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Figure 1: Overall scheme of our Point-In-Context-Cat. Top: During training, each sample
comprises two pairs of input and target point clouds that tackle the same task. Unlike PIC-Sep,
PIC-Cat concatenates the input and target to form a new point cloud. Bottom: In-context inference
on multitask. Our Point-In-Context could infer results on various downstream point cloud tasks.

Overview. The supplementary material includes sections as follows:1

• Section A: Pipeline of Point-In-Context-Cat, including training and inference stages.2

• Section B: Additional ablation studies on PIC, including the prompt selection solutions,3

mask ratio, and the loss function.4

• Section C: More results about multitask models trained using a pre-trained backbone with5

multitask heads.6

• Section D: More visual results and corresponding analysis.7

A More Details of PIC8

Pipeline of PIC-Cat. During the training phase, our approach involves selecting a pair of query9

point clouds and a pair of prompt point clouds from the training dataset. These point clouds are then10

grouped using the Joint Sampling module. Following this, we perform encoding and tokenization on11

each point cloud and concatenate them to create a new point cloud. A masking operation is applied12

to the entire point cloud to conduct the MPM task. We set the mask ratio as 60% for our specific13

approach, PIC-Cat. During the in-context inference stage, we only mask the last quarter of the tokens,14

which corresponds to the desired output. This approach allows our PIC-Cat model to reconstruct the15

masked tokens, leveraging its training experience. It is important to note that the task on the query16

point cloud is determined by the prompt in the example pair.17
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Table 1: The comparison of parameters, GFLOPs, and test speed.

Task-specific models multi-task models In-context learning models

PointNet [7] DGCNN [8] PCT [4] PointNet [7] DGCNN [8] PCT [4] Point-MAE [6] Point-BERT [9] PIC-Cat PIC-Sep

Params(M) 8.9 7.9 13.0 6.0 7.6 10.8 27.0 52.6 29.0 28.9

FLOPs(G) 1.9 3.1 6.3 1.9 10.2 6.4 11.8 12.0 12.1 8.4

Test speed 694 1500 694 844 1185 717 742 190 953 291

Table 2: More ablation study on Point-In-Context.

(a) Prompt selection method.

Model
Selection

method

Rec.

CD↓

Den.

CD↓

Reg.

CD↓

PIC-Cat Fea-aware 4.30 5.32 10.68

PIC-Cat CD-aware 4.28 5.26 9.65

PIC-Sep Fea-aware 4.90 7.57 5.79

PIC-Sep CD-aware 4.38 7.06 4.12

(b) Ablation study on mask ratio.

#
Mask

Ratio

Rec.

CD↓

Den.

CD↓

Reg.

CD↓

Part Seg.

mIOU↑

1 0.2 27.8 33.5 68.2 43.84

2 0.3 5.2 7.3 14.8 56.72

3 0.4 5.0 7.4 12.3 60.25

(c) Different loss functions.

#
Loss

function

Rec.

CD↓

Den.

CD↓

Reg.

CD↓

Part Seg.

mIOU↑

1 ℓ1 5.0 8.1 11.1 72.35

2 ℓ2 4.7 7.6 10.3 74.95

3 ℓ1 + ℓ2 5.3 7.9 13.3 70.46

Comparison of Model Parameters, GFLOPs, and test speed. We compared the parameters and18

GFLOPs of each model in the main results of the main text in Tab. 1. Our model achieves a favorable19

balance between structural complexity and task performance, making it a compelling choice. Note20

that the parameters and GFLOPs of task-specific models are computed, including four individual21

models for four different tasks. Besides, we report the speed of models by samples/second tested on22

one NVIDIA RTX 3080 Ti GPU. Our PIC-Cat presents a high inference speed (953 samples/second),23

which is second only to DGCNN [8].24

B More Ablation Studies25

Given the length of the main text, we include additional ablation experimental results in this section.26

It is important to note that these experimental results hold equal significance to the main text.27

Prompt Selection. The selection of the prompt significantly influences the quality of the PIC’s28

output. Therefore, in addition to the random and class-aware prompts discussed in the main text, we29

further delve into selecting two alternative prompts. To select pairs of examples that are paired with30

the query point cloud, we consider two factors: the Chamfer Distance (CD) between the prompt and31

the query point cloud and the feature similarity between them (features are obtained from pre-trained32

PointNet [7]), which are respectively denoted as CD-aware and Fea-aware. By considering these33

criteria, we can identify the most suitable prompts to accompany the query point cloud, thus enabling34

PIC to achieve optimal performance.35

As depicted in Tab. 2(a), the CD-aware method demonstrates the best performance than Fea-aware,36

surpassing even the individual models trained separately on the registration task. This finding37

highlights the effectiveness of the prompt selection approach in enhancing performance compared to38

the results presented in the main text. Similar findings can also be found in the 2D in-context learning39

framework [1, 10].40

Mask Ratio. In addition to the high mask ratio discussed in the main text, we also conducted41

experiments on PIC-Sep with a low mask ratio ranging from 20% to 40%. As shown in Tab. 2(b),42

training PIC with a lower mask ratio weakens its performance across various tasks, especially on the43

mask ratio 20%. Different from language data, we also find keeping sparsity in training is necessary44

for mask point modeling for in-context learning. We find similar results as in MAE [5], a higher45

mask ratio is required to make sure that the model can learn hidden features well.46
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Table 3: Results of multitask models composed of a multitask head and a pre-train backbone trained
on ShapeNet [3] for classification. For reconstruction, denoising, and registration, we report Chamfer
Distance ℓ2 loss (x1000). For part segmentation, we report mIOU.

Models Acc.(%)
Reconstruction CD ↓ Denoising CD ↓ Registration CD ↓ Part Seg.

L1 L2 L3 L4 L5 Avg. L1 L2 L3 L4 L5 Avg. L1 L2 L3 L4 l5 Avg. mIOU↑
multitask models: share backbone + multi-task heads

PointNet [7] 88.7 47.0 45.8 45.4 45.4 45.8 45.9 22.9 23.2 26.3 28.3 30.0 26.1 35.5 34.8 37.1 37.2 38.6 36.6 10.13
DGCNN [8] 89.4 46.7 47.2 48.1 48.6 48.5 47.8 8.2 8.3 8.4 8.8 9.2 8.6 14.2 15.8 18.2 21.8 23.5 18.7 21.35
PCT [4] 89.5 64.7 60.8 59.2 60.1 59.7 61.0 14.5 12.2 12.4 12.0 11.8 12.6 22.6 25.2 28.3 31.1 33.2 28.1 15.43

Reconstruction Denoising Registration Part Segmentation

Figure 2: Additional visualization results of PIC-Sep. The output of our model is marked in red.
Note that the results of part segmentation have been processed by adding XYZ coordinates.

Loss Function. We conducted an exploration to determine which loss function is most suitable47

for our PIC (Point-In-Context) model. During training, we experimented with using ℓ1, ℓ2, and a48

combination of ℓ1 and ℓ2 as the loss functions for our PIC-Sep. As Tab. 2(c) shows, ℓ2 achieves the49

best result on various tasks.50

C More Results of Multi-task Models51

Pre-trained Backbone + multitask Heads. For multitask models, we utilize a pre-trained backbone52

feature extraction network that is trained on the ShapeNet [3] dataset for classification tasks. This53

pre-trained backbone network is equipped with multiple task-specific heads to perform multitask54
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Figure 3: Visualization of comparison results between PIC and multitask models.

learning on our benchmark, allowing for the simultaneous handling of various tasks, including55

reconstruction, denoising, registration, and part segmentation. As shown in Tab. 3, while these56

supervised models perform well when trained on individual tasks, they exhibit poor performance on57

multitask benchmarks. Despite their success in isolated tasks, the models struggle to effectively handle58

multiple tasks simultaneously, resulting in subpar results in the context of multitask benchmarks.59

D More Visualization60

More visualization of PIC-Sep. We visualize more examples in Fig. 2, including reconstruction,61

denoising, registration, and part segmentation.62

Comparison results between PIC and multitask models. We conducted a comparison of visu-63

alization results between PIC (Point-In-Context) and multitask models on three tasks, including64

reconstruction, denoising, and registration. It is important to note that the multitask models in65

this comparison do not utilize the pre-trained backbone. As shown in Fig. 3, compared with other66

multitask models, our PIC-Sep and PIC-Cat output results are more satisfactory.67

Board impact. Our work is the first to explore in-context learning in 3D point clouds, including68

task definition, benchmark, and baseline models. Due to the limited computation resource, we69

do not perform more experiments such as outdoor scene segmentation and large-scale point cloud70

datasets [2]. This will be our further work.71
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