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1 Handwriting iBCI17

1.1 RNN training details18

This section lists the details for training the Gated Recurrent Unit [4] RNN which was used as the19

handwriting iBCI decoder.20

Training data The RNN was trained on a combination of data from [15] (10 recording sessions)21

and newly collected data (11 recording sessions Table 2).22

Feature pre-processing The recorded neural voltage data were converted into threshold-crossing23

(TX) features first by counting the number of times the voltage time series crossed an amplitude24

threshold set at −4.5 times the standard deviation of the voltage signal. TX features were then25

pre-processed by binning into 20ms time steps, "z-scoring" (subtracting the mean and then dividing26

by the standard deviation), and causally smoothed by convolving with a Gaussian kernel (sd = 40ms).27

Finally, the data was subsampled by a factor of 2.28

Data augmentation TX features were augmented by adding two types of artificial noise. Firstly,29

random Gaussian white noise (mean = 0 std = 1.2) was added to the feature vector at each time30

step. Subsequently, random constant offsets (mean = 0 std = 0.6) were added to the means of the31

TX features.32

x′
t = xt + ϵt + ϕ (1)

Here, x′
t are the neural features with noise added, xt are the original neural features, ϵt is a white33

noise vector unique to each time step, and ϕ is a constant offset vector.34

Day-specific affine transform layer The day-specific affine transform layer is defined as:35

y = Ax+ b (2)

where x ∈ Rc×1 is the input neural features and c is the input dimension. A ∈ Rc×c and b ∈ Rc are36

the parameters. Each session day has its own affine transform layer. The affine transform layers are37

trained together with the RNN. For a new session, a new affine transform is created and its weights38

are initialized with the previous session’s. During online decoding, the input neural features are39

transformed by the affine layer first before being processed by the RNN.40
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RNN training hyperparameters The hyperparameters for RNN training are listed in Table 1. The41

training was done with one NVIDIA A100 GPU, taking about 2 hours.42

Table 1: RNN training hyperparameters

Description Hyperparameter
Learning rate 0.01
Batch size 48
Number of training batches 20000
Number of hidden units in the GRU 512
Number of GRU layers 2
Dropout rate in the GRU 0.4
Optimizer Adam
Learning rate decay schedule Linear
L2 weight regularization 1e-5
Maximum gradient norm for clipping 10

1.2 Language model training details43

The 3-gram language model (LM) was trained using the SRILM [14] and then converted into a44

weighted finite-state transducer (WFST) [10] with Kaldi [11].45

The 3-gram LM was trained on the OpenWebText2 corpus [6] , which was pre-processed to include46

only 26 English letters and 5 punctuation marks (periods, commas, apostrophes, question marks,47

and spaces). It used a 130,000 word vocabulary taken from the CMU Pronouncing Dictionary [1].48

Out-of-vocabulary words were mapped to a special <UNK> token. Witten-Bell discounting [17] was49

used to improve the probability estimates of unseen or rare word combinations.50

The 3-gram LM was then converted into a WFST, following the recipe in [9]. The WFST was51

composed of three individual WFSTs:52

T ◦ L ◦G (3)
Here, ◦ denotes composition. G is the grammar WFST that encodes legal sequences of words and53

their probabilities based on the 3-gram LM. L is the lexicon WFST that encodes what letters are54

contained in each word. T is the token WFST that maps a sequence of RNN output labels to a single55

letter. In our case, T contains all 26 English letters, 5 punctuation marks, and the CTC blank symbol.56

2 CORP online assessment details57

This section lists details of the online assessment of CORP.58

2.1 Study participant59

Research sessions were conducted with volunteer participant T5 enrolled in the BrainGate2 pilot60

clinical trial (ClinicalTrials.gov Identifier: NCT00912041). The trial is approved by the U.S. Food61

and Drug Administration under an Investigational Device Exemption (Caution: Investigational device.62

Limited by Federal law to investigational use) and the Institutional Review Boards of Stanford63

University Medical Center (protocol #20804), Brown University (#0809992560), and Massachusetts64

General Brigham(#2009000505).65

Participant T5 is a right-handed man who was 69 years old at the time of the study. He was diagnosed66

with C4 AIS-C spinal cord injury eleven years prior to this study. T5 is able to speak and move his67

head, and has residual movement of his left bicep as well as trace movement in most muscle groups.68

T5 gave informed consent for this research and associated publications.69

2.2 Data collection sessions70

All data collection sessions for this study are listed in Table 2. Sessions 1-11 were used for seed model71

training. In each of those sessions, the participant copied sentences on a computer screen without72

seeing feedback from the real-time decoder. Session 12-26 were recalibration assessment sessions.73

Each assessment session consisted of a warmup block, a no-recalibration block, and two recalibration74
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blocks. In session 12-23 and 26, the blocks were ordered as warmup block, no-recalibration block,75

and recalibration blocks. In session 24 and 25, the blocks were ordered as warup block, recalibration76

blocks, and no-recalibration block.77

2.3 Seed model training78

Because [15] shared the same participant as ours, we combined its data to train our seed model.79

On day 0 (session 11), we first collected 50 sentences and combined them with data from [15] and80

session 1-10 to train the seed model. We then evaluated the seed model’s online performance on81

another 10 sentences to establish a baseline.82

2.4 Online handwriting decoding83

Neural signal processing Neural signals were recorded from the microelectrode arrays using the84

Neuroplex-E system (Blackrock Microsystems) and transmitted via a cable attached to a percutaneous85

connector. Signals were analog filtered (4th order Butterworth with corners at 0.3 Hz to 7.5 kHz),86

digitized at 30 kHz (250 nV resolution), and fed to custom software written in Simulink (Mathworks)87

for digital filtering and feature extraction. Digital filtering began with a highpass filter (300 Hz88

cutoff) that was applied non-causally to each electrode, using a 4 ms delay, in order to improve89

spike detection [8]. After filtering, binned threshold crossing counts (20 ms bins) were computed by90

counting the number of times the filtered voltage time series crossed an amplitude threshold set at91

-4.5 times the standard deviation of the voltage signal.92

Data collection rig Digital signal processing and feature extraction was performed on a dedicated93

computer using Simulink Real-Time. Extracted features were then sent to a separate computer94

running Ubuntu for neural decoding and recording. Decoding and recording software was written in95

Python using TensorFlow 2 and Redis. The Ubuntu computer also ran the experimental task software96

that displayed cues to the participant on a computer monitor. The task software was implemented97

using MATLAB and the Psychophysics Toolbox [3]). Finally, a third computer running Windows was98

used to interface with the Neuroplex-E system and control the starting and stopping of experimental99

tasks.100

Online handwriting decoding The online handwriting decoder consisted of an RNN and an101

LM decoder. The RNN ran every 40ms to process a neural feature frame and output CTC label102

probabilities. The LM decoder took the RNN probability output and ran beam search on the WFST103

decoding graph. We used the beam search implementation in WeNet [18]. Following [12], a constant104

penalty was added to the CTC blank label probability.105

After the real-time decoding was done, we ran a second-pass rescoring using GPT2-XL on the n-best106

outputs from the LM decoder:107

score(s) = α ∗ log(PRNN (s)) + β ∗ log(Pngram(s)) + (1− β) ∗ log(Pgpt(s)) (4)

Here PRNN (s) is the CTC label sequence probability given by the RNN for sentence s. Pngram is108

sentence s’s probability under the 3-gram LM. α is the scaling factor on the RNN’s log probabilities.109

β is the interpolation weights between the 3-gram LM and GPT2-XL.110

All hyperparameters are listed in Table 3.111

Rolling z-scoring During online decoding, we used a rolling estimate of the mean and standard112

deviation of each feature to perform z-scoring. This helps account for neural nonstationarities that113

accrue across time.114

For the first sentence of a new block, we used the previous block’s mean and standard deviation. For115

each subsequent sentence, we used up to 10 sentences preceding it to compute the mean and standard116

deviation.117

2.5 Online recalibration118

All hyperparameters for online recalibration are listed in Table 4. During the online assessment, we119

used a relatively large loss threshold and set a minimum number of gradient update steps to ensure120

good recalibration accuracy. However, in later offline analysis, we found this strategy to be less121

optimal compared to using a smaller loss threshold without the minimum steps.122
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Table 2: Data Collection Sessions

Session Number Date Description Data
1 2022.05.18 Seed model data collection session 50 sentences
2 2022.05.23 Seed model data collection session 80 sentences
3 2022.05.25 Seed model data collection session 60 sentences
4 2022.06.01 Seed model data collection session 80 sentences
5 2022.06.03 Seed model data collection session 80 sentences
6 2022.06.06 Seed model data collection session 90 sentences
7 2022.06.08 Seed model data collection session 50 sentences
8 2022.06.13 Seed model data collection session 80 sentences
9 2022.06.15 Seed model data collection session 60 sentences

10 2022.06.22 Seed model data collection session 80 sentences
11 2022.09.01 Seed model data collection session 60 sentences

12 2022.09.29 Recalibration assessment session
10 warmup sentences

20 no-recalibration sentences
40 recalibration sentences

13 2022.10.06 Recalibration assessment session
10 warmup sentences

20 no-recalibration sentences
40 recalibration sentences

14 2022.10.18 Recalibration assessment session
10 warmup sentences

20 no-recalibration sentences
40 recalibration sentences

15 2022.10.25 Recalibration assessment session
10 warmup sentences

20 no-recalibration sentences
37 recalibration sentences

16 2022.10.27 Recalibration assessment session
5 warmup sentences

20 no-recalibration sentences
40 recalibration sentences

17 2022.11.01 Recalibration assessment session
10 warmup sentences

20 no-recalibration sentences
40 recalibration sentences

18 2022.11.03 Recalibration assessment session
10 warmup sentences

20 no-recalibration sentences
40 recalibration sentences

19 2022.12.08 Recalibration assessment session
10 warmup sentences

20 no-recalibration sentences
40 recalibration sentences

20 2022.12.15 Recalibration assessment session
10 warmup sentences

19 no-recalibration sentences
20 recalibration sentences

21 2023.02.28 Recalibration assessment session
6 warmup sentences

20 no-recalibration sentences
40 recalibration sentences

22 2023.04.17 Recalibration assessment session
10 warmup sentences

20 no-recalibration sentences
40 recalibration sentences

23 2023.05.31 Recalibration assessment session
10 warmup sentences

20 no-recalibration sentences
40 recalibration sentences

24 2023.06.28 Recalibration assessment session
10 warmup sentences

40 recalibration sentences
20 no-recalibration sentences

25 2023.08.16 Recalibration assessment session
10 warmup sentences

40 recalibration sentences
20 no-recalibration sentences

26 2023.10.09 Recalibration assessment session
10 warmup sentences

20 no-recalibration sentences
40 recalibration sentences
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Table 3: Beam search hyperparameters

Description Hyperparameter
Beam search min active states 200
Beam search max active states 7000
Beam size 17
Acoustic scale 0.8
α 0.5
β 0
Number of n-best outputs 10
Penalty applied on blank labels log(11)

Table 4: Online Recalibration hyperparameters

Description Hyperparameter
Min number of gradient update steps 32
Max number of gradient update steps 200
Loss threshold 20
Learning rate 0.004
Percentage of new data in the replay buffer 0.6
Batch size 64
Optimizer Adam

3 Offline analyses details123

This section lists details of the offline analyses. All offline analyses used recalibration blocks from124

session 12-22. Session 22-26 were collected during paper review and thus not used for offline125

analyses.126

3.1 Factor Analysis Stabilizer127

We applied the Factor Analysis (FA) Stabilizer to the handwriting iBCI data as follows.128

3.1.1 FA Stabilizer seed model training129

The FA Stabilizer assumes that neural activity tends to lie within a stable low-dimensional space, and130

that nonstationarities are largely caused by the rotation of this latent space. It uses Factor Analysis131

[2] to identify the latent low-dimensional space:132

zt ∼ N (0, I) (5)
xt|zt ∼ N (Λzt + µ,Ψ) (6)

xt ∈ Rc is the neural activity (threshold-crossing counts on c electrodes at time step t). zt ∈ Rd is133

the low-dimensional latent representation of the neural activity. Λ ∈ Rc×d is the loading matrix that134

linearly transforms the neural activity into the latent space. µ ∈ Rc is the mean mean spike counts135

for each electrode. Ψ ∈ Rc×c is a diagonal matrix that describes the variability that is independent136

for each electrode.137

We picked session-11 as the reference day to estimate the loading matrix Λ1. For a new session, we138

first estimated its loading matrix Λ2. We then used the Procrustes analysis [13] to align those two139

latent spaces:140

Ô = argmin
O:OOT=I

∥ Λ1 −Λ2O
T ∥2F (7)

Ô ∈ Rd×d is an orthogonal matrix. After Ô is identified, the new session’s latent space can be141

aligned to the reference day’s by Λ2O
T .142

Additionally, following the algorithm in [5], electrodes with large changes between sessions were143

iteratively removed. The iterative channel elimination algorithm uses two parameters: B and T. B144

determines the number of electrodes to be retained, while T sets a threshold for the L2 norm of the145

load matrix’s row. If the norm falls below this threshold, the corresponding row will be eliminated.146
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We ran a grid search on B and T and found that a wide range of B (B ≥ 110) and T (0.01 ≤ T ≤ 0.1)147

all worked well for the handwriting iBCI task. We used B = 160 T = 0.1 in all our experiments.148

The seed model for the FA Stabilizer was trained using all sessions leading up to and including the149

reference session. After training, the seed model was frozen for all the recalibration evaluations.150

3.1.2 Recalibration with FA Stabilizer151

We evaluated the FA Stabilizer on all recorded online recalibration blocks.152

For each evaluation day, we first used the no-recalibration block’s data (20 sentences) to estimate153

the initial alignment between the evaluation session and the reference session. Then for each new154

sentence in the recalibration block, we pushed it into a sliding buffer of size 20 and used the data in155

the buffer to estimate a new alignment. The aligned neural data for that sentence was then decoded156

with the FA Stabilizer seed model.157

3.1.3 FA dimensionality analysis158

Figure 1: Effect of FA dimensionality on handwriting and cursor iBCIs (Left) Applying FA with
varying dimensionality (2-160) to a single handwriting session. The dashed line shows decoding
character error rate (CER) on the original data (with no FA applied). Approximately 100 dimensions
yield accuracy close to that of the original data. Increasing the dimensionality beyond 100 decreases
CER slightly, indicating that FA may help denoise the data. (Right) Applying FA with varying
dimensionality to the cursor data. Performance is measured in R2 (higher values are preferable), with
the optimal dimensionality found to be around 10.

To find the optimal dimensionality for using the FA Stabilizer on the handwriting iBCI task, we159

trained various FA Stabilizer seed models while sweeping the number of dimensions in the FA. The160

seed models were trained on a single session (the reference day) without Procrustes alignment.161

For the cursor FA dimensionality analysis, we applied FA with varying dimensionality to the cursor162

iBCI data from [16]. Specifically, we picked sessions with more than two blocks of cursor control163

data. The raw neural recordings were pre-processed using the the pipeline as the handwriting iBCI164

data (no subsampling). We then did a 50-50 train and test split. For each session, we first trained 10165

iterations of FA at each dimensionality. We selected the model with the highest log likelihood for the166

training data. We then built a simple Ridge regression from the neural activity in FA subspace to the167

instantaneous cursor-to-target vector. We swept the regularization strength (1e1, 1e3, 1e5, 1e7, 1e9)168

on the held-out test sets.169

We found that unlike the cursor iBCI task, where ~10 dimensions are enough to saturate the task170

performance, the handwriting iBCI task needs ~100 dimensions (Figure 1). Identifying the reasons171

why handwriting decoding benefits from including more neural dimensions is an interesting direction172

for future research.173

3.2 Additional offline analyses174

Artificial noises augmentation We added two kinds of artificial noise to the recalibration data. We175

analyzed the effects on recalibration accuracy when varying the magnitude of each type of noise in176
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Figure 2. The results showed that while adding white noise improved performance, adding random177

offsets to the feature means did not. This could be because, during the recalibration sessions the178

feature means changed slowly, and online z-scoring already removed the effects of this kind of slow179

mean change.180

Figure 2: Effects of artificial noise augmentation on recalibration accuracy. (Left) Adding a small
amount of white noise to the recalibration data improved recalibration accuracy. (Right) Adding
random constant offsets to the feature means did not improve recalibration accuracy. This is likely
due to feature means changing slowly during recalibration sessions, in a way that was successfully
accounted for already by online z-scoring.

Percentage of new data included in the replay buffer The replay buffer has a parameter p181

that controls the percentage of new data. During online evaluation, we loaded all past sessions’182

data into the replay buffer, and randomly sampled batch_size × p% sentences of new data, and183

batch_size× p% of old data. In Figure 3, we analyzed the effect of p on recalibration accuracy. A184

wide range of parameters (10% - 70%) all worked well, indicating that only a small amount of past185

data is needed to prevent catastrophic forgetting.186

Figure 3: Effect of the percentage of new data included in the replay buffer on recalibration
accuracy. Only a small percentage of old data is needed to keep the model from catastrophically
forgetting.

3-gram vs. GPT2-XL CORP used a 3-gram LM for the first pass decoding to generate 10 decoding187

hypotheses, then used GPT2-XL to rescore these hypotheses. The final LM-decoded result was188
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used as a psuedo-label for recalibration. Figure 4 shows how pseudo-labels generated by different189

LMs affect the recalibration accuracy. It shows that the advantage of using GPT2-XL to rescore the190

3-gram hypotheses is only marginal. This can be attributed to two factors. First, the 3-gram decoding191

accuracy is already close to the ground truth accuracy, leaving little room for improvement. Second,192

GPT2-XL is not as powerful as more recent large language models (LLMs) [7]. A comparison with193

more recent LLMs remains a topic for future exploration.194

Figure 4: Influence of different LMs on the recalibration accuracy when using CORP. Using
GPT2 in addition to the 3-gram LM improves recalibration accuracy only slightly. Both are close to
the performance ceiling (using ground truth labels for recalibration).
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