
Appendix387

A Illustrative Examples388

Example 3 (Obtaining the Prolongation of SO(2)). We can consider If X × U = R× R and the389

infinitesimal generator of the 2-dimensional rotation group, SO(2):390

vSO(2) = ξ(x, u)∂x + ϕ(x, u)∂u

= −u∂x + x∂u

In this 2-dimensional case, the calculation of the prolonged generator is simple:391

ϕ(x) = Dx(ϕ− ξux) + ξuxx

= Dx(x+ uux)− uuxx

= (1 + u2
x + uuxx)− uuxx

= 1 + u2
x

Therefore:392

pr(1)vSO(2) = −u∂x + x∂u + (1 + u2
x)∂ux

We will work through another example of obtaining the prolongation of an infinitesimal generator of393

the heat equation:394

Example 4 (Obtaining the Prolongation of an Infinitesimal Generator). As an example, we will395

consider X ×U = R2×R and the following infinitesimal generator, which is a symmetry of the heat396

equation:397

v = ξ1(x, t, u)∂x + ξ2(x, t, u)∂t + ϕ(x, t, u)∂u
= 2νt∂x − xu∂u

where x, t denote the independent variables, u is the dependent variable and ν is a positive constant.398

By the prolongation formula, Eq. (4), the first prolongation in t is given by:399

ϕt = Dt(ϕ− ξ1ux − ξ2ut) + ξ1uxt + ξ2utt

= Dt(−xu− 2νtux) + 2νtuxt

= −xut − 2νux

Figure 4: Various solutions of the PDE ∆(x, u, ux) = (u − x)ux + u + x = 0 obtained via symmetry
transformation (rotation) of a know solution (in red).

As a final illustrative example of the symmetry criterion, we will follow Olver’s example below:400
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Example 5. As an illustrative example of the infinitesimal criterion, we can consider a simple DE:401

∆(x, u, ux) = (u− x)ux + u+ x = 0

We can easily see that SO(2) is a symmetry group of this differential equation, using the prolongation402

of the generator we calculated in Example 3:403

pr(1)v[∆] = −u∆x + x∆u + (1 + u2
x)∆ux

= −u(1− ux) + x(1 + ux) + (1 + u2
x)(u− x)

= ux∆

Since ∆ux = 0 when ∆ = 0, we can conclude that SO(2) is indeed a symmetry group of the404

equation. In fact, we can see that it transforms solutions of this differential equation to other solutions405

in Fig. 4.406

B Implementation Details407

We model the two networks, gθ1 and eθ2 in Eq. (9) with MLPs consisting of 7 hidden layers of width408

100. This choice was based on the previous research using PINN and DeepONets for solving Burgers’409

equation [Wang et al., 2021b]. We used elu activation as differentiable activations are required for410

the PDE loss. The output of the embedding vectors from both networks is 100 dimensional.411

For both the Heat equation and Burgers’ equation experiments, we perform hyper-parameter tuning412

on the coefficients of the loss terms from the set [0.1, . . . , 1, . . . , 10, . . . , 100, . . . 200]. This is done413

separately for the baseline model and the model trained with symmetry loss, Lsym, as we varied the414

number of samples, Nr.415

We also note that for Burgers’ equation, we found that cosine similarity for Lsym works better than416

the dot product. The results reported in Section 4 use cosine-similarity.417

We will make the data and the code available on GitHub.418

C Additional Results419

In the figure below, we can see the behaviour of the two models, trained with and without symmetry420

loss for Burgers’ equation, as we increase the number of training samples. It can be seen that, as421

expected, in the model trained with Lsym performs significantly better with low samples inside the422

domain. The corresponding mean-squared errors are reported in Table 2.423
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Figure 5: The effect of training the PDE solver for the Burgers’ equation with and without the
symmetry loss for one of the PDEs in the test dataset. (a) shows the ground truth solution and the
predictions of the two models as the number of samples inside the domain increases from 5000 to
25000 and 100000.(b) shows the corresponding predictions and the ground truth solution at different
time slices.

14


	Illustrative Examples
	Implementation Details
	Additional Results

