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A Notations and Abbreviations

Table A.1: The table of notations and abbreviation.

Concept Description
Graph G A graph with a node set X and edge set DX

Node Xi A member of the node set X

Parent of Xj A node Xi such that there is a directed edge from Xi to
Xj (i.e., Xi is a direct cause of Xj)

Ancestor of Xj A node Xk such that there’s a directed path from Xk to
Xj regulated by at least one additional node Xi for i ̸= k
and i ̸= j (i.e., Xk is an indirect cause of Xj)

PAXj
(G) The set of all parents/ancestors of node Xj in G

DAG A directed acyclic graph; a directed graph G that does not
contain directed cycles

SCM The structural causal model characterizes the causal
relationship among |X| = d nodes via a DAG G
and noises eX = [eX1

, · · · , eXd
]⊤ such that Xi :=

hi{PAXi
(G), eXi

} for some unknown hi and i =
1, · · · , d

Y (Zi = zi) Potential outcome after setting individual variable Zi to zi
GO DAG characterizing the causal relationship among O

PG The mass/density function for an SCM with its DAG G
Z−i ≡ Z \ Zi The complementary variable set of Zi

B NSCSL for Nonlinear Models: The POC-based Learning Algorithm

In this section, we outline a method for learning the NSCG for a nonlinear model. Given the lack of
an explicit form for both causal effects and POCs in such models, we employ an iterative learning
method based on Thm. 4.4 to capture complex nonlinear relationships among variables. The method
begins with a pre-screening process, identifying necessary and sufficient features from Z with high
causation scores. Following this, the causal graph is estimated among the selected nodes and Y ,
approximating GV in the nonlinear structural equation model. This iterative approach is applicable
for general SCMs and the process is repeated until convergence is achieved. App. B.1 introduces the
nonlinear structural equation model and describes the estimation of POC in such a model. The main
algorithm based on POCs is presented in App. B.2.

B.1 Nonlinear Structural Equation Model and Estimation of POC

B.1.1 Nonlinear Structural Equation Model

While the linear structural equation model has good properties such as easy implementation and nice
interpretation, it cannot capture complex nonlinear causal relationships. To address this, we consider
the non-linear additive form following [25; 47; 28]. Specifically, for variables D = {g(Z), Y } as a
d+ 1-dimensional vector, we consider replacing the model in (1) as follows,

Di := ψi{PADi
(G)}+ eDi

, (B.1)

for the i-th element/node Di in D with some unknown nonlinear function ψi and independent noise
eDi

, for i = 1, · · · , d+1. As mentioned in [47; 28], this model is identifiable from observational data.
We further define a new functional matrix B(ψ) = B(ψ1, · · · , ψd+1) that encodes the unknown
causal relationship among variables. The element in the i-th row and j-th column is defined as:

[B(ψ)]ij := ||∂jψi||2, (B.2)
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where || · ||2 presents the L2 norm. This matrix thus describes the dependency among D; if Di does
not depend on Dj , we have ||∂jψi||2 = 0. We can also incorporate background knowledge as done
in § 5.2 to reflect the causal roles in different types of variables. We do this by specifying the last
column of B(ψ) to be all zeros, so that hcB(ψ) =

∑d+1
i=1 |[B(ψ)]i,d+1| = 0.

B.1.2 Estimation of POC

We detail the estimation of POC based on Thm. 4.4 and the model (B.1) as follows. Denote the
estimator of the conditional probability of the outcome given the i-th selected feature gi(Z) as
P̂(Y = y|gi(Z)). This can be achieved by either parametric models (such as logistic regression for
the binary outcome) or non-parametric models (such as random forest or neural network). Then, the
estimated marginal POC across n data points is given by

M̂-POC(gi|{o(j)}) =
n∏

j=1

∣∣∣P̂{Y = y(j)|gi(Z) = gi(z
(j))} − P̂{Y = y(j)|gi(Z) ̸= gi(z

(j))}
∣∣∣ ,

where gi(Z) is the i-th dimension of g(Z). Similarly, we can estimate the conditional probability of
the outcome given all selected feature g(Z) as P̂(Y = y|g(Z)). Likewise, we have the estimated
conditional POC as

Ĉ-POC(gi|{o(j)}) =
n∏

j=1

∣∣∣P̂{Y = y(j)|gi(Z) = gi(z
(j)), g−i(Z) = g−i(z

(j)
−i )}

− P̂{Y = y(j)|gi(Z) ̸= gi(z
(j)), g−i(Z) = g−i(z

(j)
−i )}

∣∣∣ ,
where g−i(·) ≡ g(·) \ gi(·) is the complement of gi(·).

B.2 Learning Algorithm based on POCs

Given the lack of an explicit form for causal quantities in the nonlinear models, we employ an iterative
learning method based on Thm. 4.4 to capture complex nonlinear relationships among variables. The
method begins with an initialized causal graph and then identifies necessary and sufficient features
from Z with high POCs by setting g as a subset selection function. Following this, the causal graph
can be updated among the selected nodes and Y , approximating GV in the nonlinear structural
equation model based on data {o(j) = (z(j), y(j))}1≤j≤n. This process is repeated until convergence
is achieved. The main algorithm based on POCs is presented as follows.

B.2.1 Step 1: Nonlinear Causal Structural Learning

In the first step, we employ a causal structural learning algorithm for nonlinear models to estimate the
functional matrix B(ψ) as presented in (B.2). This estimation is performed considering the selector
gk at the k-th iteration, where g1(Z) := Z. Aligning with the main text, we adopt the nonparametric
acyclicity constraint on B(ψ) proposed in Zheng et al. [47], represented as hn(B(ψ)) = 0. The loss
function, defined by the augmented Lagrangian for the k-th iteration, is then formulated as:

L̃(B(ψ), θ, λ|gk, {o(j)}) = f̃(B(ψ), θ|gk, {o(j)}) + λ{hc(B(ψ)) + hn(B(ψ))}, (B.3)

where f̃(B(ψ), θ|gk, {o(j)}) denotes a nonlinear loss function with parameters θ, and λ represents
the Lagrange multiplier. The objective in (B.3) can be solved using existing nonlinear causal structural
learning methods (refer to Yu et al. [44], Zhu et al. [48], Zheng et al. [47]) given the selector gk

and data {o(j) = (z(j), y(j))}1≤j≤n. The estimated functional matrix resulting from this process is
represented as B̂k(ψ̂).

B.2.2 Step 2: Causal Relevance Measurement Using POCs

Following the estimation of the functional matrix B̂k(ψ̂), we assess the causal relevance of nodes
through the probabilities of causation (POCs) to update the selection function g. The loss function
relating to the selector is defined as follows:

L̃P (g, γ|B̂k(ψ̂),o(j)) = −
d∑

i=1

P̂(gi|o(j)) + γ|g|, (B.4)
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where |g| signifies the number of selected nodes in g with a penalty γ for controlling the complexity
of the selector. The term gi refers to the i-th dimension of g for i = 1, · · · , d. Here, P̂(·) can represent
either the estimated M-POC or C-POC as outlined in App. B.1. By optimizing different POCs, we
can learn the corresponding best selector g according to the loss function detailed in (B.4) using the
CAUSAL-REP algorithm as proposed in Wang & Jordan [42] by considering the selector g as the
subset of Z. The resulting selector is denoted as gk+1.

B.2.3 Step 3: Necessary and Sufficient Causal Structural Learning

Repeat the optimization process for loss functions in (B.3) and (B.4) for k = 1, · · · ,K iterations
until either the maximum iteration number K is reached, or the change in loss functions in (B.3) and
(B.4) falls below a predefined tolerance level τ . The resultant estimated matrix is denoted as B̂(ψ̂),
from which the estimated causal graph, ĜV , can be derived.

B.3 The Computational Complexity of the NSCSL Algorithm

The computational complexity of NSCSL comprises two parts: the cost from causal discovery as
G(n, p), and the estimation of causal effects/scores F (n, p), where n is the data sample size and p
is the number of nodes. In the linear case, our method learns the features and causal graph through
single-step optimization in (5), with complexity cubic in the number of nodes, G(n, p) = O(p3)
following Zheng et al. [46]. Here, the causal effect computation is linear-time and thus is dominated.
In the nonlinear case, according to App. B.2, the time complexity depends on the base causal discovery
method and the number of max iterations K, yieldingO[K(G(n, p)+F (n, p))]. Supporting runtime
details are provided in § 6.

B.4 Discussion on Scale Invariance

NSCSL is scale-invariant when we appropriately choose the causal discovery base learner and model
the treatment effects/POCs. Though NOTEARS lacks scale invariance, our method’s flexibility allows
for the integration of scale-invariant causal discovery methods like NSCGL with FCI. Additionally,
under LSEM, the rescaling will not affect the relative rank of the features based on absolute causal
effects. In the nonlinear case, we proposed to use POCs which by their definitions are scale-invariant.

C Extension to Markov Equivalence Class

Our proposed algorithm can also be extended to manage the Markov equivalence class of partial
directed acyclic graphs when the causal graph cannot be uniquely identified from the observational
studies.

C.1 Additional Graph Terminology

A graph G that contains directed and/or undirected edges is termed as a partially directed graph. If this
graph doesn’t contain a directed cycle, it’s referred to as a partially directed acyclic graph or PDAG.
The DAG G is generally not identifiable from the distribution of X based on conditional independence
relationships, as per observational data [22]. This is because multiple DAGs can represent the same
conditional independence relationships, and these DAGs form a Markov equivalence class (MEC),
denoted as MEC(G). Two DAGs belong to the same MEC if and only if they have the same skeleton
and the same v-structures [22]. A MEC of DAGs can be uniquely symbolized by a completed partially
directed acyclic graph (CPDAG) [35; 7], a graph that may contain both directed and undirected edges.
A CPDAG adheres to the following: if Xi → Xj exists in the CPDAG, then Xi → Xj is present in
every DAG in the MEC; and if Xi −Xj exists in the CPDAG, then the MEC contains a DAG for
which Xi → Xj as well as a DAG for which Xj → Xi.

C.2 Model Identifiabilities

In the absence of further assumptions regarding the form of functions and/or noises, the model in (1)
can only be identified up to MEC following the Markov and faithful assumptions [35; 25]. Below, we
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explore the conditions for the unique identifiability of the DAG and potential strategies for addressing
scenarios involving the MEC.

Initially, we consolidate cases where the DAG is uniquely identifiable. In the context of the LSEM,
when the noises ϵ follow a Gaussian distribution, the resulting model corresponds to the standard
linear-Gaussian model class, as investigated in Spirtes et al. [35] and Peters et al. [26]. In instances
where the noises ϵ maintain equal variances, according to Peters & Bühlmann [24], the DAG G can
be uniquely identified from observational data. Further, when the functions are linear but the noises
are non-Gaussian, one can derive the LiNGAM as described in Shimizu et al. [34], where the true
DAG can be uniquely identified under certain favorable conditions. In addition, as cited in Zheng
et al. [47]; Rolland et al. [28], the nonlinear additive model can be identified from observational
data. Another scenario of note arises when the corresponding MEC encompasses only one DAG;
here, the DAG can be inherently identified from observational data. Recent score-based causal
discovery algorithms [46; 44; 48; 5] typically take into account synthetic datasets generated from
fully identifiable models, which provides practical relevance in evaluating the estimated graph in
relation to the true DAG.

In instances where the true DAG is not identifiable, we reference the discussion in App. C.1. In
such cases, a CPDAG uniquely symbolizes a MEC of DAGs that yield the same joint distribution
of variables. This CPDAG can be inferred from observational data via a variety of causal discovery
algorithms [see e.g., 35; 7; 34; 14; 4; 27]. One feasible approach to dealing with MEC involves
enumerating all DAGs in the MEC derived from a given CPDAG [6]. It is conventional to encapsulate
a range of potential effects or probabilities by their average or the minimum absolute value [6;
33]. However, such an approach typically proves computationally prohibitive for large graphs,
necessitating computational shortcuts to acquire the causal effects or probabilities of causation
without enumerating all DAGs in the MEC of the estimated CPDAG.

C.3 Extended Algorithm for Markov Equivalence Class

In contrast to existing causal discovery algorithms, we consider a causal graph that is necessary and
sufficient to portray causal relationships influencing the outcome variable Y . This aim is expressed as
a causal identification constraint designed to restrict the causal structural learning to a smaller class
of DAGs, as detailed in the ensuing section. Additionally, we employ causal effects or probabilities
of causation as another loss function within the objective. This assists in identifying the DAG with
the highest score of conditional scores of causation or causal effects, wherein the v-structures of
interest are also constrained to have an endpoint at Y . Based on the estimated CPDAG, which
involves a significantly smaller number of nodes, we can generate all DAGs within the MEC and
prune superfluous nodes following aggregation.

Specifically, the proposed NSCSL algorithm can be adapted to handle MEC of PDAGs when the
causal graph is not uniquely identifiable from observational data. Let’s recall either the estimated
matrix B̂ obtained by NSCSL based on causal effects, as presented in § 5.2 for the linear model, or
the estimated functional matrix B̂(ψ̂) by the POC-based NSCSL in App. B for the nonlinear model.
Based on these estimated (functional) matrices, we can derive the estimated causal graph ĜV . This
can further lead to estimation under its MEC by averaging over possible DAGs, as follows:

Ĝ∗V =
1

|MEC(ĜV )|

∑
Gi∈MEC(ĜV )

Gi, (C.1)

where |MEC(ĜV )| is the size of MEC for ĜV . As we have previously noted, the number of nodes in
ĜV is much smaller than p, making it feasible to generate all DAGs in the MEC and prune extraneous
nodes following aggregation.

D Technical Proofs

In this section, we provide proofs for Thms. 4.4 and 4.6. Let the symbol ∧ denote the logical
connective and, and the symbol ∨ denote the logical connective or. For two events A and B,
A ∧ B = True if A = B = True, and A ∧ B = False otherwise. Furthermore, A ∨ B = False if
A = B = False, and A ∨B = True otherwise.
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D.1 Proofs of Thm. 4.4

Consider the marginal probability of causation (M-POC) for Zi in Def. 4.2 such that

M-POCi(y) ≡ P{Y (Zi ̸= zi) ̸= y, Y (Zi = zi) = y},

and the conditional probability of causation (C-POC) for Zi in Def. 4.3 such that

C-POCi(y) ≡ P{Y (Zi ̸= zi,Z−i = z−i) ̸= y, Y (Zi = zi,Z−i = z−i) = y}.

Our goal is to establish their lower bounds. In the following, we derive the lower bound for M-POC
in Part 1 and the lower bound for C-POC in Part 2. Finally, we discuss conditions for the lower bound
equality to be held in Part 3.

D.1.1 Part 1: Lower Bound for M-POC

We focus on M-POC first. Based on the consistency assumption (A1), we have either {Y (Zi ̸= zi) =
y} or {Y (Zi ̸= zi) ̸= y} holds. Since the events {Y (Zi ̸= zi) = y} and {Y (Zi ̸= zi) ̸= y} are
disjoint, we have

{Y (Zi ̸= zi) = y} ∨ {Y (Zi ̸= zi) ̸= y} = True, (D.1)

where the symbol ∨ denote the logical connective or, meaning one of the above event holds. Based
on this fact, we focus on the second event {Y (Zi = zi) = y} in M-POC which yields

{Y (Zi = zi) = y} (D.2)
= {Y (Zi = zi) = y} ∧ True
= {Y (Zi = zi) = y} ∧ [{Y (Zi ̸= zi) = y} ∨ {Y (Zi ̸= zi) ̸= y}]
= [{Y (Zi = zi) = y} ∧ {Y (Zi ̸= zi) = y}] ∨ [{Y (Zi = zi) = y} ∧ {Y (Zi ̸= zi) ̸= y}] ,

where the first equality is owing to the definition of the logical connective ∧, the second equality
comes from (D.1), and the last equality follows the rule of interchange in the logical connectives, i.e,
A ∧ (B ∨ C) = (A ∧B) ∨ (A ∧ C) for events A, B, and C. By noticing the last line is the logical
connective or of two events, taking the probability on both sides of (D.2) gives

P{Y (Zi = zi) = y} (D.3)
≤ P [{Y (Zi = zi) = y} ∧ {Y (Zi ̸= zi) = y}] + P [{Y (Zi = zi) = y} ∧ {Y (Zi ̸= zi) ̸= y}]
= P [Y (Zi = zi) = y, Y (Zi ̸= zi) = y]︸ ︷︷ ︸

η1

+P [Y (Zi = zi) = y, Y (Zi ̸= zi) ̸= y]

= η1 + M-POCi(y),

where the first inequality is owing to P(A ∨ B) ≤ P(A) + P(B), and the equalities are due to the
definitions of probabilities.

Similarly, by (A1), since the events {Y (Zi = zi) = y} and {Y (Zi = zi) ̸= y} are disjoint, we have

{Y (Zi = zi) = y} ∨ {Y (Zi = zi) ̸= y} = True.

Based on this fact, the first event {Y (Zi ̸= zi) = y} in M-POC is

{Y (Zi ̸= zi) = y} (D.4)
= {Y (Zi ̸= zi) = y} ∧ True
= {Y (Zi ̸= zi) = y} ∧ [{Y (Zi = zi) = y} ∨ {Y (Zi = zi) ̸= y}]
= [{Y (Zi ̸= zi) = y} ∧ {Y (Zi = zi) = y}}] ∨ [{Y (Zi ̸= zi) = y} ∧ {Y (Zi = zi) ̸= y}] .

By noticing the last line is the logical connective or of two events, taking the probability on both
sides of (D.4) gives

P{Y (Zi ̸= zi) = y} ≥ P [{Y (Zi ̸= zi) = y} ∧ {Y (Zi = zi) = y}] (D.5)
= P [Y (Zi ̸= zi) = y, Y (Zi = zi) = y] = η1,

where the first inequality is owing to P(A∨B) ≥ P(A) and the last equality comes from the definition
of η1.
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Combining (D.3) and (D.5), we have
M-POCi(y) (D.6)

(by (D.3)) ≥ P{Y (Zi = zi) = y} − η1
(by (D.5)) ≥ P{Y (Zi = zi) = y} − P{Y (Zi ̸= zi) = y}

= P{Y = y|Zi = zi} − P{Y = y|Zi ̸= zi},
where the last equation follows the results that P{Y = y|do(X = x)} = P{Y = y|X = x} under
the ignorability assumption (A2) following Rosenbaum & Rubin [29] and Pearl et al. [22, 23]. The
proof of the first part thus is completed.

D.1.2 Part 2: Lower Bound for C-POC

We next show the lower bound of conditional POC in Thm. 4.4 following the same logic as in Part
1. Based on the consistency assumption (A1), we have either {Y (Zi ̸= zi,Z−i = z−i) = y} or
{Y (Zi ̸= zi,Z−i = z−i) ̸= y} holds, i.e., these two events are disjoint, thus, we have

{Y (Zi ̸= zi,Z−i = z−i) = y} ∨ {Y (Zi ̸= zi,Z−i = z−i) ̸= y} = True, (D.7)
where the symbol ∨ denote the logical connective or, meaning one of the above event holds. Based
on this fact, we focus on the second event {Y (Zi = zi,Z−i = z−i) = y} in C-POC which yields

{Y (Zi = zi,Z−i = z−i) = y} (D.8)
= {Y (Zi = zi,Z−i = z−i) = y} ∧ True
= {Y (Zi = zi,Z−i = z−i) = y}

∧ [{Y (Zi ̸= zi,Z−i = z−i) = y} ∨ {Y (Zi ̸= zi,Z−i = z−i) ̸= y}]
= [{Y (Zi = zi,Z−i = z−i) = y} ∧ {Y (Zi ̸= zi,Z−i = z−i) = y}]

∨ [{Y (Zi = zi,Z−i = z−i) = y} ∧ {Y (Zi ̸= zi,Z−i = z−i) ̸= y}] ,
where the first equality is owing to the definition of the logical connective ∧, the second equality
comes from (D.7), and the last equality follows the rule of interchange in the logical connectives, i.e,
A ∧ (B ∨ C) = (A ∧B) ∨ (A ∧ C) for events A, B, and C. By noticing the last line is the logical
connective or of two events, taking the probability on both sides of (D.8) gives

P{Y (Zi = zi,Z−i = z−i) = y} (D.9)
≤ P [{Y (Zi = zi,Z−i = z−i) = y} ∧ {Y (Zi ̸= zi,Z−i = z−i) = y}]

+ P [{Y (Zi = zi,Z−i = z−i) = y} ∧ {Y (Zi ̸= zi,Z−i = z−i) ̸= y}]
= P [Y (Zi = zi,Z−i = z−i) = y, Y (Zi ̸= zi,Z−i = z−i) = y]︸ ︷︷ ︸

η2

+ P [Y (Zi = zi,Z−i = z−i) = y, Y (Zi ̸= zi,Z−i = z−i) ̸= y]

= η2 + C-POCi(y),

where the first inequality is owing to P(A ∨ B) ≤ P(A) + P(B), and the equalities are due to the
definitions of probabilities. Similarly, by (A1), since the events {Y (Zi = zi,Z−i = z−i) = y} and
{Y (Zi = zi,Z−i = z−i) ̸= y} are disjoint, we have

{Y (Zi = zi,Z−i = z−i) = y} ∨ {Y (Zi = zi,Z−i = z−i) ̸= y} = True.
Based on this fact, the first event {Y (Zi ̸= zi,Z−i = z−i) = y} in C-POC is

{Y (Zi ̸= zi,Z−i = z−i) = y} (D.10)
= {Y (Zi ̸= zi,Z−i = z−i) = y} ∧ True
= {Y (Zi ̸= zi,Z−i = z−i) = y}

∧ [{Y (Zi = zi,Z−i = z−i) = y} ∨ {Y (Zi = zi,Z−i = z−i) ̸= y}]
= [{Y (Zi ̸= zi,Z−i = z−i) = y} ∧ {Y (Zi = zi,Z−i = z−i) = y}}]

∨ [{Y (Zi ̸= zi,Z−i = z−i) = y} ∧ {Y (Zi = zi,Z−i = z−i) ̸= y}] .
By noticing the last line is the logical connective or of two events, taking the probability on both
sides of (D.10) gives

P{Y (Zi ̸= zi,Z−i = z−i) = y} (D.11)
≥ P [{Y (Zi ̸= zi,Z−i = z−i) = y} ∧ {Y (Zi = zi,Z−i = z−i) = y}]
= P [Y (Zi ̸= zi,Z−i = z−i) = y, Y (Zi = zi,Z−i = z−i) = y] = η2,
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where the first inequality is owing to P(A∨B) ≥ P(A) and the last equality comes from the definition
of η2. Combining (D.9) and (D.11), we have

C-POCi(y) (D.12)
(by (D.9)) ≥ P{Y (Zi = zi,Z−i = z−i) = y} − η2

(by (D.11)) ≥ P{Y (Zi = zi,Z−i = z−i) = y} − P{Y (Zi ̸= zi,Z−i = z−i) = y}
= P{Y = y|Zi = zi,Z−i = z−i} − P{Y = y|Zi ̸= zi,Z−i = z−i},

where the last equation follows the results that P{Y = y|do(X = x)} = P{Y = y|X = x} under
the ignorability assumption (A2) following Rosenbaum & Rubin [29] and Pearl et al. [22, 23]. The
proof of the second part thus is completed.

D.1.3 Part 3: Conditions to Achieve Lower Bounds

In this part, we discuss the conditions under which the POCs are equal to their corresponding lower
bounds. To this end, we introduce the following monotonicity condition.

(C1*). Monotonicity:
(i) {Y (Z ̸= z) = y} ∧ {Y (Z = z) ̸= y} = False;
(ii) {Y (Zi ̸= zi) = y} ∧ {Y (Zi = zi) ̸= y} = False.

Here, (C1*.i) is proposed in Section 9.2.3 in Pearl et al. [22] and also Tian & Pearl [39] to establish
the identifiability of the probability of causation. We generalize the condition (C1*.i) to the condition
(C1*.ii) so that we can extend the results in Theorem 9.2.14 in Pearl et al. [22] for POCs in Defs. 4.2
and 4.3.

We detail the case of M-POC first. By noticing the monotonicity condition in (C1*.ii) such that
[{Y (Zi ̸= zi) = y} ∧ {Y (Zi = zi) ̸= y}] = False, we can simplify (D.4) as

{Y (Zi ̸= zi) = y} = [{Y (Zi ̸= zi) = y} ∧ {Y (Zi = zi) = y}] . (D.13)

Substituting (D.13) into (D.2) yields

{Y (Zi = zi) = y} = {Y (Zi ̸= zi) = y} ∨ [{Y (Zi = zi) = y} ∧ {Y (Zi ̸= zi) ̸= y}] . (D.14)

Based on the consistency assumption (A1), we have either {Y (Zi ̸= zi) = y} or {Y (Zi ̸= zi) ̸= y}
holds, and thus the events {Y (Zi ̸= zi) = y} and [{Y (Zi = zi) = y} ∧ {Y (Zi ̸= zi) ̸= y}] are
disjoint. Therefore, taking the probability on both sides of (D.14) gives

P{Y (Zi = zi) = y} = P{Y (Zi ̸= zi) = y}+ P{Y (Zi = zi) = y, Y (Zi ̸= zi) ̸= y}. (D.15)

Recall Def. 4.2. Based on (D.15), we have

M-POCi(y) = P{Y (Zi ̸= zi) ̸= y, Y (Zi = zi) = y}
= P{Y (Zi = zi) = y} − P{Y (Zi ̸= zi) = y}
= P{Y = y|Zi = zi} − P{Y = y|Zi ̸= zi},

where the last equation follows the results that P{Y = y|do(X = x)} = P{Y = y|X = x} under
the Ignorability assumption by Rosenbaum & Rubin [29] and Pearl et al. [22, 23]. Thus, the lower
bound equality for M-POC holds when an additional monotonicity condition is imposed. Following
the same logic, we can show the lower bound equality for C-POC holds given the monotonicity
condition. We omit the details for brevity.

D.2 Proofs of Thm. 4.6

As a direct result of Thm. 4.4, below we can establish the relationship between POC and the
corresponding expected mean outcome given different combinations of the confounders involving Zi.
Specifically, we take expectations over Y on both sides of (D.6) and (D.12). When Y is nonnegative,
this yields ∑

y∈L
yM-POCi(y) ≥

∑
y∈L

y [P{Y (Zi = zi) = y} − P{Y (Zi ̸= zi) = y}]

≥E{Y (Zi = zi)} − E{Y (Zi ̸= zi)},
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and∑
y∈L

yC-POCi(y) ≥
∑
y∈L

y [P{Y (Zi = zi,Z−i = z−i) = y} − P{Y (Zi ̸= zi,Z−i = z−i) = y}]

≥E{Y (Zi = zi,Z−i = z−i)} − E{Y (Zi ̸= zi,Z−i = z−i)}.

Under the ignorability assumption (A2) following Rosenbaum & Rubin [29] and Pearl et al. [22, 23],
we have∑

y∈L
yM-POCi(y) ≥ δM (zi) ≡ E{Y |Zi = zi} − E{Y |Zi ̸= zi},∑

y∈L
yC-POCi(y) ≥ δC(zi) ≡ E{Y |Zi = zi,Z−i = z−i} − E{Y |Zi ̸= zi,Z−i = z−i},

(D.16)

where δM (zi) and δC(zi) are defined as the marginal and conditional causal effects using the
differences of expectations based on the corresponding POC. Recall the definitions of natural causal
effects for Zi as

TEi = E{Y (Zi = zi + 1)} − E{Y (Zi = zi)},

DEi = E{Y (Zi = zi + 1,Z−i = z
(zi)
−i )} − E{Y (Zi = zi)},

where z
(zi)
−i is the value of Z−i if setting do(Zi = zi). When Zi is binary, by comparing the

definitions with Zi ∈ {0, 1}, we have

|TEi| ≥ δM (zi), |DEi| ≥ δC(zi). (D.17)

Therefore, combining (D.16) and (D.17) yields the second conclusion in Thm. 4.6 that

min{
∑
y∈L

yM-POCi(y), |TEi|} ≥ E{Y |Zi = zi} − E{Y |Zi ̸= zi},

min{
∑
y∈L

yC-POCi(y), |DEi|} ≥ E{Y |Zi = zi,Z−i = z−i} − E{Y |Zi ̸= zi,Z−i = z−i}.

Further, when Zi is binary, the absolute values of δM (zi) and δC(zi) is equal to the absolute values
of TEi and DEi, respectively. Combining this with (D.16) yields the second conclusion in Thm. 4.6.
Finally, following the same logic in App. D.1.3, we can show the lower bound equality for Thm. 4.6
holds when the monotonicity condition is imposed. We omit the details for brevity. The proof is thus
completed.

D.3 Proofs of Thm. 5.1

We investigate the theoretical consistency of the proposed causal structural learning methods under
Model (1) with independent Gaussian error and equal variance, using the score-based method such as
NOTEARS that minimizes the loss in (5).

Notations and Conditions: We first detail some notations and the required conditions in Thm. 5.1
below. Denote Wj ∈ Rn×1 as the row vector of a matrix W ∈ R(d+1)×n for j = 1, · · · d+ 1. Let
supp(v) = {i : vi ̸= 0} denote the support of a vector v, which is the set of indices of nonzero terms
of v. The first condition requires a bounded true matrix B as follows.
Condition D.1. The true matrix B ∈ R(d+1)×(d+1) is bounded such that ∥B∥2 = O(1), and
the maximum degree across different rows is less than the number of nodes in the graph, i.e.,
s0 = maxj supp(Bj) ≤ d+ 1.

Next, we recall the linear structural equation model condition on W ≡ [g(Z)⊤, Y ]⊤ as follows.
Condition D.2. Suppose Model (1) such that W = B⊤W + ϵ, with independent Gaussian error ϵ
and the error variance is a constant σ2.

Furthermore, define the order as ν = [ν1, ν2, · · · , νd+1]
⊤ is a permutation of indices {1, 2, ..., d, d+

1} of nodes in the causal graph, such that νj ∈ {1, 2, ..., d+1}. If we set the last node to be the target
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variable, then the last index is fixed to be d+1. Let B(ν) as B(ν) = [B1(ν), · · · ,Bd+1(ν)]
⊤, such

that
Bj(ν) = argmin

β:supp(β)∈{ν1,··· ,νj−1}
E(Wνj − β⊤W )2, j = 1, 2, · · · , d+ 1.

Note that the true causal graph B that generates W also has a topological order, ν∗, which is called
the true topological order (this true order may not be unique). Then the true causal graph B can also
be denoted as B(ν∗). Denote the set of all permuations of {1, 2, · · · , d+ 1} as Υ and the set of true
order as Υ∗ such that Υ∗ ⊂ Υ. Denote the order of B̂ as ν ∈ Υ, so B̂ can also be notated as B̂(ν).
Then let sj(ν) = supp(Bj(ν)), ŝj(ν) = supp(B̂j(ν)). The last condition assumes the consistency
of the topological ordering.
Condition D.3. The true topological ordering of B, i.e., ν∗, is consistently estimated.

Condition D.3 is commonly imposed when proving the error bound of causal structural learning
results [see Condition (A6) in 33].

Overview of Proof: With the aforementioned three conditions, our proof follows similar strategies
of the causal structural learning literature [e.g., 33] but accounts for the extra penalty term from
causal effects. Notice that the explicit forms of causal effects under LSEM are linear combinations
of elements of B. This implies our new regulation can similarly vanish away as n goes to infinity.
For simplicity, in the rest of the proof, we show the consistency given a selection function g for
brevity. To start with, proving the consistency of B̂ returned by NSCSL with NOTEARS as baseline
is equivalent to showing that the B̂ solving

B̂ = argmin ∥W −B⊤W ∥22 + λh2(B), subject to h1(B) = 0. (D.18)

is consistent. Then the proof of Thm. 5.1 follows the same strategy as the proof of Proposition 1
in [33]. The key difference between Thm. 5.1 and Proposition 1 in [33] is that the loss function in
(D.18) contains extra penalty term h2(B) = δ∗ −

∑d
i=1 |ĈEi(B)|+

∑d+1
i=1 |bi,d+1|, that involves

causal effect information compared to the original loss function

B̃ = argmin ∥W −B⊤W ∥22, subject to h1(B) = 0,

in [46]. In this proof, we need to show a main statement and the rest of the proof will follow the same
procedure of Steps 2-3 in Appendix Section 9 of [33]. The Main Statement is:

∥∥B̂(ν)−B(ν)
∥∥
2
= O

(√√√√d+1∑
j=1

log n

n
(sj(ν) + ŝj(ν)) +

λ

n

√
s0(d+ 1)

)
,

with λ satisfy the bound of O((n log n)1/2) for arbitrary ν ∈ Υ.

Proof of Main Statement: Since B̂(ν) solves (D.18), we have

∥W − B̂(ν)⊤W ∥22 + λh2(B̂(ν)) ≤ ∥W −B(ν)⊤W ∥22 + λh2(B(ν)). (D.19)

Following Theorem 7.1 in Van de Geer & Bühlmann [40] and Shi & Li [33], we can transform (D.19)
to

1

2
∥B(ν)⊤W − B̂(ν)⊤W ∥22 + λh2(B̂(ν)) ≤ 2

d+1∑
j=1

κ(sj(ν) + ŝj(ν)) log n+ λh2(B(ν)),

(D.20)
for some κ > 0. Recall Condition D.2 such that W = B⊤W + ϵ with ϵ ∼ N(0n×1, In × σ2).
From Equation (65) in [33], we have 0 < κ∗ < σ2 such that

κ∗n

d+1∑
j=1

∥Bj(ν)− B̂j(ν)∥22 ≤
1

2
∥B(ν)⊤W − B̂(ν)⊤W ∥22 ≤

1

κ∗
n

d+1∑
j=1

∥Bj(ν)− B̂j(ν)∥22,∀ν.

(D.21)
Combining (D.21) with (D.20), we have

κ∗n

d+1∑
j=1

∥Bj(ν)− B̂j(ν)∥22 + λh2(B̂(ν)) ≤ 2

d+1∑
j=1

κ(sj(ν) + ŝj(ν)) log n+ λh2(B(ν)). (D.22)
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If λh2(B̂(ν)) > λh2(B(ν)), the main statement directly holds.

In the other case, we focus on showing the main statement when λh2(B̂(ν)) ≤ λh2(B(ν)). Specifi-
cally, we first define a vector

µ(ν) = [B̂1(ν)−B1(ν), B̂2(ν)−B2(ν), · · · , B̂p(ν)−Bd+1(ν)]
⊤ ∈ R(d+1)×1.

Our goal is to bound ∥µ(ν)∥2 =
∑d+1

j=1 ∥B̂j(ν) − Bj(ν)∥22. Define M(ν) = supp(µ(ν)) and
Mc(ν) is the complementary set. Then denote µ(ν)M(ν) as the vector formed by elements of µ(ν)
inM(ν). Denote µ(ν)Mc(ν) as the vector formed by elements of µ(ν) inMc(ν). Hence, we can
show

∥λh2(B(ν))∥1 − ∥λh2(B̂(ν))∥1

≤

∥∥∥∥∥λ
d∑

i=1

{
CEi(B(ν))− ĈEi(B̂(ν))

}
+ λ

{
Bd+1(ν)− B̂d+1(ν)

}∥∥∥∥∥
1

≤λ
d∑

i=1

∥∥∥CEi(B(ν))− ĈEi(B̂(ν))
∥∥∥
1
+ λ

∥∥Bd+1(ν)− B̂d+1(ν)
∥∥
1
.

(D.23)

Recall the close form of causal effects in Def. 4.5 derived in § 5.1 under the LSEM model. We have
DEi(B; g) = θi,

where θi presents the weight of the direct edge g(Z)i → Y according to (1) and Def. 4.5. In addition,
the total causal effect can be quantified by the path method [see e.g., 43; 20] as

TEi(B; g) =

mi∑
k=1

PE{π(k)
i },

where PE{π(k)
i } = bi,l1 · · · blτk ,(d+1) is the causal effect of gi(Z) on Y through the directed

path π(k)
i = {i, l1, · · · , lτk , d + 1} ∈ πi with length τk + 1, and bi,j is the weight of the edge

gi(Z) → gj(Z) if it exists, and bi,j = 0 otherwise, for i, j ∈ {1, · · · , d}, and blτk ,(d+1) = θlτk as
the direct edge from glτk (Z) to Y . Both TEi and DEi can be explicitly calculated given a matrix B

under a selector g. We denote their estimates as T̂Ei and D̂Ei given the estimated matrix B̂ and g.
Using the direct causal effects as an example, we have (D.23) be further bounded by

λ

d∑
i=1

∥∥∥CEi(B(ν))− ĈEi(B̂(ν))
∥∥∥
1
+ λ

∥∥Bd+1(ν)− B̂d+1(ν)
∥∥
1

≤C1λ

d∑
i=1

∥∥Bi(ν)− B̂i(ν)
∥∥
1
+ λ

∥∥Bd+1(ν)− B̂d+1(ν)
∥∥
1

≤max{C1, 1}λ
d+1∑
i=1

∥∥Bi(ν)− B̂i(ν)
∥∥
1
,

(D.24)

for some constant C1 > 0. Recall ∥µ(ν)∥2 =
∑d+1

j=1 ∥B̂j(ν) −Bj(ν)∥22. Combining (D.23) and
(D.24), we have

∥λh2(B(ν))∥1 − ∥λh2(B̂(ν))∥1 ≤ max{C1, 1}λ
d+1∑
i=1

∥∥Bi(ν)− B̂i(ν)
∥∥
1

≤max{C1, 1}λ∥µ(ν)∥1 ≤ max{C1, 1}λ(∥µ(ν)M(ν)∥1 + ∥µ(ν)Mc(ν)∥1)

≤2max{C1, 1}λ
√
s0(d+ 1)∥µ(ν)M(ν)∥2,

(D.25)

where the last inequality follows Equation (67) in Shi & Li [33]. Together with (D.22), we have

κ∗n

d+1∑
j=1

∥Bj(ν)− B̂j(ν)∥22 − 2

d+1∑
j=1

κ(sj(ν) + ŝj(ν)) log n

=κ∗n∥µ(ν)∥2 − 2

d+1∑
j=1

κ(sj(ν) + ŝj(ν)) log n ≤ 2max{C1, 1}λ
√
s0(d+ 1)∥µ(ν)M(ν)∥2,
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and thus

κ∗∥µ(ν)∥2 ≤ 2

d+1∑
j=1

κ(sj(ν) + ŝj(ν))
log n

n
+ 2max{C1, 1}

λ
√
s0(d+ 1)

n
∥µ(ν)M(ν)∥2.

(D.26)
Rearranging (D.26) leads to

∥µ(ν)∥2 ≤ O
(√√√√d+1∑

j=1

log n

n
(sj(ν) + ŝj(ν)) +

λ
√
s0(d+ 1)

n

)
,

for arbitrary ν ∈ Υ. Hence the proof of the Main Statement is completed. The rest of the proofs
follow the similar arguments in Proposition 1 of [33]. For λ satisfying the bound of O((n log n)1/2),
the consistency of the estimated matrix holds for arbitrary ν ∈ Υ. The proof of Thm. 5.1 is hence
completed.

E Additional Simulation Results

In this section, we provide additional simulation configurations and results.

E.1 Simulation Configurations

Table E.1: Hyper-parameters information.

Hyper-parameters Values

Maximum number of dual ascent steps in NOTEARS/NSCSL 100
Tolerance τ of acyclic constraint h1 to be violated in NOTEARS/NSCSL 1e-8
Maximum of parameters for the hard constraints in NOTEARS/NSCSL 1e+16
L1 penalty term l in NOTEARS/NSCSL 0
Conditional independent testing in PC “Fisher-Z”
Pruning threshold for all methods 0.3

E.2 More Real Data Analyses on Yeast Data

The estimated causal graph among candidate QTLs and the outcome is shown in Fig. E.1 under
the proposed method and NOTEARS [46] for illustration. The purple node represents the outcome,
the blue nodes indicate QTLs with a positive causal impact, and the red nodes denote QTLs with a
negative impact. Grey nodes are noisy QTLs without causal impact. Blue and red arrows represent
positive and negative causal links, respectively. Causal effects from candidate genes on the genetic
variant YER124C in yeast gene data are summarized using NSCSL in Table E.2. Fig. E.1 demonstrates
that the proposed algorithm can discover necessary and sufficient causal relationships with better
performance compared to the current causal discovery benchmark. Specifically, all nodes with causal
effects (either blue or red nodes in the causal graph) on the outcome are identified under NSCSL.
Furthermore, the proposed algorithm identifies an additional gene, ‘YLR303W’, which is not found
in NOTEARS. Here, ‘YLR303W’ is essential for sulfur amino acid synthesis [3], with an estimated
total causal effect of -0.06 on the target gene expression, as shown in Table E.2. And ‘YER124C’ of
interest is a daughter cell-specific protein involved in cell wall metabolism [8]. It has been shown that
sulfur amino acid synthesis can influent cell wall metabolism [37; 9]. These indicate that NSCGL
which additionally identified ‘YLR303W’ performs better than NOTEARS. These observations
align with findings from our simulation studies, further supporting NSCSL’s superiority in revealing
important causal features.
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Table E.2: Summary of candidate genes that affect the variant YER124C in yeast gene data by
NSCSL.

Gene Code Gene Function Direct Effect Total Effect

YOL058W Arginosuccinate synthetase -0.20 -0.22

YCL020W Genotype regulators -0.26 -0.26

YDR074W Trehalose-6-phosphate phosphatase 0.0 -0.15

YMR105C Phosphoglucomutase -0.28 -0.28

YKL178C Cell surface a factor receptor 0.06 0.07

YLR303W Required for sulfur amino acid synthesis 0.0 -0.06

YCL030C Multifunctional enzyme 0.0 -0.22

YER073W Mitochondrial aldehyde dehydrogenase 0.0 -0.06

(a) (b)

Figure E.1: Causal graphs for candidate genes that affect variant YER124C in yeast: (a). the estimated
graph Ĝ by NOTEARS (benchmark); (b). the estimated graph Ĝ by NSCSL using TE.
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E.3 Additional Simulation Results: True and Estimated Matrix
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Figure E.2: Estimated matrix under S1 (n = 20): (a). true whole graph; (b). true NSCG; (c). Ĝ by
NSCSL with TE; (d). Ĝ by NSCSL with DE; (e). Ĝ by NOTEARS; (f). Ĝ by PC; (g). Ĝ by LiNGAM.
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Figure E.3: Estimated matrix under S2 (n = 20): (a). true whole graph; (b). true NSCG; (c). Ĝ by
NSCSL with TE; (d). Ĝ by NSCSL with DE; (e). Ĝ by NOTEARS; (f). Ĝ by PC; (g). Ĝ by LiNGAM.
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Figure E.4: Estimated matrix under S3 (n = 20): (a). true whole graph; (b). true NSCG; (c). Ĝ by
NSCSL with TE; (d). Ĝ by NSCSL with DE; (e). Ĝ by NOTEARS; (f). Ĝ by PC; (g). Ĝ by LiNGAM.
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Figure E.5: Estimated matrix under S4 (n = 100): (a). true whole graph; (b). true NSCG; (c). Ĝ by
NSCSL with TE; (d). Ĝ by NSCSL with DE; (e). Ĝ by NOTEARS; (f). Ĝ by PC; (g). Ĝ by LiNGAM.
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Figure E.6: Estimated matrix under S4 (n = 300): (a). true whole graph; (b). true NSCG; (c). Ĝ by
NSCSL with TE; (d). Ĝ by NSCSL with DE; (e). Ĝ by NOTEARS; (f). Ĝ by PC; (g). Ĝ by LiNGAM.
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E.4 Additional Simulation Results: True and Estimated Graphs
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Figure E.7: Graphs under S1 (n = 20): (a). true whole graph; (b). true NSCG; (c). Ĝ by NSCSL
with TE; (d). Ĝ by NSCSL with DE; (e). Ĝ by NOTEARS; (f). Ĝ by PC; (g). Ĝ by LiNGAM.
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Figure E.8: Graphs under S2 (n = 20): (a). true whole graph; (b). true NSCG; (c). Ĝ by NSCSL
with TE; (d). Ĝ by NSCSL with DE; (e). Ĝ by NOTEARS; (f). Ĝ by PC; (g). Ĝ by LiNGAM.
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Figure E.9: Graphs under S3 (n = 20): (a). true whole graph; (b). true NSCG; (c). Ĝ by NSCSL
with TE; (d). Ĝ by NSCSL with DE; (e). Ĝ by NOTEARS; (f). Ĝ by PC; (g). Ĝ by LiNGAM.
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Figure E.10: Graphs under S4 (n = 100): (a). true whole graph; (b). true NSCG; (c). Ĝ by NSCSL
with TE; (d). Ĝ by NSCSL with DE; (e). Ĝ by NOTEARS; (f). Ĝ by PC; (g). Ĝ by LiNGAM.
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Figure E.11: Graphs under S4 (n = 300): (a). true whole graph; (b). true NSCG; (c). Ĝ by NSCSL
with TE; (d). Ĝ by NSCSL with DE; (e). Ĝ by NOTEARS; (f). Ĝ by PC; (g). Ĝ by LiNGAM.
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