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Abstract

Contrastive learning (CL) has been widely investigated with various learning mech-
anisms and achieves strong capability in learning representations of data in a
self-supervised manner using unlabeled data. A common fashion of contrastive
learning on this line is employing large-sized encoders to achieve comparable
performance as the supervised learning counterpart. Despite the success of the
labelless training, current contrastive learning algorithms failed to achieve good
performance with lightweight (compact) models, e.g., MobileNet, while the re-
quirements of the heavy encoders impede the energy-efficient computation, espe-
cially for resource-constrained AI applications. Motivated by this, we propose a
new self-supervised CL scheme, named SACL-XD, consisting of two technical
components, Slimmed Asymmetrical Contrastive Learning (SACL) and Cross-
Distillation (XD), which collectively enable efficient CL with compact models.
While relevant prior works employed a strong pre-trained model as the teacher
of unsupervised knowledge distillation to a lightweight encoder, our proposed
method trains CL models from scratch and outperforms them even without such
an expensive requirement. Compared to the SoTA lightweight CL training (dis-
tillation) algorithms, SACL-XD achieves 1.79% ImageNet-1K accuracy improve-
ment on MobileNet-V3 with 64× training FLOPs reduction. Code is available at
https://github.com/mengjian0502/SACL-XD.

1 Introduction

To overcome the labeling bottleneck for supervised training of deep neural networks (DNNs), self-
supervised learning has been widely investigated to learn representations without intensive labeling.
In particular, contrastive learning (CL) has demonstrated its capability of representation learning in
various machine learning domains, e.g., image [7, 34], video [31], language [2], speech [11], and
medical imaging [30]. The success of CL is built upon different data augmentations from the original
(training) samples, and the representation is learned by maximizing the latent common knowledge
between contrastive embeddings [8, 7, 35], which are separately encoded from the augmented
images by DNN models [25]. Despite the various contrastive learning techniques, learning the latent
knowledge and representations requires wide and deep encoders. In particular, current SoTA CL
algorithms [3, 18] have to employ a large-sized encoder (e.g., ResNet-50) to achieve comparable
performance as the supervised learning counterpart.

On the other hand, training the lightweight models [23, 22, 29] from scratch is largely under-explored
in CL. Almost none of the prior works have reported the CL performance with directly-trained
lightweight models. In fact, the prior success of the lightweight models in supervised learning
cannot be smoothly transferred to CL. where the performance gap between the lightweight models
and large-sized models is largely amplified under recent CL methods [7, 19], For example, with
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supervised learning, MobileNet-V3Large (Mob-V3) [22] can achieve 74.04% on ImageNet-1K,
which is comparable to ResNet-50 (76.15%). However, the ∼2% accuracy difference is amplified to
>30% (75.2% → 36.3%) in CL, as reported in [16] with MoCo-V2. Training MobileNet-V3 with
more recent Barlow Twins [35] improves the accuracy to ∼52%, but this is still unsatisfactory.

Figure 1: ImageNet-1K accuracy of the proposed
method (SACL+XD) vs. state-of-the-art methods. “RN”
represents the ResNet teacher of the prior works [16,
36]. Following the settings in [36, 16], the number of
FLOPs is computed based on 200 epochs of training.

To overcome the limited trainability of
the lightweight DNN models in CL, con-
trastive lightweight model learning has
been investigated as an unsupervised
knowledge distillation task. For exam-
ple, SEED [16] divides the entire train-
ing process into a two-step process of (1)
teacher pre-training with CL and (2) unsu-
pervised knowledge distillation from the
frozen teacher to the student lightweight
encoder (e.g., MobileNet-V3 [22]). In addi-
tion to the two-step process of “pretraining-
and-tuning”, the authors employ different
input schemes between two steps, which
further elevates the complexity of the en-
tire training process. On the other hand,
ReKD [36] introduces the latent relation
knowledge into online distillation with a
single-step training process. However, the large-sized encoder is still required as the online teacher.
To that end, both ReKD [36] and SEED [16] focus on unsupervised distillation with the large-sized
teacher, which actually amplifies the training cost for lightweight CL, as shown in Fig. 1. Meanwhile,
the performance of training lightweight models with CL from scratch remains unsatisfactory [27] or
requires dedicated input scaling design with low generality [28] on normal CL. This is quite meaning-
ful to explore since training a high-performance compact encoder (≤ 5 M parameters) [22, 23, 29]
by necessitating a large-sized ResNet (>20 M) [20] teacher largely degrades the “time-to-deploy” of
the model due to the magnified training cost. Given the challenges of CL and the limitations of prior
works, we raise the following question as our motivation:

Is there a contrastive learning algorithm that can train the high-performance lightweight model
without using a large-sized teacher?

To answer this question, we propose Slimmed Asymmetrical Contrastive Learning (SACL) together
with Cross-Distillation (XD), a novel self-supervised contrastive learning algorithm designed for effi-
cient and high-performance CL with lightweight encoders. Specifically, SACL considers lightweight
contrastive learning as an asymmetrical sparse training problem based on the shared weights from a
dense host encoder. A lightweight encoder can be treated as a “subset” model (sub-model) sliced
from a wide host model, which naturally formulates the asymmetrical encoding in CL. Different from
the knowledge distillation-based methods [16, 36], the proposed SACL-XD algorithm completely
eliminates the large-sized ResNet teacher from the lightweight contrastive learning. On top of that,
we introduce cross-distillation (XD) to facilitate SACL. XD minimizes the decorrelation between the
latent information distorted by asymmetrical CL, elevating the training stability and performance.
As shown in Fig. 1, the proposed method achieves 64× and 8.3× training cost reduction along with
1.79% and 2.09% ImageNet accuracy improvements, compared to SOTA [16] and [36], respectively.
The major contributions of the proposed SACL-XD algorithm are:

1. Simplicity: SACL-XD does not require teacher pre-training (and input scaling) before
training a lightweight student encoder.

2. Efficiency: SACL-XD does not require the large-sized teacher during training. The training
cost of MobileNet-V3 [22] model is reduced by 64× and 8.3× compared to [36, 16].

3. Performance and generality: SACL-XD achieves up to 2.09% ImageNet-1K accuracy
improvement compared to the previous SoTA method. In particular, the proposed cross-
distillation (XD) algorithm solely achieves superior performance with normal contrastive
learning settings on ResNet-50 without SACL.

4. Transferability: The SACL-XD-trained lightweight encoder shows high transferability
to the downstream tasks. With minimum fine-tuning on top of the ImageNet-1K-trained

2



MobileNet-V3, ours achieves 94.80% accuracy on CIFAR-10, outperforms the supervised
learning baseline and SEED [16] with 1.83% and 14.80% improvements, respectively.

2 Related Work

Self-supervised contrastive learning. With the absence of deterministic labels, the major objective
of contrastive learning is minimizing the distance between the embeddings separately encoded from
the augmented input samples. Early research works [7, 19] define “positive” and “negative” sample
pairs, and the learning process maximizes the similarity between positives and repels the negative
samples. The popular InfoNCE loss [26, 19, 8] or NT-Xent loss [7] has been proposed as the learning
objective. The wide and deep DNN encoder is also the key factor of success in contrastive learning.
In addition to the cross-reference between positive and negative pairs, contrastive learning is also
considered a DNN-based clustering problem, where the samples and their embeddings are grouped
into clusters based on similarity metrics [4, 32, 1]. SwAV [5] introduces online cluster learning with
the reduced complexity of computation. The entropy-based similarity matching and clustering CL
algorithms shares the same nature, but they all require an extensive amount of negative samples to
generate salient contrastiveness.

Recent methods consider contrastive learning as a knowledge distillation [21] task between the
contrastive encoders with separately augmented inputs. BYOL [18] and SimSiam [9] consider
the student network as the online model, while the teacher is consistently staying offline with no
gradient propagation [9]. The teacher is updated as the moving averaged weights of the student
encoder. The “student-teacher” relationship focuses on the distance minimization between latent
information. Another perspective is exploring the content hidden inside the embeddings. Barlow
Twins [35] pushes the cross-correlation between the encoded embeddings toward the identity matrix.
VICReg [3] collectively optimizes the variance, covariance, and distance between and inside the
embeddings to achieve better training stability and even enables the CL with different encoders.
Among all the previous CL algorithms, the empirical findings show the improved training stability
and performance of CL together with the relaxed requirement of batch sizes, but the large-sized
encoder (e,g., ResNet-50 (1×, 2×, . . . ) [20]) is a persistent and almost mandatory requirement to
achieve high performance, which hinders the development of CL with high energy consumption and
extensive training effort.

Contrastive learning with lightweight models. Under the context of supervised learning, various
lightweight architecture designs [23, 22, 29] are proposed to minimize the performance difference
caused by the model size gap. The intricate architecture and the compact model sizes enable energy-
efficient and hardware-friendly computer vision applications. However, the architectural efficiency of
the lightweight models becomes invalid in the contrastive learning domain. Employing a lightweight
encoder in CL leads to poor performance due to the insufficient trainability caused by the limited
model sizes. To resolve this challenge, the mainstream method is introducing a giant model as the
teacher of the lightweight student encoder. SEED [16] uses a pre-trained large-sized ResNet [20]
as the frozen teacher of the lightweight student model. The similarity-based teacher distribution is
generated as the target soft label for student learning. In particular, accurate distillation requires both
teacher and student to encode the same input, which is inconsistent with the augmentation strategy
of CL. As a result, self-supervised training of the lightweight model becomes a two-step process.
However, the dependence on the large-sized teacher and the expensive pre-training complicates
the overall learning process. ReKD [36] incorporates the online distillation during learning with
the relation knowledge-based loss between embeddings. DisCo [17] complicates the training cost
of the distillation even further. The inputs are encoded separately by the teacher and two separate
students. Regardless of using an online or frozen teacher, the large-sized ResNet model is always
required to train a lightweight encoder. The recent efforts on directly-trained lightweight model
requires fine-grained efforts on input scaling [28], but the improvements on lightweight model has
low generality and has no improvements on the popular ResNet-50-based CL.

3 Method

To resolve the training dilemma between contrastive learning and lightweight models, this section
introduces 1) SACL: Slimmed Asymmetrical Contrastive Learning and 2) XD: Cross Distillation to
achieve lightweight contrastive learning from scratch.
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Figure 2: Overview of (a) contrastive learning with shared encoder, (b) Proposed Slimmed Contrastive
Learning (SACL) algorithm and (c) Cross-Distillation-aided SACL.

Similar to prior contrastive learning (CL) algorithms [35, 3, 7], our method performs contrastive
learning based on the dual augmentation that is transformed from the clean input image. Given a clean
input batch X sampled from the dataset D, the distorted views are generated from a combination of
data augmentations T , leading to the augmented pairs XA and XB , which are fed into the encoders for
different contrastive paths. In this work, we follow the recent contrastive learning algorithms [35, 3]
and use one shared encoder fθ for different contrastive branches, as shown in Fig. 2(a). The encoded
outputs are fed into the subsequent projector hϕ, resulting in the latent embeddings zA and zB .

3.1 Slimmed Asymmetric Contrastive Learning (SACL)

Under the standard supervised training, it has been well evidenced that extracting a subset lightweight
model out of a wider/larger (e.g., 2×) encoder often leads to better performance compared to directly
train such a lightweight model from scratch [37]. We are inspired by the fact that a lightweight
model can be considered as a subset model “sliced” from the original full-sized host model. The
asymmetrical relationship between the slimmed model and the original model naturally fits the
independent encoding path of contrastive learning.

We propose Slimmed Asymmetric Contrastive Learning (SACL), for obtaining lightweight models
under self-supervised CL training. SACL treats the lightweight model contrastive learning as a
sparse training optimization problem based on shared weights from a large-sized encoder. During the
forward pass of each iteration, the augmented input pair (XA, XB) are separately encoded by the
dense host model (fθ) and the slimmed (fs

θ ) encoders with the disabled weight filters (i.e., output
channels), as shown in Fig. 2(b).

The host encoder model fθ is slimmed by removing a unified amount of weight filters (output
channels) of each layer based on weight magnitude score. With the slimmed and dense model fs

θ and
fθ, the relationship between θs and θ is defined as:

θs ⊂ θ and θs = θ · M (1)
Where M is the weight mask that disables the channels of fθ, and the subset model fs

θ is selected
when M is enabled. As shown in Fig. 2(b), fθ and fs

θ separately encode the input pair in different
branches. With the shared weights, the mask M is alternatively enabled between branches to
formulate the asymmetrical encoding during the forward propagation. The slimming ratio (sparsity)
of M is defined by the Slimmed Asymmetry (SA) between fθ and fs

θ with the style of “K×-1×”. “K ”
is the width of the wide host model (fθ) that is employed to slice the 1× model (fs

θ ) out of it:
s = 1− 1/K = card(θs)/card(θ) (2)

where card(·) returns the number of nonzero elements of the tensor, s is the desired slimmed ratio
(sparsity) controlled by K.

Starting from the initialization of the training, SACL uniformly generates the masks to slice out the
weight filters (output channels) with the least magnitude score from each layer. The masks will be
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updated after each epoch to maintain the performance of the slimmed model based on the filter-wise
L1 norm score. The resultant slimmed (1×) model will be deployed as the final trained encoder.
Specifically, SACL drives contrastive learning with the following properties:

1. SACL holds a consistent channel-wise architecture difference (e.g., 1.5× vs. 1×) between
contrastive branches throughout the entire training process.

2. SACL removes a unified amount of channels (with the lowest magnitude score) of all the
layers. By doing so, the resultant slimmed model will have the exact width as the target
lightweight model.

Formally, given the augmented input pair (XA, XB), the forward pass is characterized as:
zA = hϕ(fθ(XA)), zB = hϕ(f

s
θ (XB)). (3)

And the optimization target of SACL is:

min
θ,θs

LSACL(zA, zB), such that θs ⊂ θ and
card(θs)
card(θ)

= s, (4)

Inside each mini-batch, the gradient is collectively computed all at once, and the optimizer will update
the whole set parameter θ of the dense host encoder fθ. The slimmed model architecture (fs

θ ) will
be updated after every epoch based on the magnitude score of each filter. The model is completely
online and stop gradient is excluded from learning. Minimizing the contrastive loss LSACL between zA
and zB is equivalent to overcoming the distortion caused by 1) data augmentation T and 2) consistent
and structural architecture difference between fs

θ and fθ. And the architecture asymmetry caused by
2) motivates us to explore the enhancement of SACL from the perspective of knowledge distillation,
which is presented in the following section.

3.2 Cross Distillation (XD) on top of SACL

We propose Cross-Distillation (XD) on top of SACL, which treats the teacher-student relationship
as an interconnected knowledge distillation with the correlation-based optimization on top of the
proposed SACL learning scheme. Given the asymmetrical contrastive encoders fθ and fs

θ , we first
encode XA and XB based on SACL (XA → fθ; XB → fs

θ ), leading to the embeddings zA and
zB . Subsequently, we freeze both fθ and fs

θ while reversing the order of the inputs for encoding
(XB → [fθ] → [z̃B ]; XA → [fs

θ ] → [z̃A]), and characterize the resultant embeddings as [z̃A] and
[z̃B ], where “[·]” represents the frozen encoder for the forward pass only.

As a result, each forward pass will generate two pairs of latent vectors resulting from two groups
of SACL forward pass. We first compute the online contrastive loss LSACL based on zA and zB .
Such online embeddings contain the distortion caused by both data augmentations and asymmetrical
encoders. We empirically find out that directly optimizing such high-sparsity difference via single
contrastive loss leads to collapsed training. Motivated by that, we compute the cross-distillation loss
LCD as the average loss between the pair of (zA, z̃A) and (zB , z̃B):

LCD =
LA
CD(zA, z̃A) + LB

CD(zB , z̃B)

2
, (5)

where LA
CD,LB

CD will be defined formally later (see Eq. 9). As shown in Fig. 2, each term of the
cross-distillation loss is computed between the asymmetrical SACL encoders with the same input.
In other words, optimizing the cross-distillation loss is equivalent to minimizing the distortion in
embeddings caused by the asymmetrical sparsity only. We define the total loss of the training as the
weighted sum between LSACL and LCD and weight is defined as α:

L = αLSACL + (1− α)LCD, (6)

Where n represents the index of batch, and i and j represent the dimensionality indices across the
latent output. Correspondingly, Ci,j represents the i, j element of the correlation matrix.

Regarding contrastive loss design, recent works treat contrastive learning as the optimization problem
of principle correlation maximization [35] or the decorrelation minimization [35, 3] of the encoded
latent vectors. The cross-correlation between zA and zB is computed as:

Cij =

∑
n z

A
n,iz

B
n,j√∑

n(z
A
n,i)

2
√∑

n(z
B
n,j)

2
(7)
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Table 1: ImageNet-1k test accuracy with linear evaluation protocal based on MobileNet-V3 [22]
trained by different contrastive learning/distillation methods.

Method Linear Eval. Acc. (%) Training Epochs Pre-training
XD. (Ours) 57.16 100 ✗

ReKD [36] 56.70 200 ✗

SEED [16] 55.20 200 ✓

In this work, we first adopt the BT-loss [35] as the starting point of the online contrastive
loss LSACL(zA, zB), where the principle correlation (diagonal) is maximized, and the cross-
decorrelation (off-diagonal) is minimized during training.

LSACL(zA, zB) =
∑
i

(1− CAB
ii ) + λ

∑
i

∑
i ̸=j

(CAB
ij )2 (8)

Figure 3: (a) Negligible magnitude of in-
ner correlation with the SACL MobileNet-V1
(1.5×-1×) trained on ImageNet-1K. (b) Un-
stable training and the degraded performance
caused by the LCD with inner correlation only.

Unlike the prior work that uses the SoftMax-based
probability [16] as unsupervised soft labels for dis-
tillation, we find out the proposed cross-distillation
task between z and z̃ can still be considered as a
correlation-based optimization problem, and our
finding shows the proposed cross-distillation is
a strong facilitator for contrastive learning even
without SACL. First, by duplicating LSACL for LCD,
each term in Eq. 5 becomes:

LA
CD =

∑
i

(1− CAÃ
ii )︸ ︷︷ ︸

inner-correlation loss

+λ
∑
i

∑
i ̸=j

(CAÃ
ij )2︸ ︷︷ ︸

inner-decorrelation

(9)

By encoding the same input with the identical dense
model, the inner correlation CAÃ

ii → 1, and inner
de-correlation

∑
i(1 − CAÃ

ii ) → 0, which makes
the cross-distillation loss LA

CD and LB
CD equivalent to

the internal decorrelation loss between different di-
mensions inside zA and zB , respectively. As a result,
minimizing LCD avoids the aliasing feature across dif-
ferent dimensions. We would like to highlight the
fact that the combination in Eq. 10 with both cross-
decorrelation (LSACL) and the inner decorrelation (LCD) is important for contrastive learning and leads
to superior performance compared to [3, 35]. Table 1 summarizes the linear evaluation accuracy of the
lightweight MobileNet-V3-Large [22] trained on the ImageNet-1K dataset. Starting from scratch with
only 100 epochs, the proposed Cross-distillation (XD) method achieves 2% higher accuracy compared
to [16], which uses ResNet-50 (1×) as the teacher. In Section 4, we also compare the proposed
XD algorithm with other CL methods on ViT [13] and ResNet-50 [20] without SACL. The superior
performance of XD proves the importance of the co-optimization between cross-decorrelation (LSACL)
and the inner decorrelation (LCD).

Combining the cross-distillation with SACL, the inner decorrelation between z and [z̃] plays the
dominant role in the distillation loss LCD, and we observe that it is also critical to the training stability
and performance of SACL. As shown in Fig. 3(a), the magnitude of the inner correlation is negligible
compared to the inner decorrelation, even with the asymmetric encoding of SACL. Furthermore,
solely minimizing the infinitesimal inner correlation as the LCD introduces instability and degraded
performance to the training process, as shown in Fig. 3(b). As a result, we formulate the total loss as:

L = αLSACL + (1− α)
(
λ
∑
i

∑
i ̸=j

(CAÃ
ij )2 + λ

∑
i

∑
i ̸=j

(CBB̃
ij )2

)
(10)

The detailed pseudocode of the proposed method is summarized in the Appendix A.1. We evaluate the
impact of the weight α in Section 4.4. We also investigate the conventional negative-logorithm
distillation loss in Appendix A.2.
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Table 2: ImageNet-1K test accuracy with linear evaluation protocal based on MobileNet-V3 [22]
trained by different contrastive learning/distillation methods.

Method Encoder Linear Eval. (%) Epochs Pre-train Teacher Training FLOPs (e+17)
‡SACL-XD (Ours) Eff-B0 (1.5×-1×) 65.32 (+2.12) 200 ✗ - 24 (2.9× ↓)
§SACL-XD (Ours) Mob-V3 (1.5×-1×) 61.69 (+1.79) 200 ✗ - 15 (64.7× ↓)
SACL-XD (Ours) Mob-V1 (1.5×-1×) 59.34 200 ✗ - 19
XD only (Ours) Mob-V3 (1×) 59.42 200 ✗ - 7.2
XD only (Ours) Mob-V3 (1×) 57.16 100 ✗ - 3.6
XD only (Ours) Mob-V1 (1×) 55.84 100 ✗ - 9.0
§SSL-Small [27] Mob-V3 (1×) 48.70 200 2 epochs - 19
§SSL-Small [27] Eff-B0 (1×) 55.90 200 2 epochs - 34

ReKD [36] Mob-V3 (1×) 56.70 200 ✗ ResNet-50 67

ReKD [36] Mob-V3 (1×) 59.60 200 ✗ ResNet-101 125

ReKD [36] Eff-B0 (1×) 63.40 200 ✗ ResNet-50 70

OSS [10] Eff-B0 (1×) 64.10 800+200 ✗ ResNet-50 67
∗SEED [16] Mob-V3 (1×) 55.20 800+200 ✓ ResNet-50 512
∗SEED [16] Mob-V3 (1×) 59.90 800+200 ✓ ResNet-101 971
∗SEED [16] Eff-B0 (1×) 61.30 800+200 ✓ ResNet-50 516

†MoCo-V2 [8] Mob-V3 (1×) 36.30 200 ✗ - 4.8
†MoCo-V2 [8] Eff-B0 (1×) 42.20 200 ✗ - 8.5

∗: SEED [16] uses a ResNet-50 teacher which is pre-trained by 800 epochs.
†: Baseline linear evaluation accuracy reported by SEED [16].
‡:We use ReKD [36] as the SOTA baseline of EfficientNetB0 [29] to report the accuracy improvements and computation reduction.
§:We use SEED [16] as the SOTA baseline of MobileNet-V3 [22] to report the accuracy improvements and computation reduction.
§:Weights are initialized based on SEED [16]-trained model.

4 Experimental Results

In this section, we evaluate the performance of the proposed algorithm based on CNN encoders (Mo-
bileNet [23, 22], EfficientNet [29], ResNet [20]) and ViT [13] models on the ImageNet-1K and
ImageNet-100 dataset. We also demonstrate the capability of the proposed method with tiny-sized
ResNet on the small CIFAR dataset. We also evaluate the transferability of the lightweight model
on both CIFAR classification and VOC object detection downstream tasks. We characterize the
asymmetry of SACL with the style of “K×-1×”, where “K ” is the width of the wide host model that
is employed to slice the 1× out of it. All the models are directly trained from scratch. The detailed
experiment setup and hyperparameter settings are summarized in the Appendix.

4.1 Training from Scratch with SACL+XD on Lightweight CNNs

We follow the linear evaluation protocol on ImageNet to evaluate the performance of the backbone
trained by the proposed SACL and cross-distillation (XD) algorithm. We train the compact models
from scratch for 100 or 200 epochs, which is the same amount of fine-tuning effort as SEED [16]
and ReKD [36]. The proposed algorithm is evaluated on multiple lightweight encoders, including
MobileNet-V1 [23], MobileNet-V3-Large [22], and EfficientNet-B0 [29]. Table 2 compares the top-1
linear evaluation accuracy of our work against recent SoTA works for compact model training.

With the same 200 epochs, the XD-trained MobileNet-V3 (1×) model outperforms the recent ResNet-
50-aided ReKD [36] by a noticeable 2.72% accuracy improvements (59.42% vs. 56.70%) with 9.3×
less training FLOPs. Furthermore, XD achieves 57.16% ImageNet accuracy with only 100 epochs
training on MobileNet-V3, surpasses the ResNet-50-aided ReKD [36] and SEED [16] by 0.46%
and 1.96% with 18.6× and 142× training cost reduction, respectively. Combined with the proposed
asymmetrical slimmable contrastive learning (SACL), our method achieves 2.12% and 2.09% linear
evaluation accuracy improvements compared to the ReKD-trained EfficientNetB0 and MobileNet-V3,
respectively. Meanwhile, our method eliminates the ResNet-101 teacher from training, which leads
to 5.2× and 8.3× training effort reduction compared to ReKD [36]. We are aware the wider model
introduces a higher computation budget, so we choose the 1.5×-1× asymmetrical architecture, and
the linear evaluation is performed on the slimmed encoder with the same size as the vanilla 1× model.
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4.2 Training from Scratch with XD on ResNet and ViT

Besides the evaluation against the lightweight models, we validate the proposed XD individually by
training ResNet-50 on ImageNet-1K with 300 epochs from scratch, as reported in Table 3.

Table 3: ImageNet-1K test accuracy with linear evaluation protocol based on ResNet-50 encoder.
Method Training Epochs Top-1 Linear Evaluation Accuracy (%)

MoCo [19] 1000 60.6

SimCLR [7] 1000 69.3
∗BYOL [18] 300 68.4

∗Barlow Twins [35] 300 70.7

XD (Ours) 300 71.1
∗: Reported results from [18, 35] with 300 epochs training from scratch.

Compared to the recent contrastive learning methods [35, 18], the proposed cross-distillation algo-
rithm (XD) achieves better accuracy with 0.4% linear evaluation accuracy improvements demonstrat-
ing the generality and versatility of the proposed XD algorithm.

Besides the CNN-based encoder, the proposed cross-distillation (XD) algorithm is also capable
of training the lightweight ViT encoder. Table 4 summarizes the performance of the ViT-Tiny-16-
224 [13] encoder trained by XD. Compared to Barlow Twins [9] and DINO [9], our method achieves
1.36% and 0.88% accuracy improvements. The model is directly trained from scratch, and the α
value of the XD is set to 0.8. Specifically, we simply replace the CNN encoder by the ViT-Tiny model
and slim down the embedding dimensionality, no additional architecture has been introduced to ViT
training. The superior performance on ViT indicates the high versatility of the proposed method.

Table 4: ImageNet-100 test accuracy with linear evaluation protocol based on ViT-Tiny [13] encoder.
Methods Encoder Training Epochs Linear Eval Acc. (%)

Barlow Twins [35] ViT-Tiny [13]
(# of Param = 5.5 Million)

400 62.56
∗DINO [9] 400 63.04

XD (Ours) 400 63.92 (+0.88)
∗: Reported DINO results from [12].

4.3 SACL-XD on CIFAR datasets with Tiny-sized ResNet

Table 5: CIFAR-10 linear evaluation test accuracy based on ResNet-20 trained by SACL+XD with
different asymmetrical architectures.

Method Encoder Linear Eval Acc. (1× model) Teacher Teacher Pre-trained by Training FLOPs (e+16)
SACL+XD (Ours) ResNet-20 (6×-1×) 86.81 (+7.18) - - 8.60

SACL+XD (Ours) ResNet-20 (4×-1×) 84.04 (+4.41) - - 3.90

SACL+XD (Ours) ResNet-20 (2×-1×) 82.31 (+2.68) - - 0.98
∗SEED [14] ResNet-20 (1 ×) 82.86 ResNet-20 (6×) MoCo [7] 180
∗SEED [14] ResNet-20 (1 ×) 81.36 ResNet-20 (6×) Barlow Twins [31] 180

Barlow Twins [31] ResNet-20 (1 ×) 79.63 - - 0.25

VICReg [3] ResNet-20 (1 ×) 79.13 - - 0.25

∗: Re-implementation of SEED [16] on CIFAR dataset with the official code. The ResNet-20 (6×) is pretrained by 800 epochs.
†: Data augmentation and hyperparameter settings are adopted from [12]. We use [35] as the baseline of ResNet-20.

We also evaluate the performance of our method on the small-sized dataset with the tiny-sized ResNet
encoders (e.g., ResNet-20 with 0.27 million parameters). We follow the data augmentation setup in
[12] for the CIFAR-10 dataset. For the SACL, we sweep the asymmetry from 2×-1× up to 6×-1×,
the model is trained for 1000 epochs from scratch, and the results are summarized in Table 5.

With the “6×-1×” asymmetry, the equivalent weight sparsity is consistently held at 97.01% through-
out the entire process. The linear evaluation is performed based on the slimmed 1× model with
0.27 million non-zero weights. Our method achieves up to 7.18% accuracy improvements compared
to the Barlow Twins baseline [35]. Compared to SEED [16], the proposed method achieves 3.95%
accuracy improvements. We are aware the contrastive learning-trained large-sized ResNet-50 encoder
can achieve >96% CIFAR-10 accuracy with downstream fine-tuning [18, 35], but the recent CL
algorithms exhibit poor performance with tiny encoder and small-sized training samples (compared
to ImageNet-1K). The superior performance of the proposed method provides valuable insights for
practical self-supervised learning on limited-sized datasets with tiny-sized encoders.
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Figure 4: MobileNet-V1 ImagNet-1K accuracy vs. (a) value of α and (b) training epochs.

Table 6: Transfer fine-tuning of MobileNet [23, 22] pretrained by the proposed method.
Method Encoder CIFAR-10 CIFAR-100 Aircraft Flowers Food-101 Cars Pets

Supervised (from scratch) Mob-V3 (1×) 92.97 73.69 65.37 79.89 60.30 68.18 70.97

Supervised (fine-tune) Mob-V3 (1×) 94.53 78.86 68.29 89.94 75.84 82.43 85.87

XD (Ours) Mob-V3 (1×) 94.80 79.00 71.39 90.05 75.71 82.77 89.42
SACL + XD (Ours) Mob-V1 (1.5×-1×) 94.92 79.64 72.21 90.48 76.12 83.14 90.24

SEED [16] Eff-B0 (w. RN-50 teacher) 87.5 63.0 - - - - -

Table 7: Comparison between the proposed method and other supervised high-water marks
Model Training Method CIFAR-10 Acc (%) CIFAR-100 Acc (%) # of (remained) Param. (M)

ResNet-50 Supervised Learning 94.75 78.23 25.6

ResNet-50 Supervised + GraNet [24] 94.64 77.89 2.6 (90% sparsity)

ResNet-50 Supervised + RigL [15] 94.45 76.50 2.6 (90% sparsity)

Mob-V1 SACL+XD (Ours) + Finetune 94.92 79.64 3.2

Mob-V3 XD (Ours) + Finetune 94.80 79.00 3.0

4.4 Ablation Study

The impact of α. We introduced the weight parameter α in Eq. 6 and Eq. 10 as a tunable parameter
to control the importance of the inner decorrelation loss during the training process. We further
evaluate the impact of the different weighting between LSACL and LCD. We explore the impact of α on
the ImageNet-1K dataset with the MobileNet-V1 (1×) model. The model is trained by XD only with
100 epochs from scratch. As shown in Fig. 4(a), the proposed method achieves the best performance
when α=0.9. Meanwhile, the accuracy oscillation caused by α is relatively stable (within ± 1%).

The impact of training effort. We also evaluate the performance of the proposed algorithm with
different training efforts from scratch. Fig. 4(b) demonstrate the linear evaluation accuracy of
MobileNet-V1 [23] on ImageNet-1K trained by different epochs. For both SACL+XD and individual
XD training, the extended training effort from 100 epochs to 300 epochs leads to evident accuracy
improvements. With 300 epochs of training, the proposed XD and SACL+XD method achieves
58.25% and 60.63% Top-1 linear evaluation accuracy on ImageNet-1K.

4.5 Transfer learning to downstream tasks

We report the transfer learning performance of the MobileNet [22, 23] encoder trained by both
SACL+XD and XD. For the downstream classification, we use CIFAR-10 and CIFAR-100 as our
target tasks. We also validate the pre-trained lightweight encoder on the VOC2007 dataset for
downstream object detection. Follow the setup in [14], we finetune the models for 10,000 steps
with SGD and batch size of 64. The experimental setup is summarized in the Appendix. Table 6
summarizes the transfer learning performance of the proposed method compared to SEED [16]. For
the CIFAR tasks, our method achieves 7.42% and 16.30% accuracy improvements compared to
SEED [16]. Together with the 1.83% and 5.69% improvements compared to supervised learning.

4.6 Comparison to SoTA energy-efficient supervised learning

In addition to the accuracy and training cost improvement compared to distillation-based contrastive
learning, the powerful lightweight backbone model trained by the proposed method reveals a new
perspective of energy-efficient inference compared to conventional supervised sparse training on
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ResNet [24, 15]. Table 7 summarizes the CIFAR downstream comparison between the pre-trained
MobileNet [29, 23] and the ResNet-50 sparsified by the recent SoTA pruning methods [24, 15]

Despite the additional fine-tuning effort, the powerful lightweight backbone pre-trained by the pro-
posed method achieves better accuracy-model size tradeoff compared to the conventional supervised
sparse learning with high element-wise sparsity. More importantly, the powerful lightweight architec-
ture can be accelerated and deployed to the energy-constrained hardware without the requirement of
the dedicated accelerator.

5 Conclusion

In this paper, we propose a novel contrastive learning (CL) algorithm designed for lightweight
encoders. We first introduce the slimmed asymmetrical contrastive learning (SACL), which treats the
lightweight model CL as a slimmed sparse training task with asymmetrical encoding. On top of the
SACL, we propose the cross-distillation (XD) algorithm, distilling the knowledge by minimizing the
decorrelation between the embeddings encoded by SACL. Compared to previous works, the proposed
algorithm achieves new SOTA accuracy without introducing the large-sized teacher or expensive
pre-training. Furthermore, solely training both lightweight and large-sized ResNet with the XD
can still achieve superior performance. Compared to supervised learning, the ImageNet-1K-trained
lightweight encoder shows superior performance in the downstream tasks with transfer learning.

Impact and limitations. In this work, SACL+XD works well with correlation-based loss [35] along
with the shared encoder. Exploring the possibility of the proposed algorithm with the momentum-
based encoder updating scheme [18, 19] could be an interesting direction. With the powerful,
lightweight backbone trained by the proposed algorithm, we will further investigate the post-training
quantization and hardware deployment, which further unleash the superior performance in Table 6
with practical downstream applications with actual hardware. To that end, our work can further
improve the versatility of contrastive learning with energy-efficient applications (e.g., AI on edge).
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A Appendix

A.1 Algorithm

Algorithm 1: PyTorch-style pseudocode for the proposed algorithm
# f: encoder model
# h: projector head
# s: slim ratio of SACL
# slicer: SACL slicer
# alpha: weight between CL loss and CD loss
# lambda: weight on the off-diagonal terms
def normalize(z):

z_norm = (z - z.mean(dim=0)) / z.std(dim=0)
return z_norm

for batch in trainloader:
x_a, x_b = batch

# SACL forward pass
slicer.remove_mask()
z1 = h(f(x_a))
slicer.activate_mask()
z2 = h(f(x_b))

# reverse the order of input
with torch.no_grad():

slicer.remove_mask()
z1t = h(f(x_b))
slicer.activate_mask()
z2t = h(f(x_a))

# cross correlation
cab = mm(normalize(z1).T, normalize(z2)) / N
caat = mm(normalize(z1).T, normalize(z1t)) / N
cbbt = mm(normalize(z2).T, normalize(z2t)) / N

# Contrastive leanring loss
cl_loss = bt_loss(cab)

# CD loss
dcorr_a = off_diagonal(caat).mul_(lambda).sum()
dcorr_b = off_diagonal(caat).mul_(lambda).sum()
cd_loss = (dcorr_a + dcorr_b) / 2

loss = cl_loss.mul(alpha) + cd_loss.mul(1-alpha)
loss.backward()
optimizer.step()
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A.2 Compared to the Log-based distillation loss

From the perspective of knowledge distillation, the negative logarithm-based distillation loss
has been widely incorporated into the “teacher-student” learning. In Section 3.2, we proposed the
cross-distillation (XD) learning scheme. The distillation objective in Eq (10) is the inner decorrelation
minimization between embeddings z and [z̃]. In addition to the correlation-based distillation loss, we
also investigate the negative logarithm (e.g, −a log b) distillation loss that is employed in both
supervised knowledge distillation [21] and contrastive learning [6].

To avoid the unbalanced loss magnitude, the distillation loss is introduced as the regularization term
controlled by the penalty level γ:

L = LSACL(zA, zB) + γLCD (11)
LCD = (−[z̃A] log zA +−[z̃B ] log zB)/2 (12)

We empirically observe that the negative logarithm-based distillation loss failed to outperform
the proposed cross-distillation loss LCD with inner-decorrelation minimization. As shown in the
ImageNet-100 results below:

Method Encoder # of Params (M) Linear Eval Acc. (%)
XD MobileNet-V1 (1×) 3.2 80.30

XD (w/ negative log) MobileNet-V1 (1×) 3.2 79.63∗

Barlow Twins [35] MobileNet-V1 (1×) 3.2 78.40
∗: Best accuracy we found with γ =1e-3.

Although the negative-logarithm distillation loss is suboptimal compared to the inner decor-
relation minimization, the proposed cross-distillation learning scheme is beneficial to lightweight
contrastive learning, compared to the baseline [35].

A.3 Detailed Experimental Setup of Pre-training

ImageNet-1K The encoders (MobileNet, EfficientNet, ResNet-50) are trained on ImageNet-1K
with 100/200/300 epochs from scratch with the proposed method. We set the batch to 256 with a
learning rate = 0.8. We employ the LARS optimizer with weight decay set to 1.5e-6. We set the
correlation weights λ to 0.005. The hidden layer dimension of the projector is 4096. The detailed
data augmentation is summarized in Table 8

Table 8: Detailed image augmentation settings on ImageNet-1K.
Parameter XA XB

Random crop size 224 × 224 224 × 224

Horizontal flip probability 0.5 0.5

Color jitter probability 0.8 0.8

Brightness adjustment probability 0.4 0.4

Contrast adjustment probability 0.4 0.4

Saturation adjustment probability 0.2 0.2

Hue adjustment probability 0.1 0.1

Gaussian blurring probability 1.0 0.1

Solarization probability 0.0 0.2

ImageNet-100 With the proposed cross-distillation method, we train the lightweight ViT model
on the ImageNet-100 dataset for 400 epochs. The batch size is set to 256 with AdamW optimizer.
The learning rate and weight decay are set to 0.005 and 1e-4. The detailed data augmentation is
summarized in Table 9:
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Table 9: Detailed image augmentation settings on ImageNet-100.
Parameter XA XB

Random crop size 224 × 224 224 × 224

Horizontal flip probability 0.5 0.5

Color jitter probability 0.8 0.8

Brightness adjustment probability 0.4 0.4

Contrast adjustment probability 0.4 0.4

Saturation adjustment probability 0.0 0.2

Hue adjustment probability 0.1 0.1

Gaussian blurring probability 1.0 0.1

Solarization probability 0.0 0.2

CIFAR-10 The proposed method is trained from scratch by 1,000 epochs with LARS-SGD opti-
mizer [33]. We use 256 batch size along with 0.3 learning rate and 1e− 4 weight decay. The Cosine
learning rate scheduler is used with 10 epochs of warmup training. The detailed data augmentation is
summarized in Table 10.

Table 10: Detailed image augmentation settings on CIFAR-10.
Parameter XA XB

Random crop size 32 × 32 32 × 32

Horizontal flip probability 0.5 0.5

Color jitter probability 0.8 0.8

Brightness adjustment probability 0.4 0.4

Contrast adjustment probability 0.4 0.4

Saturation adjustment probability 0.2 0.2

Hue adjustment probability 0.1 0.1

Gaussian blurring probability 0.0 0.0

Solarization probability 0.0 0.2

A.4 Detailed Experimental Setup of Downstream Fine-tuning

We evaluate the transferability of the pre-trained lightweight model on downstream tasks, including
CIFAR-10, CIFAR-100, and VOC2007. Following the settings in [14], we fine-tuned the models for
10,000 steps with SGD and batch size of 64. The learning rate is set to 0.1 with no weight decay. The
input samples are resized to 224× 224 to maintain the dimensionality as the pre-trained model. The
checkpoint of the pre-trained lightweight model will be released soon.
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A.5 Detailed Training Cost of the Proposed Method

In addition to the FLOPs comparison in Table 2, we evaluate the training cost of the proposed method
based on the actual training time per epoch, together with the total activation count (feature map
pixels) for each forward pass of the training process, as shown in Table 11 and Table 12, respectively.

Table 11: Training time comparison between the proposed method and the distillation-based CL
Model Training Method Teacher Training time / epoch GPU Type Batch Size

SEED [16] MobileNet-V3 ResNet-50 35 min 20 sec A100 (80G) 256

SACL-XD (Ours) MobileNet-V3 1.5×-1× N/A 26 min 02 sec A100 (80G) 256

XD Only (Ours) MobileNet-V3 N/A 16 min 15 sec A100 (80G) 256

Table 12: Activation count comparison between the proposed method and the distillation-based CL
Method Encoder Teacher Act. Count (E+07) ImageNet-1K Accuracy (%)

SACL+XD (Ours) Eff-B0 (1.5×-1×) N/A 1.54 65.32
XD Only (Ours) Mob-V3 (1×) N/A 0.90 59.34
SSL-Small [27] Mob-V3 N/A 0.90 48.70

SSL-Small [27] Eff-B0 N/A 0.68 55.90

ReKD [36] Mob-V3 ResNet-101 2.03 59.60

ReKD [36] Mob-V3 ResNet-50 1.53 56.70

ReKD [36] Eff-B0 ResNet-50 1.75 63.40

SEED [16] Mob-V3 ResNet-50 1.52 55.20

SEED [16] Eff-B0 ResNet-101 2.26 61.30
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