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Appendix

A Lemma and Proof

For the comprehensiveness of proof, we duplicate Lemma 3.1 here.
Lemma A.1 (Gaussian posterior distribution with factorised prior distribution). If we have p(xi|µ) =
N (xi|µ,Σi) and p(µ) =

∏n
i=1 N (µ0,i,Σ0,i) for n i.i.d. observations of D dimensional vectors,

then the mean and covariance of posterior distribution p(µ|x) = N (µ|µn,Σn) are:
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where we dropped constant terms for clarity. From Equation (4) and (5), we can see that:
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If we use Lemma A.1 with diagonal covariance matrices for p(rm∗,i|zi) = N
(
rm∗,i|zi, diag(sm∗,i)

)
and

p(zi) =
∏M
m=1 N (um, diag(qm)), we can obtain the posterior distribution of N

(
zi|µzi , diag(σ2

zi)
)

as follows:

σ2
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[
M∑
m=1

(
(sm∗,i)

⊘ + (qm)⊘
)]⊘

, µzi = σ2
zi ⊗

[
M∑
m=1

(
rm∗,i ⊗ (sm∗,i)

⊘ + um ⊗ (qm)⊘
)]

(8)

where ⊘ is the element-wise inversion, and ⊗ is the element-wise product.
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B Experimental Details

In this section, we outline additional details of the experimental settings including the datasets
(Appendix B.1), hyperparameters of the models used (Appendix B.2), metrics (Appendix B.3),
and a brief analysis of computational complexity of MGP and MNPs (Appendix B.4). For all the
experiments, we used the Adam optimiser [10] with batch size of 200 and the Tensorflow framework.
All the experiments were conducted on a single NVIDIA GeForce RTX 3090 GPU.

B.1 Details of Datasets

Synthetic Dataset Figure 2 in the main paper shows the predictive probability and the attention
weight of different attention mechanisms. Here, we describe the dataset and the settings used for the
demonstrations.

We generated 1,000 synthetic training samples (i.e., Ntrain = 1, 000) for binary classification by
using the Scikit-learn’s moon dataset 1 with zero-mean Gaussian noise (std = 0.15) added. The test
samples were generated as a mesh-grid of 10,000 points (i.e., 100× 100 grid with Ntest = 10, 000).
The number of points in the context memory Nm was set to 100. In this demonstration, we simplified
the problem by setting M = 1 which is equivalent to the unimodal setting and illustrated the
difference in attention mechanisms.

Robustness to Noisy Samples Dataset In Section 5.1, we evaluated the models’ robustness to
noisy samples with the six multimodal datasets. The details of each dataset are outlined in Table 1.
These datasets lie within a feature space where each feature extraction method can be found in [5].

Table 1: Multimodal datasets used for evaluating robustness to noisy samples.
Dataset

Handwritten CUB PIE Caltech101 Scene15 HMDB

# of modalities 6 2 3 2 3 2
Types of modalities Images Image&Text Images Images Images Images

# of samples 2,000 11,788 680 8,677 4,485 6,718
# of classes 10 10 68 101 15 51

OOD Detection Dataset We used CIFAR10-C [6] which consists of corrupted images of CIFAR10
[11]. 15 types of corruptions and five levels of corruption for each type are available for the dataset.
Following [8], we used the first three types as multimodal inputs with different levels of corruption
(1, 3, and 5).

B.2 Details of Models

In our main experiments, four unimodal baselines with the early fusion (EF) method [1] (MC Dropout,
Deep Ensemble (EF), SNGP, and ETP) and three multimodal baselines with the late fusion (LF)
method [1] (Deep Ensemble (LF), TMC, and MGP) were used. In this section, we describe the details
of the feature extractors and each baseline.

Feature Extractors We used the same feature extractor for all the methods to ensure fair compar-
isons of the models. For the synthetic dataset, the 2D input points were projected to a high-dimensional
space (dm = 128) with a feature extractor that has 6 residual fully connected (FC) layers with the
ReLU activation. For the OOD detection experiment, the Inception v3 [14] pretrained with ImageNet
was used as the feature extractor. Note that the robustness to noisy samples experiment does not
require a separate feature extractor as the dataset is already in a feature space.

1https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.
html
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MC Dropout Monte Carlo (MC) Dropout [3] is a well-known uncertainty estimation method that
leverages existing dropout layers of DNNs to approximate Bayesian inference. In our experiments,
the dropout rate was set to 0.2 with 100 dropout samples used to make predictions in the inference
stage. The predictive uncertainty was quantified based on the original paper [3].

Deep Ensemble Deep ensemble [12] is a powerful uncertainty estimation method that trains
multiple independent ensemble members. In the case of the unimodal baseline, we employed five
ensemble members, whereas for the multimodal baseline, a single classifier was trained independently
for each modality input. In both scenarios, the unified predictions were obtained by averaging
the predictions from the ensemble members, while the predictive uncertainty was determined by
calculating the variance of those predictions.

SNGP Spectral-normalized Neural Gaussian Process (SNGP) [13] is an effective and scalable
uncertainty estimation method that utilises Gaussian process (GP). It consists of a feature extractor
with spectral normalisation and a GP output layer. Since we used the identical feature extractor for all
the baselines, we only used the GP layer in this work. Following [8], the model’s covariance matrix
was updated without momentum with λ = π/8 for the mean-field approximation. As the original
authors proposed, we quantified the predictive uncertainty based on the Dempster-Shafer theory [2]
defined as u(x) = K/(K +

∑K
k=1 exp (logitk(x))) where logitk(·) is the kth class of output logit

with the number of classes K.

ETP Evidential Turing Processes (ETP) [9] is a recent variant of NPs for uncertainty estimation of
image classification. Since none of the existing NPs can be directly applied to multimodal data, there
are several requirements to utilise them for multimodal classification: 1) a context set in the inference
stage (e.g., context memory) and 2) a method of processing multimodal data. ETP was selected due
to its inclusion of the original context memory, requiring minimal modifications to be applicable to
our task. We used the memory size of 200 and quantified the predictive uncertainty with entropy as
proposed by the original paper [9].

TMC Trusted Multi-view Classification (TMC) [5] is a simple multimodal uncertainty estimation
based on the Subjective logic [7]. We used the original settings of the paper with the annealing
epochs of ten for the balancing term. TMC explicitly quantifies its predictive uncertainty based on
the Dempster-Shafer theory [2].

MGP Multi-view Gaussian Process (MGP) [8] is the current SOTA multimodal uncertainty estima-
tion method that combines predictive posterior distributions of multiple GPs. We used the identical
settings of the original paper with the number of inducing points set to 200 and ten warm-up epochs.
Its predictive uncertainty was quantified by the predictive variance as proposed by the original paper
[8].

MNPs (Ours) The encoders and decoder in Multimodal Neural Processes (MNPs) consist of two FC
layers with the Leaky ReLU activation [16] after the first FC layer. A normalisation layer is stacked on
top of the second FC layer for the encoders. For encmψ (·) and encmω (·) that approximate the variance
of distributions, we ensure positivity by transforming the outputs as h+ = 0.01 + 0.99 ∗ Softplus(h)
where h is the raw output from the encoders. lm of the adaptive RBF attention was initialised as
10 ∗ 1 ∈ Rdm , and DCM was initialised by randomly selecting training samples. We used five
samples for the Monte Carlo method to approximate the integrals in Equations (11)-(13) in the main
paper, which we found enough in practice. Refer to Table 2 for the hyperparameters of MNPs. We
provide the impact of Nm on the model performance in Appendix C.1.

B.3 Details of Metrics

Apart from test accuracy, we report the expected calibration error (ECE) [4] and the area under the
receiver operating characteristic curve (AUC). ECE is defined as:

ECE =
1

n

b∑
i=1

|Bi||acc(Bi)− conf(Bi)|
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Table 2: Hyperparameters of MNPs.
Dataset

Parameter Handwritten CUB PIE Caltech101 Scene15 HMDB CIFAR10-C

Nm 100 200 300 700 300 400 200
α 1 0.03 1 1 0.0001 1 1
β 1 1 1 1 1 1 1
τ 0.25 0.01 0.1 0.01 0.5 0.01 0.01

where n is the number of testing samples, Bi is a bin with partitioned predictions with the number
of bins b, |Bi| is the number of elements in Bi, acc(Bi) is the accuracy of predictions in Bi, and
conf(Bi) is the average predictive confidence in Bi. Following [13] and [8], we set b = 15. AUC
was used for the OOD detection experiment with ground truth labels of class 0 being the ID samples
and class 1 being the OOD samples. Each model’s predictive uncertainty was used as confidence
score to predict whether a test sample is a ID or OD sample.

B.4 Computational Complexity of MGP and MNPs

In addition to the empirical difference of wall-clock time per epoch in Table 5 in the main paper,
we provide computational complexity of the two models in Table 3. We assume that the number of
inducing points in MGP equals to the number of context points in MNPs. During training of MNPs,
each modality requires a cross-attention (O(NmNT )) and a contrastive learning (O((NT )

2)) that
sum to O(M(NmNT + (NT )

2)) with M being the number of modalities, whereas during inference,
each modality only requires the cross-attention which results in O(MNmNT ).

Table 3: Computational complexity of MGP and MNPs.
Training Inference

MGP O(M(Nm)3) O(M(Nm)3)
MNPs (Ours) O(M(NmNT + (NT )

2)) O(MNmNT )

C Ablation Studies

In this section, we analyse MNPs’ performance with different settings and show the effectiveness of
the proposed framework.

C.1 Context Memory Updating Mechanisms

We compare the updating mechanism of DCM based on MSE in Equation (2)-(3) in the main paper
with three other baselines: random sampling, first-in-first-out (FIFO) [15], and cross-entropy based
(CE). Random sampling bypasses DCM and randomly selects training samples during inference. For
FIFO, we follow the original procedure proposed by [15] that updates the context memory during
training and only uses it during inference. CE-based mechanism replaces j∗ in Equation (3) in the
main paper with j∗ = argmax

j∈{1,...,NT }

1
K

∑K
k=1 −TY [j, k] log (T̂

m
Y [j, k]).

We provide experimental results for all the experiments outlined in Section 5. We highlight that
random sampling and FIFO achieve high accuracy both without noise and with noise as shown in
Table 4 and 6. However, MSE and CE outperform the others in terms of ECE in Table 5 and OOD
AUC in Table 7. As MSE and CE select the new context points based on classification error, the
selected context points tend to be close to decision boundary, which is the most difficult region to
classify. We believe this may contribute to the lower calibration error, suppressing overconfident
predictions. The MSE and CE mechanisms show comparable overall results, but we selected MSE
for its lower ECE. In terms of time efficiency, Table 8 shows that random sampling is slower than the
other three methods.
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For DCM updated by MSE, we also provide difference in performance for a range of number of
context points Nm in Figure 1-7. For every figure, the bold line indicates the mean value, and the
shaded area indicates 95% confidence interval. Unsurprisingly, the training time and the testing time
increase with respect to Nm. The general trend in test accuracy across the datasets shows the benefit
of increasing the number of context points. However, the performance gain in ECE and OOD AUC is
ambivalent as different patterns are observed for different datasets. We leave an in-depth analysis of
this behaviour for our future study.

Table 4: Test accuracy with different context memory updating mechanisms (↑).
Updating

Mechanism
Dataset

Handwritten CUB PIE Caltech101 Scene15 HMDB

Random 99.40±0.14 88.50±5.12 94.85±0.90 90.38±1.38 76.03±2.96 68.42±0.53
FIFO 99.30±0.11 90.33±3.26 95.29±1.85 91.09±0.97 76.08±1.92 69.65±0.66
CE 99.40±0.14 93.67±2.25 95.00±1.43 93.59±0.27 77.40±0.73 70.77±1.11

MSE 99.50±0.00 93.50±1.71 95.00±0.62 93.46±0.32 77.90±0.71 71.97±0.43

Table 5: Test ECE with different context memory updating mechanisms (↓).
Updating

Mechanism
Dataset

Handwritten CUB PIE Caltech101 Scene15 HMDB

Random 0.007±0.001 0.069±0.029 0.050±0.009 0.043±0.005 0.059±0.061 0.052±0.006
FIFO 0.007±0.001 0.067±0.021 0.057±0.016 0.027±0.004 0.056±0.048 0.032±0.007
CE 0.006±0.001 0.050±0.016 0.041±0.009 0.017±0.003 0.038±0.010 0.034±0.008

MSE 0.005±0.001 0.049±0.008 0.040±0.005 0.017±0.003 0.038±0.010 0.028±0.006

Table 6: Average test accuracy across 10 noise levels with different context memory updating
mechanisms (↑).

Updating
Mechanism

Dataset

Handwritten CUB PIE Caltech101 Scene15 HMDB

Random 98.39±0.21 83.11±4.08 92.55±0.55 89.36±1.18 72.85±2.30 62.10±0.44
FIFO 98.51±0.11 85.86±2.87 93.81±0.67 89.59±1.02 72.59±1.82 63.00±0.89
CE 98.49±0.13 88.80±1.57 93.75±0.72 92.87±0.21 73.98±0.41 63.97±0.71

MSE 98.58±0.10 88.96±1.98 93.80±0.49 92.83±0.18 74.14±0.35 64.11±0.15

Table 7: Test accuracy (↑), ECE (↓), and OOD detection AUC (↑) with different context memory
updating mechanisms.

Updating
Mechanism

OOD AUC ↑
Test accuracy ↑ ECE ↓ SVHN CIFAR100

Random 74.61±0.22 0.073±0.005 0.860±0.003 0.777±0.002
FIFO 74.82±0.11 0.073±0.006 0.862±0.007 0.778±0.005
CE 74.70±0.19 0.013±0.002 0.871±0.004 0.789±0.004

MSE 74.92±0.07 0.011±0.001 0.872±0.002 0.786±0.005

Table 8: Wall-clock inference time (ms/epoch) with different context memory updating mechanisms.
Updating

Mechanism
Dataset

Handwritten CUB PIE Caltech101 Scene15 HMDB CIFAR10-C

Random 31.80±3.68 8.15±2.80 12.14±3.09 255.37±13.25 33.73±3.56 79.19±5.95 710.48±8.58
FIFO 24.91±0.68 5.87±3.06 7.20±2.77 101.02±2.90 25.04±3.35 41.50±2.74 496.23±10.85
CE 25.00±0.28 5.61±1.56 6.85±1.04 101.10±2.59 25.47±3.77 43.45±3.85 500.79±7.04

MSE 22.53±1.88 5.57±1.58 6.70±0.92 101.01±2.38 26.60±10.37 41.87±2.10 493.18±9.91
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Figure 1: Test accuracy, ECE, average training time, and average testing time with different Nm for
the Handwritten dataset.
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Figure 2: Test accuracy, ECE, average training time, and average testing time with different Nm for
the CUB dataset.
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Figure 3: Test accuracy, ECE, average training time, and average testing time with different Nm for
the PIE dataset.
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Figure 4: Test accuracy, ECE, average training time, and average testing time with different Nm for
the Caltech101 dataset.
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Figure 5: Test accuracy, ECE, average training time, and average testing time with different Nm for
the Scene15 dataset.
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Figure 6: Test accuracy, ECE, average training time, and average testing time with different Nm for
the HMDB dataset.
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Figure 7: Test accuracy, ECE, OOD AUC (SVHN), OOD AUC (CIFAR100), average training time,
and average testing time with different Nm for the CIFAR10-C dataset.

C.2 Multimodal Aggregation Methods

We demonstrate the performance of MBA compared with two other methods namely “Concat” and
“Mean”. “Concat” bypasses MBA and directly provides rm∗ of multiple modalities to the decoder
(see Figure 1 in the main paper) by simple concatenation followed by passing to a MLP which
lets p(f(TMX )|CM , TMX ) in Equation (12) in the main paper be parameterised by a decoder where
{CM , TMX } = MLP (Concat({rm∗ }Mm=1)). Concat(·) represents concatenating multiple vectors
along their feature dimension. Similarly,“Mean” also bypasses MBA and simply averages the multiple
modalities into single representation. Formally, p(f(TMX )|CM , TMX ) parameterised by a decoder
where {CM , TMX } = 1

M

∑M
m=1 r

m
∗ .

The results are shown in Table 9-12. In every case, MBA outperforms both baselines. While
similar performance can be observed for Handwritten, Scene15, and Caltech101, large differences
are observed in CUB, PIE, and HMDB across different metrics. The test accuracy of CIFAR10 is
almost consistent across all methods, but large gaps in ECE and OOD performance are observed.
This highlights the importance of MBA, especially in robustness and calibration performance.

Table 9: Test accuracy with different multimodal aggregation methods (↑).
Aggregation

Methods
Dataset

Handwritten CUB PIE Caltech101 Scene15 HMDB

Concat 99.35±0.22 89.00±1.24 89.71±2.49 92.63±0.18 77.18±0.64 56.06±2.13
Mean 99.45±0.11 92.50±2.43 90.88±2.24 93.14±0.25 77.60±0.56 57.80±1.97
MBA 99.50±0.00 93.50±1.71 95.00±0.62 93.46±0.32 77.90±0.71 71.97±0.43
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Table 10: Test ECE with different multimodal aggregation methods (↓).
Aggregation

Methods
Dataset

Handwritten CUB PIE Caltech101 Scene15 HMDB

Concat 0.007±0.001 0.109±0.008 0.092±0.020 0.038±0.005 0.061±0.005 0.060±0.017
Mean 0.006±0.001 0.057±0.012 0.059±0.008 0.030±0.004 0.038±0.005 0.117±0.014
MBA 0.005±0.001 0.049±0.008 0.040±0.005 0.017±0.003 0.038±0.009 0.028±0.006

Table 11: Average test accuracy across 10 noise levels with different multimodal aggregation methods
(↑).

Aggregation
Methods

Dataset

Handwritten CUB PIE Caltech101 Scene15 HMDB

Concat 97.71±0.46 85.51±1.42 85.94±2.48 89.84±0.17 72.23±0.52 45.22±2.86
Mean 98.42±0.09 88.27±1.83 88.74±2.33 92.07±0.16 74.06±0.28 49.58±2.24
MBA 98.58±0.10 88.96±1.98 93.80±0.49 92.83±0.18 74.14±0.35 64.11±0.15

Table 12: Test accuracy (↑), ECE (↓), and OOD detection AUC (↑) with different multimodal
aggregation methods.

Aggregation
Methods

OOD AUC ↑
Test accuracy ↑ ECE ↓ SVHN CIFAR100

Concat 74.24±0.27 0.125±0.005 0.781±0.016 0.728±0.004
Mean 74.72±0.24 0.109±0.003 0.803±0.007 0.742±0.003
MBA 74.92±0.07 0.011±0.001 0.872±0.002 0.786±0.005

C.3 Attention Types

We decompose the attention weight A(TmX , Cm
X ) in Equation (9) in the main paper as follows:

A(TmX , Cm
X ) = Norm(Sim(TmX , Cm

X )) (9)

where Norm(·) is the normalisation function such as Softmax and Sparsemax, and Sim(·, ·) as the
similarity function such as the dot-product and the RBF kernel. We provide experimental results of
four different combinations of normalisation functions and similarity functions in Table 13-16.

Among the four combinations, the RBF function with Sparsemax outperforms the others in most
cases. More importantly, Table 15 shows a large difference in robustness to noisy samples between the
RBF function with Sparsemax and the dot-product with Sparsemax, even when a marginal difference
in accuracy is shown in Table 13. For instance, for the PIE dataset, the difference in accuracy without
noisy samples is 0.3, but the difference increases to 6.0 in the presence of noisy samples. The same
pattern is observed with OOD AUC in Table 16. This illustrates the strength of RBF attention that is
more sensitive to distribution-shift as shown in Figure 2 in the main paper. Lastly, for both similarity
functions, Sparsemax results in superior overall performance.

Table 13: Test accuracy with different attention mechanisms (↑).
Similarity
Function

Normalisation
Function

Dataset

Handwritten CUB PIE Caltech101 Scene15 HMDB

RBF Softmax 98.80±0.45 87.00±6.42 75.15±3.00 82.95±0.47 69.83±1.41 56.28±1.18
Sparsemax 99.50±0.00 93.50±1.71 95.00±0.62 93.46±0.32 77.90±0.71 71.97±0.43

Dot Softmax 99.00±0.18 79.67±3.94 86.32±2.88 88.90±0.36 74.95±0.33 64.68±0.78
Sparsemax 98.95±0.11 82.17±2.67 94.26±1.90 92.46±0.26 78.30±1.06 63.23±1.89

10



Table 14: Test ECE with different attention mechanisms (↓).
Similarity
Function

Normalisation
Function

Dataset

Handwritten CUB PIE Caltech101 Scene15 HMDB

RBF Softmax 0.019±0.005 0.084±0.020 0.100±0.017 0.025±0.004 0.152±0.007 0.202±0.019
Sparsemax 0.005±0.001 0.049±0.008 0.040±0.005 0.017±0.003 0.038±0.009 0.028±0.006

Dot Softmax 0.008±0.003 0.166±0.015 0.373±0.037 0.033±0.007 0.061±0.010 0.175±0.006
Sparsemax 0.010±0.001 0.131±0.028 0.053±0.010 0.025±0.002 0.032±0.008 0.084±0.015

Table 15: Average test accuracy with different attention mechanisms (↑).
Similarity
Function

Normalisation
Function

Dataset

Handwritten CUB PIE Caltech101 Scene15 HMDB

RBF Softmax 94.56±0.66 82.58±5.98 65.88±2.98 81.23±0.29 67.77±1.05 38.63±0.63
Sparsemax 98.58±0.10 88.96±1.98 93.80±0.49 92.83±0.18 74.14±0.35 64.11±0.15

Dot Softmax 77.99±0.32 73.89±1.77 70.80±1.71 63.80±0.12 58.74±0.24 34.28±0.45
Sparsemax 96.00±0.24 70.30±2.61 87.44±1.44 81.95±1.92 67.84±1.00 40.26±0.56

Table 16: Test accuracy (↑), ECE (↓), and OOD detection AUC (↑) with different attention mecha-
nisms.

Similarity
Function

Normalisation
Function

OOD AUC ↑
Test accuracy ↑ ECE ↓ SVHN CIFAR100

RBF Softmax 67.65±0.16 0.080±0.001 0.864±0.006 0.771±0.006
Sparsemax 74.92±0.07 0.011±0.001 0.872±0.002 0.786±0.005

Dot Softmax 68.81±0.62 0.130±0.019 0.849±0.009 0.775±0.005
Sparsemax 75.07±0.09 0.055±0.001 0.837±0.004 0.765±0.004

C.4 Adaptive Learning of RBF Attention

We have shown that the effectiveness of learning the RBF attention’s parameters with the synthetic
dataset in Figure 2 in the main paper. We further provide the ablation studies with the real-world
datasets in Table 17-20.

Table 17: Test accuracy with and without LRBF (↑).
Dataset

Method Handwritten CUB PIE Caltech101 Scene15 HMDB

Without LRBF 96.85±0.29 91.17±2.40 93.38±1.27 92.64±0.38 74.45±0.45 48.95±1.70
With LRBF 99.50±0.00 93.50±1.71 95.00±0.62 93.46±0.32 77.90±0.71 71.97±0.43

Table 18: Test ECE with and without LRBF (↓).
Dataset

Method Handwritten CUB PIE Caltech101 Scene15 HMDB

Without LRBF 0.007±0.001 0.078±0.011 0.043±0.007 0.036±0.004 0.054±0.011 0.043±0.008
With LRBF 0.005±0.001 0.049±0.008 0.040±0.005 0.017±0.003 0.038±0.010 0.028±0.006

Table 19: Average test accuracy across 10 noise levels with and without LRBF (↑).
Dataset

Method Handwritten CUB PIE Caltech101 Scene15 HMDB

Without LRBF 89.44±0.54 86.69±1.65 91.50±0.94 92.32±0.27 71.18±0.38 37.33±0.92
With LRBF 98.58±0.10 88.96±1.98 93.80±0.49 92.83±0.18 74.14±0.35 64.11±0.15
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Table 20: Test accuracy (↑), ECE (↓), and OOD detection AUC (↑) with and without LRBF .
OOD AUC ↑

Method Test accuracy ↑ ECE ↓ SVHN CIFAR100

Without LRBF 74.96±0.16 0.019±0.002 0.822±0.004 0.746±0.004
With LRBF 74.92±0.07 0.011±0.001 0.872±0.002 0.786±0.005

D Broader Impacts

As a long-term goal of this work is to make multimodal classification of DNNs more trustworthy
by using NPs, it has many potential positive impacts to our society. Firstly, with transparent and
calibrated predictions, more DNNs can be deployed to safety-critical domains such as medical
diagnosis. Secondly, this work raises awareness to the machine learning society to evaluate and
review reliability of a DNN model. Lastly, our study shows the potential capability of NPs in more
diverse applications. Nevertheless, a potential negative impact may exist if the causes of uncertain
predictions are not fully understood. To take a step further to reliable DNNs, the source of uncertainty
should be transparent to non-experts.
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