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Abstract

Data and code working together is fundamental to machine learning (ML), but
the context around datasets and interactions between datasets and code are in
general captured only rudimentarily. Context such as how the dataset was prepared
and created, what source data were used, what code was used in processing, how
the dataset evolved, and where it has been used and reused can provide much
insight, but this information is often poorly documented. That is unfortunate
since it makes datasets into black-boxes with potentially hidden characteristics that
have downstream consequences. We argue that making dataset preparation more
accessible and dataset usage easier to record and document would have significant
benefits for the ML community: it would allow for greater diversity in datasets
by inviting modification to published sources, simplify use of alternative datasets
and, in doing so, make results more transparent and robust, while allowing for all
contributions to be adequately credited. We present a platform, Renku, designed
to support and encourage such sustainable development and use of data, datasets,
and code, and we demonstrate its benefits through a few illustrative projects which
span the spectrum from dataset creation to dataset consumption and showcasing.

1 Introduction

Datasets are key to all aspects of machine learning (ML) and data science, from the development
of novel algorithms to training of production models. Unfortunately, a variety of problems plague
the generation, use, and dissemination of datasets [2, 39, 32]. The negative downstream effects of
issues related to dataset preparation on model performance and application are well-documented [39].
Less well-documented are the difficulties in understanding and managing the deficiencies on the
less technical aspects: the issues of attribution, reuse, dissemination, and replicability. Because ML
research is so heavily dependent on datasets, [32] highlight the lacking and insufficiently robust
mechanisms for dataset citation and usage tracking as core missing pieces needed to improve the
health of the community as a whole. The lack of diverse datasets on which to advance the field has
also recently been raised as a point of serious concern [22], and the lack of dataset provenance is a
barrier to trustworthy AI systems [19].

Furthermore, beyond requiring planning and design [15], dataset creation requires a significant com-
putational effort, which implies code, pipelines and compute resources. However, in the majority of
cases, because dataset creation pipelines are treated as one-offs and are not recorded or published [12],
researchers who want to augment a dataset or repeat its construction with different data cannot do so.
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This significantly limits the engagement of the community in this arguably foundational phase of ML
research [44]. The ML community has proposed and adopted some solutions specific to the nature
of ML dataset creation and use, such as e.g. Datasheets for Datasets [11] (see also [7] for a recent
reformulation). While these proposals raise awareness of the importance of datasets and the need for
documentation and systematic rigor, they are largely prescriptive, not machine-readable, and cannot
easily be automated or validated which makes them quickly become outdated.

Scientific research has struggled with these same issues for many years especially when it comes
to valuation of datasets as legitimate research outputs and their citation and attribution. In the past
decades, much attention has also been dedicated to the struggles of scientific disciplines to reproduce
(sometimes very influential) results [37]. Similarly, the ML community is not immune to the issues
of reproducibility [16]; in the case of datasets, where the introduction of hidden biases during the
preparatory stages might critically influence the downstream chain of model training and production
applications, the need for more comprehensive solutions is high. In this sense, it helps to lean on
the concepts espoused by the Open Science movement, where technical questions about robustness,
reproducibility and FAIR-ness (FAIR: Findable, Accessible, Interoperable, Reusable as proposed
by [43]) overlap with and complement meta concerns about access to knowledge and transparency [8].

To work openly is to structure the research process in such a way that its outcomes can be reproduced,
reused, and understood by anyone at any time. This implies structure, discipline, and adherence to
norms, which in turn require significant cognitive, technical, monetary and temporal overhead. The
cost of openness is a significant factor in preventing a wider adoption of these practices [13] despite
enormous efforts by research institutions and funding agencies to exert top-down pressure through
open science requirements and initiatives.

Openness, however, is not enough. We argue that sustainability is the more appropriate mental model,
because it implies continuity and dynamics; i.e., simply “opening” a dataset says nothing about
how it was assembled and created, where it is eventually used (outside of formal citations), how it
might be repackaged, and the many downstream implications that various decisions at each stage
of the process might have. The process of dataset creation is for the most part opaque and hidden
behind qualitative descriptions in publications. Similarly, sharing source code does not guarantee
that anyone can actually run it and, much less, obtain the expected results. Datasets and data are
not the final products of the process; they are often deeply intertwined with the models themselves,
both in publications and in the general discourse around ML applications. Therefore, the entire cycle
must be considered: from dataset assembly and creation to their consumption resulting in eventual
deployment of models for benchmarking or in production. While such robust documentation and
systematic adherence to standards would be ideal, researchers are pragmatic; they want to get their
work done and be recognized for it. In ML research, dataset development tends to be undervalued
and is consequently not systematically documented [5]. Furthermore, when voluntary compliance
with “best-practices” and efficiency are in competition for time, researchers will tend to optimize for
efficiency [3]. In a sustainable system, the actions of individuals translate simultaneously into benefits
for themselves (e.g. in the form of increased short-term efficiency or longer-term recognition) and
the communities within which they operate (e.g. improved transparency) with little or no overhead.

We present Renku1, an open-source platform that aims to address some of these problems from
another angle: through the creation of a more sustainable system within which ML research is
conducted, by incentivising creators and consumers of datasets and models to work in ways that
benefit both themselves and their communities. We describe the vision of the Renku platform and
its practical implementation; we outline the impact this system can have on dataset development
for ML applications; and we share several real-world use cases that demonstrate to varying degrees
the practical manifestation of sustainability through the platform, with a specific focus on datasets,
their preparation, processing, and dissemination. The use cases illustrate how the platform relieves
data scientists and ML researchers from some basic sources of friction present in every data analysis
project by: providing easy access to reproducible, containerized environments; simplifying shared
data management; providing tooling for building reproducible pipelines; ensuring that data, code,
and compute environment are versioned together and always self-consistent. This ecosystem, in turn,
allows for the creation and dissemination of datasets, where code and pipelines that are essential
for the creation of datasets can readily be inspected, scrutinized, shared, and rerun. The added

1https://renkulab.io, developed at the Swiss Data Science Center, a strategic focus area of the ETH
domain with offices at ETH Zürich, EPFL, and the Paul Scherrer Institute (PSI)
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transparency of such a system provides the missing piece to make dataset creation a collaborative,
community exercise.

2 Platform vision

The Renku platform’s vision is to facilitate sustainable data science. In such a practice, individuals
work in a knowledge-capturing way to collaborate, discover, reuse and reproduce results easily.

To motivate this idea, it is helpful to draw a parallel to version control as a tool for sustainable
software development. Version control contributes to making software development sustainable by
helping developers capture and describe changes to the codebase over time. This allows them to
return to previous points in time, run the code as it was then, understand motivations for the changes
made to the code, and explore implementation alternatives without breaking systems in production.
We believe that tools are needed in ML to support similar ways of working: tools that make it possible
to return to a project at a previous point in time, understand how the project evolved, and allow for
exploration of alternatives while supporting reuse.

The benefits of working in a sustainable data science environment are manifold. For example, one
can easily return to a project as it was in an earlier state, and still successfully run the code; one can
inspect a colleague’s project and pick up where they left off; a group lead can quickly identify the
uses of a shared dataset and actively scrutinize the results immediately, with zero setup overhead. On
the group level, the captured knowledge can serve to facilitate exchange among colleagues, reuse of
data and techniques, and to offer members a quick, actionable overview of their group’s activities. On
the community level, this knowledge capture leads to improved transparency, enhances trust in results,
and identifies all artifacts essential to the end-to-end process, such as data pipelines and datasets.

Our vision is, therefore, to build a system that offers simple solutions to problems that data scientists,
researchers, and ML users face every day, and in doing so inject just enough structure to make their
work more sustainable. The platform can then be used to propagate the information of what is being
done with data and how on a variety of levels and scales. By providing researchers with solutions
that alleviate common points of friction (e.g. access to efficient compute and storage), increasing
productivity and efficiency, while at the same time capturing knowledge along the whole life-cycle,
the Renku platform makes it possible to record the progress of research as it happens.

3 Platform design and features

Given the above vision of enabling sustainable data science, the platform is designed around a
few basic concepts: (i) an integrated solution for Code, Datasets, Workflows, and Computational
environments; (ii) simple interfaces for consistent compute and data access; (iii) building on existing
solutions and avoiding vendor lock-in; (iv) connecting everything through a comprehensive, flexible
knowledge graph. This section is deliberately brief and omits much detail; further information can be
found by visiting the live projects on https://renkulab.io (see links in citations).

3.1 Building blocks

Renku makes opinionated choices about a large technology stack to provide the basic building blocks
of any data science-related project: Code, Datasets, Workflows, and Computational environments
(Figure 1).

Code: Modern data analysis does not happen without code; the problem of working collaboratively
with code has largely been solved by the invention of decentralized version control systems like git.
Renku does not try to reinvent the wheel and relies fully on this industry standard.

Datasets: Renku encourages users to organize their data via Datasets, which can be thought of as
annotated data containers, i.e. lightweight encapsulations of data, useful for a project together with
the relevant metadata. Their true value, however, is that they are an easy way to share and incorporate
data into projects either from other Renku projects or external data repositories (e.g. Dataverse
or Zenodo), while fully preserving the relevant metadata. If a Dataset is published and receives a
DOI, this can be tracked in Renku as well. Datasets can evolve as new data becomes available; this
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Figure 1: A summary of the components of Renku.

provenance is also self-consistently traced in Renku, whether a derived dataset is created by the
original author or someone else entirely.

Data can be stored using different backends. The default is to version data together with the code, but
store it in git Large File Storage (LFS). Users can also opt to connect a Dataset to an external data
source, such as an Amazon Web Services Simple Storage Service (S3) bucket or Azure blob storage2.
Renku can handle the minutiae of bringing the data to the user’s system (including access credential
management) so that after the initial setup they no longer have to worry about how to obtain the data.
External sources currently do not include databases; while projects may retrieve data from databases
through scripts, and store results of queries in files, Datasets cannot currently use databases as data
sources directly.

Renku supports ways of restricting access to data. For data stored in git LFS within a Renku instance,
the data access is limited to those who have access to the repository. If data is external, access is
managed by a third-party and not by Renku. The infrastructure that hosts the compute resources for
running workflows and interactive sessions is designed to be multi-tenant and prevents users from
accessing resources allocated to others. While this should be sufficient for many kinds of sensitive
data, some highly-sensitive or confidential data may require additional precautions on the data at rest,
like encryption, which Renku does not itself provide. In those cases, we recommend that a Renku
instance is deployed in a secure environment and urge users to consider their levels of acceptable risk
to avoid potential leakage of sensitive data. More information about deployment and administration
can be found in Section 3 of the Supplementary Materials.

Workflows: Workflows are where code meets data; a workflow can be anything from a shell script
to a full-blown distributed pipeline. Renku provides a very simple workflow system which captures
the basic relationship between data and any code that can be executed on the command line. The
primary function of Renku workflows is to capture provenance and make it possible to reproduce and
rerun computational pipelines involving several intertwined steps that would normally run as separate
scripts, or even as a part of one (usually very long) script. The system aims to relieve the researcher
from the burden of remembering how a specific result was generated.

Once a workflow is executed, content hashes of all components are recorded in the metadata and
can be checked against any future state. If any of the pieces are updated (code or data), Renku can
generate an execution plan to rerun the parts that need to be updated. The workflows are recorded
using an open ontology based on W3C recommendations3 and schema.org but can be serialized into
a workflow language to execute on a variety of backends including cloud and HPC. Currently, we

2Integrations are not limited to these services and additional backends are continously being added.
3https://www.w3.org/TR/prov-o/
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support the Common Workflow Language[6], toil, and Argo workflows4, but others can be added by
external extensions via a simple plug-in system.

Computational environment: Code requires a computational environment in which to run; this
environment includes software libraries and languages, compilers, system libraries, and the operating
system. Failure to encapsulate this environment to a sufficient degree is the primary hurdle for
collaboration, reuse and reproducibility in computational research [23]. Renku makes heavy use
of container technologies to alleviate some of the pain related to computational environments. By
default, each project includes a Dockerfile that builds a docker image for every commit in the
project’s repository. This ensures that a computational environment matching any commit of the
project is always available. Users can either use these images on their local machine (or another
compute resource) or launch hosted interactive sessions directly in RenkuLab, the hosted part of the
platform.

3.2 Interfaces for consistent compute and data access

The Renku platform consists of a RenkuLab instance (e.g. our public instance at https://renkulab.
io) with a browser-based interface and a Python library, which also provides a command-line interface
(CLI)5. The two interfaces can be used together or independently, depending on the project constraints.
We strive for feature parity between the two interfaces, meaning that users should have a consistent
experience with launching compute sessions and accessing data in both cases. The CLI in addition
allows users to take a project completely off-line to another compute resource, without relying on any
hosted (cloud) infrastructure. This is particularly useful in cases involving sensitive data or restricted
environments.

3.3 Building on Open Source

Renku is open source6 and licensed under the Apache 2.0 License. It builds and relies on a number of
well-known open-source technologies: Kubernetes at the infrastructure layer, docker for containeriza-
tion, git and GitLab for version control and repository management, and the Jupyter ecosystem [21]
for interactive sessions. The platform is designed to prevent vendor lock-in, i.e. users are not obliged
to keep working on their project within the hosted platform or even using any Renku tooling. They
may simply take their Project (a git repository) anywhere and use it with standard tools like git and
docker.

3.4 Connect Everything: the Renku Knowledge Graph

A central component of the Renku platform is the knowledge graph (KG) made up of metadata
aggregated from all the projects on the platform. All primary Renku entities (Projects, Code,
Datasets, Workflows) are represented in the KG. This metadata can facilitate many different kinds of
functionality. For example, recording a workflow allows a user to use the system to re-execute parts
of their computation if some upstream data changes. Conversely, if a user is interested in a particular
Dataset, they can use the KG to understand how it has been created or analyzed in the past, who has
experience with the data and what kinds of results have been derived from it. The KG is based on
RDF and designed to be interoperable and extensible by 3rd party plug-ins with domain-specific
metadata to facilitate use cases across a broad spectrum of applications. One example is a plug-in
that automatically adds MLSchema [33] annotations to Workflows7.

The metadata stored in the KG is subject to the same access control restrictions as code and data. A
user only sees the metadata associated with Projects or Datasets that they are otherwise allowed to
access, including when performing a global search. For more details on the KG, please see Section 1
of the Supplementary Materials.

4At the time of writing, with limited functionality.
5https://github.com/SwissDataScienceCenter/renku-python
6https://github.com/SwissDataScienceCenter/renku
7https://github.com/SwissDataScienceCenter/renku-mls
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4 Renku for Community Dataset Development

We believe that the feature-set of Renku and its design principles make it a great platform for the
development, dissemination and sharing of ML datasets and benchmarks. We envision that Renku
will be used to enable new forms of collaboration on community dataset development and to facilitate
the extension and reuse of different datasets and benchmarks based on reusable code and pipelines.

4.1 Transparency and trust

Responsible, sustainable development of datasets for use in the ML research community requires
transparency. A dataset author, for example, desires that the downstream use of their data can quickly
and easily be discovered. Conversely, a dataset user or consumer needs to be able to quickly examine
the data and to understand its provenance to be absolutely certain about any assumptions, tweaks or
modifications that may impact downstream interpretation. A data consumer may also like to discover
uses of the data they are interested in, to gain inspiration and build on existing work easily.

In Renku, both of these points of view are satisfied through the integration of the four key platform
elements (Code, Dataset, Workflows and Compute environments) with the metadata layer, the Renku
knowledge graph. A Dataset author, for example, can use Renku tools to track how a dataset is
prepared from raw data to the final state that is distributed for wider use. The pipeline that generates
the final Dataset is self-consistently recorded and may be re-executed in the controlled compute
environment to generate new datasets with different assumptions or to verify that the creation of the
dataset itself is repeatable and reproducible. The ability to quickly work hands-on with a dataset with
a pre-configured compute environment and executable code examples greatly simplifies the discovery
and vetting process, inspiring trust and stimulating reuse and collaboration.

4.2 Dissemination and sharing

Dataset authors aspire to make their work easily accessible to the widest possible audience and
applicable to a wide range of use cases. Dataset users, on the other hand wish to quickly discover
datasets relevant to their research interests and use them with minimal friction. Renku provides authors
with the means to package and distribute their Datasets easily and embed them into reproducible
computational environments with sample code to demonstrate and document use. Documentation in
this case goes beyond text descriptions, but can include code examples, visualizations or dashboards.
This allows authors to build demonstrations of the dataset’s application directly in their project; these
can be open to the public and provisioned quickly.

Once a user finds a dataset, they can add it to their own Renku project with a click. In doing so, the
user does not need to worry about how to access (download) the data; the platform makes sure that
the Dataset is accessible wherever the project is used. Data access information, whether the data is
stored within the repository or in a cloud-storage location, is preserved with the project ensuring that
the data is made available either in hosted interactive sessions or locally with minimal friction.

By making it easy for anyone to provide datasets for broader consumption in a frictionless way,
Renku makes it possible to expedite the dissemination of datasets within the community. Currently, a
handful of datasets are used by an overwhelmingly large percentage of papers [22]; not only because
they are useful datasets, but also because they are made easily available, coupled with user-friendly
tools for data handling, and demo projects and examples (e.g. the COCO dataset [25]). With Renku,
it is straightforward to make the dataset available along with all the code needed to (re)create it
or modify it, bundled with a compute environment. This opens the door to more robustly inspect
published datasets, and to use them as a starting point for generating new, complementary ones.

4.3 Identifying use and impact

By using a dataset within the platform, the information about the use is preserved within the
knowledge graph. This makes it possible for dataset authors or members of the wider community
to trace the usage of the data and self-consistently identify datasets that have the most traction
within the community. The knowledge graph enables evaluation beyond the superficial “number of
downloads” or “views”; instead, we can analyze the network of downstream applications of a Dataset,
e.g. whether they lead to results and publications, or whether they have an impact across many
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Platform Versioning Environments Workflows Datasets Apps Language
DATTSFLOW [31] + + + + - Python

KG-FRUS [38] + + + + - Python
MLTox [10] + + + + - Python

TimeFRAME [9] + + + - + R
MLED [35] + + - - - Python
OADAT [29] + + - - - Python

Table 1: Summary of Renku features showcased in the example use case projects. These features are
derived from the building blocks mentioned above, with versioning coming from the Code building
block. The App feature allows deployment of project-specific UIs.

different institutions of the research community. This type of analysis and interpretation of dataset
impact is not currently possible in other platforms made for data sharing. The same information can
be used more specifically for community benchmarking purposes, as the Omnibenchmark project [26]
demonstrates.

Apart from adding dimensions to assessing dataset applications, the ability to quickly identify dataset
use in progress can have significant impact on collaboration within a community. The usual academic
cycle of publication means that pieces of the research process that are fundamental to its success (e.g.
datasets and benchmarks) are not recognized until the publications that use them are complete. This
means that information only properly proliferates with a significant delay. Instead, in a framework
like Renku, information exchange and attribution could take place much sooner.

5 Example use cases

We have collected a number of use cases from real-world projects conducted at the Swiss Data Science
Center and the ETH domain, which illustrate the value of the Renku platform for collaborative dataset
development, use, and reuse. The projects are related to the development and application of ML in
support of scientific research. In all cases, the challenge is to combine domain knowledge of the
research question with specific requirements of downstream ML work. The case studies presented
here bridge the gap from domain to data science and provide experts from both sides with the means
to examine, confirm, and extend the datasets and their analyses, without extensive investments of
time and infrastructure. Links to all projects are included in the citations. Further details about the
TimeFRAME and MLED projects can be found in Section 4 of the Supplementary Materials.

It is important to note that (at the time of writing) not all of the sample projects utilize all of Renku’s
functionality and that this is perfectly acceptable - depending on the stage of the project, researchers
have different priorities to juggle. The summary of the adoption of various Renku features by the
example projects can be found in Table 1. The adoption curve of the platform’s features is intended
to be gradual - once a project is utilizing the platform, the “missing pieces” (e.g. explicit workflows
or data encapsulation through Datasets) can happen at any point when results start to take shape.

DATSSFLOW: ML-driven seismic signal classification The DATSSFLOW case study[31] deals
with developing automated data parsing pipelines and automatic retraining of feature extraction
models in a geophysical context. The project utilizes a multi-step pipeline, expressed as a set of
Renku workflow steps, to convert publicly available raw seismic data into a series of Renku Datasets
that may be reused in downstream tasks and applications. These steps are shown schematically in the
right panel of Figure 2; the manifestation of the workflow, as seen via the KG is shown in the right
panel.

All of the steps above are linked together: as soon as new data comes in, the entire pipeline is
automatically re-executed and the feature extraction model updated. Renku significantly reduces the
burden of manually running each and every script for each single dataset available, for current datasets
but also from those coming from future campaigns. Data from more stations available from the
International Federation of Digital Seismograph Networks (FDSN) could easily be added to the first
Renku Workflow to adapt the entire pipeline to a different application. Each step is documented via
instructions and READMEs, along with code, parametrizations and execution Workflows, enabling
automatic updates to the full data pipeline, even for people not familiar with the project.
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Figure 2: DATSSFLOW conceptual data flow (left) and the automatically generated knowledge graph
workflow representation (right).

KG-FRUS Renku has been utilized to track the creation of the KG-FRUS dataset[38], a graph-
based dataset built from the diplomatic documents of the Foreign Relations of the United States
(FRUS) office. In [45], the authors advocate that a knowledge graph (KG) is the representation
required to approach the study of complex fields such as diplomacy and political sciences, where
synergies and interactions between international actors are extremely relevant, and which are hitherto
ignored in standard corpora. As this dataset is based on public data dealing with public policy and
world events, it is important to be transparent about its creation. Utilizing a system like Renku means
that anyone can check, reuse, alter and rerun the pipeline to regenerate and check the consistency of
the dataset, or even to produce their own dataset from similar data.

MLTox: Enhancing toxicological testing through machine learning Within the MLTox project,
focused on providing ML-based alternatives to animal testing for ecotoxicological studies, the
authors generated a benchmark dataset, ADORE, on acute mortality of three taxonomic groups (fish,
crustaceans and algae) [40]. The core of ADORE originates from the ECOTOX database [28], which
can be downloaded as a set of .txt files. The relevant files were harmonized and pre-filtered to only
contain entries suitable to model acute toxicity in fish, crustaceans and algae. We expanded the core
dataset with taxonomic and chemical information. The data was then filtered to only contain entries
on acute mortality, which is defined differently for the three taxonomic groups. Additionally, we only
retain data points for which information from all sources is available. The filtered dataset mainly
contains entries from organic molecules, representing a rather small chemical space, which have been
tested on species with taxonomic information available.

In general, and for this dataset specifically, data splitting has a substantial impact on the modeling
output [20]. We therefore proposed specific challenges on subsets of the data, included the corre-
sponding data subsets with splittings as well as in-depth characterization and discussion of train-test
splitting approaches [40]. The entire dataset, code, and pipeline needed to generate it are available
on Renku [10]. Researchers interested in using or re-generating the dataset can easily do so within
the RenkuLab environment. We envision the ADORE dataset being used to accelerate research in
ecotoxicity to move towards a reduction and finally a replacement of animal testing.

OADAT: Large scale optoacoustic imaging data OADAT is one of the outcomes of a larger
project, which proposed several methodologies to improve image quality by means of geometric
distortion correction, noise reduction, and semantic segmentation, for a novel emerging non-invasive
clinical imaging modality called optoacoustic imaging. Beyond the methodologies, the project also
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Platform Versioning Datasets Environments Provenance Apps Languages
Renku + + + + + Multiple

Whole Tale + + + + - Multiple
Hugging Face + + + - + Multiple

Kaggle + + + - - Multiple
DVC + + - + - N/A

Google Colab + - + - - Python
OpenML - + - + - Multiple

Papers with Code - + - - - N/A
Binder - - + - - Multiple

Table 2: Summary of platforms and tools overlapping with Renku features focusing on support for
version control, datasets, reproducible environments, data provenance, GUI apps, and program-
ming languages

procured a first of its kind large scale optoacoustics dataset consisting of experimental and simulated
samples collected using varying imaging devices, conditions, and volunteers.

[30] reference the Renku project[29], where one can not only access each component in the afore-
mentioned workflow, but can also customize individual components to (i) evaluate pretrained models
on a different (proprietary) optoacoustic dataset, (ii) train the models on the datasets, (iii) evaluate
performance of pretrained models, and even (iv) test the pretrained models on proprietary optoacous-
tic images qualitatively to see if they can be integrated into other workflows of domain science (in
this case optoacoustic imaging) experts. Each step is designed to accept other models or datasets for
efficient comparison and evaluation.

6 Comparison to other systems

Renku provides solutions to problems that are well known and widely acknowledged issues in ML
and data science more generally: there are many tools and platforms that overlap with Renku in
addressing them. To provide a better understanding of where Renku fits in the landscape, we give
a brief comparison with some of the most relevant platforms: Whole Tale [4], Hugging Face[14],
Kaggle[17], DVC[18], Google Colab[36], OpenML [41], Papers with Code[1], and Binder[34]. A
summary is provided in Table 2.

We want to emphasize that we do not see Renku as being in competition with any of these platforms.
Each one targets a different set of usage scenarios, making it difficult to do a direct comparison in
a fair way. As we argue above, we see working sustainably as imperative to the development of
machine learning and encourage researchers to use whatever tools they find helpful in achieving
this goal. In the comparison here, the focus is on features, but other aspects like can I deploy my
own instance, is paid support available, is the platform operated for profit, can I access GPUs may
certainly be relevant.

Renku shares the most in common with the first three of the aforementioned platforms: Whole
Tale, Hugging Face, and Kaggle. Like Renku, all these platforms support versioning code, defining
datasets, and creating reproducible environments in the cloud. Of these platforms, Whole Tale and
Renku are the two that support finer-grained tracking of data provenance (referred to as Workflows in
Renku). Hugging Face and Renku let users deploy GUI-based apps that let others explore a project
interactively without having to write or execute code.

Two projects that overlap in a smaller subset of features with Renku are DVC and Google Colab. DVC
is a tool for Data Version Control, and supports tracking versions of data, models, and provenance of
results, features that Renku also supports. Like Renku, Hugging Face, and Kaggle, Google Colab
offers cloud-based environments with optional GPU access. Colab is, however, tied to notebook-based
Python environments and does not provide support for datasets.

The final three projects are the most orthogonal to Renku among this list. OpenML is a library and
platform for accessing datasets and publishing detailed provenance information about how analysis
was performed. Its feature set complements Renku very nicely, since Renku does not offer the same
level of support for retrieving datasets and tasks or detail about how ML pipelines are built, but
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Renku provides reproducible cloud-based environments and the ability to track provenance about
other aspects of projects (like data pre-processing). Papers with Code is a repository of publications,
and code and datasets that go along with them. Publications are not a central focus of Renku. Finally,
Binder is a tool that very conveniently allows creating a cloud environment for running notebooks
in Python, R, and Julia, but it is not designed to create environments for the development of ML
projects.

7 Current status, Limitations and Future work

As of this writing, the Renku platform runs in at least seven different instances, including two at
universities in Switzerland and one used by the Swiss Federal Statistical Office. The public instance
is open to all and can be found at https://renkulab.io. It currently counts around 8’000 users.
Apart from ML projects, some of which we highlighted above, Renku users span a whole range of
scientific domains (e.g. hydrology [27, 24], climate science [42], and bioinformatics [26]), experience
levels, and IT literacy. Many courses are taught on the platform, taking advantage of the easy set up
of consistent, reusable compute environments.

The current version of the platform has focused on the usability of the CLI and the web app, the
generation of the underlying metadata and its handling in production and the reusable compute
environments, which are the most heavily used feature. Currently, the platform lacks the functionality
for users to generate views of the knowledge graph easily (Section 3.4), although the metadata to
enable such views already exists. Therefore, cross-project views or more complex queries relevant
for discovering Datasets and their impact are not easily accessible. We are working on features that
will enable such exploration.

One of the main limitations of Datasets is the reliance on git-LFS as the data storage backend
(Section 3.1). It is inflexible, prone to error, and does not work well for large amounts of data.
In our efforts to make the platform a landing zone for all types of data science and ML projects,
implementation work is already in motion to simplify and extend the Dataset functionality; on the
one hand to make it easier to connect to other sources of data, and on the other to interface with
data repositories and archives for preservation and minting of DOIs. Datasets also currently lack
more extensive metadata, such as licensing or publication information, which will be added in future
iterations.

A common problem is availability and flexibility of compute resources, as users are currently limited
to using the on-line compute resources provided by the Renku instance they are using (Section 3.1).
To better connect users to their data and compute resources, we plan to enable users to connect
more seamlessly to other providers like public clouds or HPC clusters. At the same time, interactive
computing platforms are prone to not utilizing compute resources well and we strive to implement
features that help users avoid wasteful consumption.

We sincerely hope that the broader ML community will consider Renku as a platform for building,
developing, and ultimately using and disseminating datasets. We look forward to engaging with
questions, issues, and feature requests in our public channels8.
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