), and so in particular on the compact subsetP≤n(K). As q is also continuous,
and a continuous injective function defined on a compact set is a homeomorphism, it follows that
q−1 : q(P≤n(K))→ P≤n(K) is continuous. We then have that f = (f ◦ q−1) ◦ q. We can then use
Tietze’s extension theorem to extend f ◦ q−1 from its compact domain to a continuous function F
defined on all of Rm , and we then obtain f = F ◦ q as required.

Theorem 6.3. Let n, d, T ∈ N and let Σ ⊆ Rd be countable. Let m ≥ 1 be any integer. Let
σ : R → R be an analytic non-polynomial function. Then for Lebesgue almost any choice of
A(t), b(t) and η(t), the MPNN defined in (10) and (11) assigns different global features to any pair
of graphs G1, G2 ∈ G≤n(Σ) that can be separated by T iterations of 1-WL.

Proof. The message passing iterations discussed in the theorem define new node features h(t)
v from

the previous node features h(t−1)
v via

h(t)
v =

∑
u∈N (v)

σ
(
A(t)

(
η(t)h(t−1)

v + h(t−1)
u

)
+ b(t)

)
.

This can be rewritten as

m(t)
v,u = η(t)h(t−1)

v + h(t−1)
u

h(t)
v = f (t)

(
{{m(t)

v,u, | u ∈ N (v)}}
)

=
∑

u∈N (v)

σ
(
A(t)m(t)

v,u + b(t)
)
, t = 1. . . . , T

The final ‘readout’ step creates a global graph features from the node features of the last iteration T
via

hG = f (T+1)
(
{{h(T )

v | v ∈ V }}
)

=
∑
v∈V

σ
(
A(T+1)h(T )

v + b(T+1)
)

It is known [44] that every pair of graphs G, Ĝ ∈ G≤n(Σ) which are not be separated by T iterations
of the WL test, will not be separated by our message passing procedure, regardless of the choice of
the parameters

θ =
(
A(1), . . . ,A(T+1), b(1), . . . , b(T+1), η(1) . . . , η(T )

)
.
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We need to prove the opposite direction.

Since the collection of all graph-pairs from G≤n(Σ) is countable, it is sufficient to show that any
fixed pair of graphs G, Ĝ ∈ G≤n(Σ) that can be separated by T iterations of the WL test, can be
separated by almost every choice of parameters.

Let us fix such a pair G, Ĝ ∈ G≤n(Σ) which can be separated by T iterations of WL. Note that the
final features hG = hG(θ) and hĜ = hĜ(θ) obtained from the message passing procedures are
an analytic function of the parameters θ, and therefore to show separation for almost every θ it is
sufficient to show existence of θ for which hG(θ) 6= hĜ(θ).

To show that a single such θ exists, we choose the parameters of the functions recursively in the order
(η(1),A(1), b(1)), (η(2),A(2), b(2)), . . . in which they are applied in the message passing procedure.
When choosing the parameters (η(t),A(t), b(t))corresponding to the tth step, it is sufficient to show
that, if at the previous (t− 1) timestamp, for two different nodes v, w we had

h(t−1)
v 6= h(t−1)

w or {{h(t−1)
u , u ∈ N (v)}} 6= {{h(t−1)

u , u ∈ N (w)}} (32)

then h(t)
v and h(t)

w will not be the same. Here v and w are nodes in either G or Ĝ.

Our first goal is to choose η(t) so that, for all given nodes v, w in G or Ĝ such that (32) is satisfied,
we have

{{m(t)
v,u, | u ∈ N (v)}} 6= {{m(t)

w,x, | x ∈ N (w)}}. (33)

To choose η(t) in this way, we note that since all previous parameters were already determined, and
since we are only interested in a single pair of graphs, there is only a finite number of features

Σ(t) = {h(t−1)
v |v is a node in G or Ĝ}

which we are interested in. Since for fixed vectors x1,x2,y1,y2 of the same dimension with
x1 6= x2, there can be at most a single η satisfying the equation

ηx1 + y1 = ηx2 + y2. (34)

we conclude that all but a finite number of η satisfy

ηh(t−1)
v + h(t−1)

u 6= ηh(t−1)
w + h(t−1)

x ,

∀h(t−1)
v ,h(t−1)

u ,h(t−1)
w ,h(t−1)

x ∈ Σ(t−1) such that h(t−1)
v 6= h(t−1)

w

We choose η(t) which satisfies the inequality above. This implies that if the left-hand side in (32)
is indeed an inequality h(t−1)

v 6= h
(t−1)
w , thenm(t)

v,u 6= m
(t)
w,x for all (u, x) ∈ N (v)×N (w), which

in turn implies the inequality of multisets obtained from w and v ((33). On the other hand, if the
left-hand side in (32) is an equality h(t−1)

v = h
(t−1)
w and the multisets in the right-hand side of (32)

are distinct, then clearly the multisets in (33) are distinct too. Thus, we have proved that we can
choose η(t) so that (32) implies (33).

It remains to show that we can choose the parameters of f (t) so that, if (33) holds for some nodes
v, w of G or Ĝ, then the features h(t)

v and h(t)
w obtained from applying f (t) to the multisets in (33)

will be distinct. Indeed, since we are only requiring f (t) to be injective on a finite collection of finite
sets, we have that all these multisets are contained in S≤n(Σ) for some finite Σ, and therefore by
Theorem 3.3 there is a choice of parameters (A(t), b(t)) which is injective on S≤n(Σ), even when
m = 1. Thus, we obtained a recursive procedure for choosing the parameters θ such that G and Ĝ
will be separated, which concludes our proof.
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E Numerical Experiments: Additional Details

E.1 Empirical injectivity and Bi-Lipschitzness

To generate the results shown in Figure 2 (and Figure 4 below), we ran multiple independent test
instances in which we generated two random matrices X1, X2 ∈ Rd×n, representing two sets of n
vectors in Rd. With exact details appearing below, X1, X2 were generated such that: (1) Each entry
of X1 and X2 has expectation zero and a standard deviation (STD) of 1; (2) X1 and X2 differ in
exactly n∆ randomly chosen columns, with the parameter n∆ chosen uniformly at random from
{1, . . . , n}; (3) each entry of the n∆ nonzero columns of ∆X = X2 −X1 has expectation zero and
STD=ρ, with the parameter ρ itself drawn uniformly (once per test instance) from [ρmin, ρmax]. We
used ρmin = 0.02, ρmax = 1. In other words, the relative difference ρ between non-identical columns
of X1 and X2 is chosen at each instance randomly between 2% and 100%. The motivation for this
construction was to test various types and magnitudes of differences between multisets.

We then randomly generated Ā ∈ Rm̄×d and b̄ ∈ Rm̄×1, from which we took subblocks to be used
as parameters for the function f (x;A, b) of Equation (3): for various values of m ∈ [m̄], we took
Am, bm to be the top m rows of Ā and b̄ respectively, and used them to construct the embedding
f̂ (X;Am, bm, σ) : Rd×n → R:

f̂ (X;Am, bm, σ) =

n∑
i=1

σ (Amxi + bm) ,

with xi denoting the columns of X . The entries of Ā and b̄ were drawn from Gaussian distributions
chosen such that for each row ak of Ā and corresponding entry bk of b, and each column xi of X1 or
X2, the input to the activation σ, ak · xi + bk, has expectation zero and STD=1; specifically,

E [ak · xi] = E [bk] = 0 and STD [ak · xi] = STD [bk] = 1√
2
.

For various activation functions σ, we calculated the ratio

r (X1, X2) =
‖f̂ (X1;Am, bm, σ)− f̂ (X2;Am, bm, σ)‖2

W2 (X1, X2)
,

with W2 (·, ·) being the 2-Wasserstein distance. We used a Sinkhorn approximation of W2 (·, ·),
calculated by the GeomLoss Python library [11]. Finally, for each activation σ and embedding
dimension m, we took c and C to be the minimum and maximum of r (X1, X2) respectively over all
test instances, and recorded the ratio c/C. In each experimental setting, we ran between 500,000 and
2 million independent instances, depending on the values of d and n. The results appear in Figure 4.
It can be seen that a similar behaviour is exhibited across different values of d and n. In particular, all
PwL activations have c/C = 0 at low m and all analytic activations have positive c/C in all settings
tested.

Probabilistic distributions of data At each instance, as mentioned above, we first chose n∆ ∼
Uniform [{1, . . . , n}] and ρ ∼ Uniform [ρmin, ρmax]. We then randomly chose n∆ columns labelled
by J , at whichX1, X2 should differ. Let I = [n]\J . Denote byX[:,Λ] the subblock of the matrixX
with columns indexed by Λ. The entries of X1[:, I] = X2[:, I] were drawn i.i.d. from Normal (0, 1).
For X1[:, J ] and X2[:, J ], we generated two random matrices U, V ∈ Rd×n∆ , each of whose entries

are i.i.d. Gaussian with expectation 0, STD=
√

1− 1
12 (ρ2

max + ρmaxρmin + ρ2
min) and STD=1 for

U ,V respectively. We then set

X1[:, J ] = U − 1
2ρV, X2[:, J ] = U + 1

2ρV.

Lastly, we generated the entries of Ā and b̄ from Normal
(

0, 1√
2d

)
and Normal

(
0, 1√

2

)
respectively.

We now show that: (i) each entry of X1[:, J ] and X2[:, J ] has expectation zero and STD=1, (ii) given
ρ, each entry of ∆X[:, J ] has expectation 0 and STD=ρ, and (iii) All inputs to the activation σ have
expectation zero and STD=1. Let x1, x2 be two corresponding entries of X1[:, J ], X2[:, J ], and let
u, v be their corresponding entries of U, V . Then

x1 = u− 1
2ρv, x2 = u+ 1

2ρv.
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The empirical ratio c/C of Equation (8) as a function of the embedding dimension m. The results for
different sizes of vector-sets n and ambient dimension d are shown. For low m, the piecewise-linear
ReLU and HardTanH have c/C exactly zero. See Appendix E.1 for a full description of the
experimental setting.

Figure 4: Empirical injectivit and bi-Lipschitzness

We now calculate the expectation and variance of x1, x2. Since U , V and ρ are independent, we have
that

E [x1] = E
[
u− 1

2ρv
]

= E [u]− 1
2E [ρ]E [v] = 0− 1

2

ρmin + ρmax

2
· 0 = 0,

and by a similar reasoning, E [x2] = 0. The variance of x1 is given by:

Var [x1] = Var
[
u− 1

2ρv
]

= Var [u] + 1
4

(
Var [ρ] + E [ρ]

2
)(

Var [v] + E [v]
2
)
− E [ρ]

2 E [v]
2

= Var [u] + 1
4

(
(ρmax − ρmin)

2

12
+

(ρmax + ρmin)
2

4

)
(1 + 0)− E [ρ]

2 · 0

= Var [u] + 1
12

(
ρ2

max + ρmaxρmin + ρ2
min

)
=
(
1− 1

12

(
ρ2

max + ρmaxρmin + ρ2
min

))
+ 1

12

(
ρ2

max + ρmaxρmin + ρ2
min

)
= 1.

By a similar argument, Var [x2] = 1. Thus, (i) holds. Let ∆x = x2 − x1 = ρv. Then

E [∆x] = E [x2]− E [x1] = 0− 0 = 0.

Moreover, the conditional variance of ∆x given ρ is

Var [∆x | ρ] = Var [ρv | ρ] = ρ2 · Var [v | ρ] = ρ2 · Var [v] = ρ2,

and thus (ii) holds. Finally, we show that (iii) holds. We already have established that each entry of
X1 and of X2 has zero mean and STD=1. Let ak, bk be a row or Ā and its corresponding entry of b̄.
Let xi be an arbitrary column of X1 or X2. Then

E [ak · xi] = E

 d∑
j=1

(ak)j · (xi)j

 =

d∑
j=1

E
[
(ak)j

]
E
[
(xi)j

]
=

d∑
j=1

0 · 0 = 0,
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and by definition E [bk] = 0. Since each (ak)j and (xi)j are independent random variables with
expectation zero, we have that

Var [ak · xi] = Var

 d∑
j=1

(ak)j · (xi)j

 =

d∑
j=1

Var
[
(ak)j

]
Var
[
(xi)j

]
=

d∑
j=1

1
2d · 1 = 1

2 ,

and by definition Var [bk] = 1
2 . Therefore, (iii) holds.

Computational resources All experiments were run on an NVidia A40 GPU with 48 GB of GPU
memory.

E.2 Graph separation

We ran the graph separation experiment using the PyTorch Geometric [10] implementation for ‘WL
convolutions’, and the GCN convolutions of [18], as well as their version of the TUDataset [30]. As
initialization for the node features, we only took the node degree.

When moving from the abstract mathematical world to finite precision computing,
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Figure 5: Minimal and median distance be-
tween non-equivalent features as a function
of hidden feature dimension.

features that are mathematically equal hi = hj could end
up having slightly different values. To deal with this, all
computations were done in double precision. The final
features computed by the MPNN were normalized to have
an average norm of one, and two features hi, hj were
deemed equal if |hi − hj | < 10−12. In Figure 5 we show
the minimum and median of the quantity ‖hi − hj‖ over
all (i, j) from all graphs for which this norm was larger
than the threshold of 10−12. This is shown for the SiLU
activation, and the values are shown as a function of the
hidden dimension used. We see that the minimal non-
zero distance was safely larger than the threshold in all
examples. Also note that the minimal distance moderately
improves as the hidden dimension increases.
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